
Maintaining Simultaneously Consistent
Views of a Distributed System using

Common Knowledge

Tal Mizrahi

Maintaining Simultaneously Consistent
Views of a Distributed System using

Common Knowledge

Research Thesis

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science
in Electrical Engineering

Tal Mizrahi

Submitted to the Senate of
the Technion - Israel Institute of Technology

Elul, 5766 Haifa September, 2006

This Research Thesis Was Done Under The Supervision of

A/Prof. Yoram Moses in the Department of Electrical Engineering

Acknowledgement

I would like to express my uttermost gratitude to my advisor, A/Prof. Yoram Moses,
for his devoted guidance throughout this research. His vision and extraordinary intuition
have inspired me in my work.

My warm thanks to my parents, Tsipi and Joe, for their encouragement and support,
to my brother, Amit, for all the LaTeX tips, and of course to my lovely wife, Hagit, for
putting up with me during these long years in the Technion.

The Generous Financial Assistance of the Technion is Gratefully Acknowledged.

Contents

Abstract 1

List of Symbols and Abbreviations 3

1 Introduction 7

1.1 Motivation . 7

1.2 Previous Work . 8

1.3 Research Goals .8

1.4 Outline .10

2 Preliminaries 11

2.1 The Communication Network .11

2.2 Nature’s Role: Inputs and Failures .12

2.3 Full-Information Protocols .14

2.4 Definition of the Continuous Consensus Problem15

2.5 Systems and Knowledge .16

2.6 Common Knowledge .19

3 Solving Continuous Consensus 21

3.1 The CC Problem .21

Clean Rounds .21

A Simple Protocol for Continuous Consensus24

Good and Bad Processes .26

The Core .28

The Horizon .30

CONCON . 31

3.2 Continuous Consensus and Common Knowledge36

3.3 Waste and CONCON . 44

Waste .44

A Generalized Definition of Waste .46

3.4 Clean Rounds Revisited .51

3.5 A Run of CONCON . 54

Thehorizon Revisited . 54

Critical Times Revisited .55

Good and Bad Processes Revisited .56

Local Waste and Destination .57

4 Uniform Continuous Consensus 61

4.1 The UCC Problem .61

A protocol for UCC . 62

5 Conclusion 65

5.1 Summary of Results .65

5.2 Future Work .68

A Detailed Proofs 73

A.1 Optimality of CONCON Revisited . 73

A.2 Correctness proofs for UNICONCON 74

List of Figures

2.1 An execution graph andi’s view Vi(k+1). 14

3.1 The SIMPLE CC protocol for processi. 24

3.2 Illustration of the SIMPLE CC Protocol. 25

3.3 SetsGi(k) & Bi(k) are based onVi(k+1). 29

3.4 The core computed at timek. 30

3.5 The CONCON protocol for processi. 32

3.6 An instance of Moses and Tuttle’s fixed-point construction byi at timem. 40

3.7 The Horizon vs.k in a runr. 55

3.8 Critical time vs.k in a runr. 56

3.9 Gi(k) andBi(k) in r. 57

3.10 desti(k) andhorizoni(k) in r. 58

3.11 Local Waste .60

4.1 Processx’s computation in UNICONCON. 64

Abstract

In a distributed system it is often necessary for all processes to maintain a consistent view

of the world. However, the existence of communication failures in a system may prevent

processes from obtaining a consistent view.Continuous consensusis the problem of

having each processi maintain at each timek an up-to-date coreMi [k] of information

about the past, so that the cores at all processes are guaranteed to be identical. Our

analysis assumes an unreliable synchronous system, with an upper bound oft failures.

The notion of continuous consensus enables a new perspective on classical problems

such as the consensus or the Simultaneous Byzantine Agreement (SBA) problems, and

allows for simpler analysis. A simple algorithm for continuous consensus in fault-prone

systems with crash and sending omission failures called CONCON is presented, based

on a knowledge-based analysis. Continuous consensus is shown to be closely related to

common knowledge. Via this connection, the characterization of common knowledge

by Moses and Tuttle is used to prove that CONCON is optimal—it produces the largest

possible core at any given time. Finally, a second algorithm is presented that provides an

optimumuniformsolution to continuous consensus, in which all processes (faulty and

nonfaulty) maintain the same core information at any given time.

Abstract 2

[1]

List of Symbols and Abbreviations

A(r,m) The set of active processes at(r,m).

Bi(k) Set of bad processes computed byi at timek+1.

bi(k) Number of bad processes computed byi at timek+1.

β Labelling function - determines which messages are successful.

C Common knowledge among all processes.

CN Common knowledge among the nonfaulty process.

c Short forcrit i(k).

DSϕ Distributed knowledge ofϕ among the processes inS.

d(r,k) The difference betweenN (r,k) andk (used in the computation of waste).

d(m)
i (k) The difference betweenN (m)

i (k) andk−m.

desti(m) The destination ofi at timem.

E Edges of the communication graph.

ESϕ Everyone in the setSknowsϕ.

E Set of monitored events.

E(V) The set of monitored external inputs determined by the viewV.

e An event or an external input.

F̀ Set of potentially faulty processes in`th iteration of the fixed-point construction.

F̂ The fixed-point ofF̀ .

FIP Full Information Protocol.

List of Symbols and Abbreviations 4

fm Failure model.

Gi(k) Set of good processes computed byi at timek+1.

g A good process.

h Index of the last iteration in the fixed-point construction.

horizoni(k) Thehorizon of i at timek.

I Set of possible input assignments in the system.

i Process name.

j Process name.

Kiϕ Processi knowsϕ.

k Time / round counter.

k̂ The final time in the fixed-point construction.

κ Time / round counter.

L Logical language.

Latesti [k] Processi’s estimation of the critical time fork in CONCON.

Latestux [k] Processx’s estimation of the critical time fork in UNICONCON.

` Time / round counter.

`w The round in which the waste is reached.

`lw The round in which the local waste is reached.

λ The empty view.

Mi [k] The core ofi at timek.

MC
i [m] Processi’s core according to CONCON.

Mu
x [k] Processx’s core according to UNICONCON.

m Time / round counter.

N The set of nonfaulty processes.

List of Symbols and Abbreviations 5

N (r,k) The number of failures discovered up to roundk.

N (m)
i (k) Number of failures discovered byi between roundsm andk.

n Number of processes in the system.

P Set of processes in the system.

P Protocol.

Φ The set of primitive propositions in the logical language.

ΦE The set of primitive propositions confined to facts about external inputs.

ϕ Fact or proposition.

R System.

r Run.

S̀ Set of potentially nonfaulty processes in`th iteration of the fixed-point construction.

Ŝ The fixed-point ofS̀ .

Σi Set of initial local states ofi.

t Upper bound on the number of failures in the system.

V Set of nodes in the communication graph.

Vi(m) View of processi at timem (subgraph ofV).

W(r) The waste orr.

W(m)
i (k) The local waste at timek w.r.t timem.

X Contents of the core.

x An arbitrary (possibly faulty) process.

z An arbitrary (possibly faulty) process.

ζ Input assignment function - assigns an input fromE to every point.

List of Symbols and Abbreviations 6

Chapter 1

Introduction

1.1 Motivation

Maintaining consistency of the information held by different nodes in an unreliable dis-

tributed system is a challenging problem. Whether it is a system whose nodes share

resources, or a system in which critical decisions are made according to the most recent

data at hand, it is highly important to maintain consistency of the nodes’ information.

A core of identical information maintained at different sites allows decisions per-

formed in a distributed manner to be compatible with each other. Moreover, with the

rapid growth of the internet over the last two decades, distributed systems operations are

no longer restricted to being internal. In many cases, external elements interact concur-

rently with different nodes of the system. This places a stronger emphasis on the need

to present a consistent view to the world at different nodes at a given time. A core of

information that is guaranteed to be identical at all sites at any given time, and contains

as much information as possible, is a very desirable tool in implementing such a consis-

tent view. This thesis deals with the design of efficient protocols for maintaining such a

core.

The challenge, however, is that different nodes in a distributed system typically

have asymmetric information. Part of this information—the facts that are common

knowledge—is identical for all agents and, moreover, can in principle be identified by

each agent. By acting on information that is common knowledge, agents are guaranteed

1. Introduction 8

to be acting on consistent information available to all agents.

1.2 Previous Work

The role of common knowledge for consistent simultaneous actions has been firmly

established in the literature [2, 3, 4, 5]. Dwork and Moses [3] presented an optimal1

solution to simultaneous Byzantine agreement in the presence of crash failures, by using

the notions ofclean roundsandwaste. They proved that simultaneous agreement can

be reached exactly when the value of at least one agent’s initial vote becomes common

knowledge. Moses and Tuttle [4] extended this work to the more complex (sending)

omission failure model, and presented optimal solutions for a broader class of simul-

taneous choice problems. Implicit in the latter work is the computation of a core of

information that characterizes the common knowledge at any given point in time. This

computation is based on a subtle fixed-point construction.

Providing an up-to-date consistent picture of the system at different sites can some-

times alleviate the need to explicitly activate voting or agreement protocols to handle

individual transactions (see, for example, [6]). Weaker guarantees than simultaneous

consistency are popular, where consistency is guaranteed over time: If one process can

determine that an event has occurred, the others will eventually know this as well [7].

These weaker consistency conditions are essential in some systems since simultaneous

coordination requires nontrivial common knowledge, and this is not attainable in truly

asynchronous systems [2].

1.3 Research Goals

The current work introduces thecontinuous consensusproblem, in which a coreMi [k]

of information is continuously maintained at every correct processi in the system. All

1Throughout this work we use the termoptimal referring to the time it takes to reach agreement or

consensus, rather than the computation complexity.

1. Introduction 9

local copies of the core must be identical at all timesk, and every interesting event from

a set of possible events,E , should eventually enter the core. The continuous consensus

problem is studied in synchronous systems with crash and omission failures. We assume

an upper bound oft failures in every run of our system. We shall show that the analysis

of continuous consensus (CC for short) shown in this work allows for a simple and

elegant solution to the problem of maintaining simultaneously consistent views in the

system.

The continuous consensus problem generalizes many problems having to do with

simultaneous coordination. For example, in the distributedfiring squadproblem [8],

the system may receive analarm message from the outside world. If a correct process

receives such a message, then it is required that at some later point all correct processes

“fire” simultaneously. In addition, “firing” is not allowed to occur in different rounds

by different processes (hence in a non-simultaneous fashion), nor is it allowed to take

place in a run before analarm message has been received in the system. Clearly, if the

arrival of analarm message is a monitored event in a continuous consensus protocol,

then the presence of analarm in the shared core can be used as a necessary and suffi-

cient condition for firing. Continuous consensus can also be used as a generalization of

simultaneous versions of Byzantine agreement and the consensus problem (cf. [3]), as

well as for the class of simultaneous choice problems of [4].

In this work we present an algorithm called CONCON that solves the CC problem.

CONCON is optimal in providing at any given time the largest and most informative

core possible. The algorithm will provide the most up-to-date consistent picture of the

system, without the need to explicitly activate voting or agreement protocols to handle

individual transactions.

A variant of the CC problem, which we calluniform continuous consensus(UCC),

requires that the core be consistent amongall processes in the systems, rather than just

among the correct ones. We present UNICONCON, which is a variant of CONCON that

solves the UCC problem.

Our solutions to CC and UCC rely on a knowledge-based analysis. A close connec-

1. Introduction 10

tion is shown between continuous consensus and common knowledge: it is shown that

the core of shared information,Mi [k] is common knowledge among the correct processes

at timek. Moreover, the optimality of CONCON is proven using the characterization of

common knowledge in the crash and omission failure models given in [4]. Our analysis

also aims at extending Dwork and Moses’ analysis of clean rounds and waste [3] to the

more complicated omission model.

1.4 Outline

This work is organized as follows. Chapter 2 provides a formal definition of our system,

and some technical background to the notions described in later chapters. Chapter 3,

which is the heart of this work, presents the continuous consensus problem and its so-

lution, CONCON, as well as proving its correctness and optimality. Chapter 4 describes

the uniform continuous consensus problem, and introduces UNICONCON. Finally, a

few concluding remarks are presented in Chapter 5. Some of the detailed proofs are

given in Appendix A.

Chapter 2

Preliminaries

Our treatment of the continuous consensus problem will be driven by a knowledge-based

analysis. A general approach to modelling knowledge in distributed systems was initi-

ated in [2] and given a detailed foundation in [5] (most relevant to the current work are

Chapters 4 and 6). The lion’s share of technical analysis in this thesis will be performed

with respect to a single protocol, which gives rise to a specific class of systems. For ease

of exposition, our definitions will be tailored to this particular setting.

2.1 The Communication Network

We consider a synchronous network withn≥ 2 possibly unreliable processes, denoted

by P = {1,2, . . . ,n}. Each pair of processes is connected by a two-way communica-

tion link. Processes correctly identify the sender of every message they receive. They

share a discrete global clock that starts out at time 0 and advances by increments of one.

Communication in the system proceeds in a sequence ofrounds, with roundk+1 taking

place between timek and timek+1. Each process starts in someinitial stateat time 0.

Then, in every following round, the process first sends a set of messages to other pro-

cesses, and then receives messages sent to it by other processes during the same round.

In addition, a process may also receive requests for service from clients external to the

system (think, for example, of deposits and withdrawals at branches of a bank), or input

from sensors with information about the world outside of the system (e.g., smoke detec-

2. Preliminaries 12

tors). Finally, the process may perform local computations based on the messages it has

received. The history of an infinite execution of such a network will be called arun.

2.2 Nature’s Role: Inputs and Failures

We think of a solution to the continuous consensus problem as a protocol operating (or

playing) against an adversary callednature. Nature determines two central aspects of

any given run: inputs and failures.

Inputs. We consider a setting in which every process starts out in an initial local state

from some setΣi , and can receive an external input in any given roundk (this input is

considered asarriving at timek). The initial local state of each process can be thought

of as its external input at time 0. We represent the external inputs in an infinite execution

as follows. Define a setV = P×N of process-time nodes(or nodes, for short). An

(external) input assignmentis a functionζ associating with every (initial) node〈i,0〉 at

time 0 an initial state fromΣi and with each node〈i,k〉 an input from a set of possible

inputs,I . Our analysis is independent of the type or structures of the elements ofI .

Failures. The second aspect of a run that is determined by nature is the identity of the

faulty processes, and the details of their faulty behavior. These depend on the particular

failure model being assumed. In this thesis we consider two closely-related failure mod-

els, called thecrashmodel and thesending omissionmodel, which is a generalization of

the crash model. For simplicity, a process will be considered faulty in a run if it displays

faulty behavior at any point during the run. In the crash failure model, a faulty process

crashesin some roundk≥ 1. In this case, it behaves correctly in the firstk−1 rounds

and sends no messages from roundk+ 1 on. During its crashing roundk, the process

may succeed in sending messages on an arbitrary subset of its channels. In the sending

omission model (or the omission model for short), a faulty process may omit to send

messages in any given round. It sends messages only according to its protocol (it cannot

2. Preliminaries 13

misrepresent or lie), and nature determines for every round what subset of its messages

will successfully be delivered. We remark that even faulty processes receive all mes-

sages sent to them over non-blocked channels. If a message is not delivered, its sender

is necessarily faulty. We formally represent thefailure pattern in a given run via an

edge-labelled graph(V,E,β), whereV is the set of process-time nodes defined above,

andE = {(〈i,k〉,〈 j,k+ 1〉) : i 6= j,k ≥ 0}. An edgee = (〈i,k〉,〈 j,k+ 1〉) ∈ E stands

for the roundk+ 1 communication in the channel fromi to j. The labelling function

β : E→ {Y,N} captures when such channels are blocked and when they operate cor-

rectly. Intuitively,β(e) = N means thate is blocked for communication, whileβ(e) = Y

means that it is not blocked. In the latter case, a message one, if sent, will be delivered.

Nature’s combined contribution to a runr is captured by anexecution graph. This is

a labelled graphGr = (V,E,ζ,β) with labelsζ on the vertices giving the input assignment

and labelsβ on the edges defining the failure pattern.1 Notice that all execution graphs

overn processes have the same edge and vertex sets(V,E)— a complete grid ofn×N

nodes, with edges from each nodeu ∈ V at levelk to all nodes of levelk+ 1 with a

process name different fromu’s. Different execution graphsG differ only in the labelling

functionsζ andβ. Figure 2.1 contains an illustration of the nodes of an execution graph,

with some of the edges describing roundk+ 1. Observe that all edges from one time

point to the next are in the graph—some are crossed, depicting their being blocked byβ,

while the others are available for communication.

We now consider particular subgraphs ofG = (V,E,ζ,β) that will be useful later on.

Given a nodeu = 〈i,m〉 ∈ V, we denote byVu the set of nodes containing the nodes

〈i, `〉 ∈V for all ` ≤m as well as all nodesu′ = 〈 j,k〉 ∈V such that there is a directed

path of edges ofE from u′ to u , in which all edges are labelled ‘Y’ . Intuitively,Vu

contains all nodes about whichu has potentially received information either directly or

via a sequence of messages. We define themaximal potential view(or viewfor short) at

nodeu = 〈i,m〉 in G, denoted byVi(m), to be the subgraph ofG generated byVu , i.e.,

1The runr appears in the superscript ofGr . Throughout the thesis, we omit explicit reference to the

run whenever it is clear from context.

2. Preliminaries 14

Vi(m) = (V ′,E′,ζ′,β′) = (Vu,E � Vu,ζ � Vu,β � E′). See Figure 2.1 for an illustration of

a viewVi(m). The viewVS(k) of a setS⊆ P of processes at a timek is defined to be the

union of the graphsV j(k), over all j ∈ S. We say that a viewV is containedin a view

V′ if the nodes ofV are a subset of those inV′, andV is the subgraph ofV′ generated by

these nodes. Thus, every node inV has the same external input as inV′, and for every

pair of nodes inV, they are connected by an edge inV exactly if they are connected by

one inV′. In some cases, it will be convenient to talk about viewsVS(k) at a timek < 0.

The view in this case is denoted byλ. It is called anemptyview, and is contained in

every possible viewVS′(k′).

…
…

…

… … …

|

|

|

1

i

n

10 k k + 1

…

…

…

…

…

…

Vi (k + 1)
〈i, k +1〉

Figure 2.1: An execution graph andi’s view Vi(k+1).

2.3 Full-Information Protocols

A full-information protocol(FIP) is one in which processes haveperfect recalland ob-

serve all incoming messages and external inputs that they receive. Moreover, in every

round, every process sends a message encoding all of its information to all other pro-

cesses. It is not hard to show that in any such protocol a process is able to reconstruct

Vi(k) from its information at timek. Without loss of generality, we will assume for the

2. Preliminaries 15

sake of concreteness that the local state of a process is maintained in the form of a view

Vi(k), and the message sent byi in roundk+1 isVi(k).

Since in aFIP a message is sent on every channel in every round, the execution graph

describes all aspects of a run: i.e., what inputs are received by the processes, which

processes are faulty, and, for every message, whether or not it is delivered. Moreover,

the contents of delivered messages can also be derived from the graphG. From now

on we shall identify arun r of a FIP with its execution graphGr . Since a run ofFIP is

determined by the inputs and failures, we sometimes denote such a run byr = FIP(ζ,β).

It is a folk theorem, perhaps first proven formally in a fault-prone setting by Coan [9],

that any deterministic protocol can be simulated by aFIP.

Using aFIP as we defined it above may be quite inefficient in terms of communica-

tion complexity. However, in practice aFIP may be implemented quite efficiently (see,

for example, [5]). Further discussion of the communication complexity of theFIP in our

context appears in Section 3.1.

2.4 Definition of the Continuous Consensus Problem

We now specify the continuous consensus problem formally. With respect to a setE of

monitored events, we would like each processi to hold a copy of a shared list of events

of E . An event is defined based on the messages delivered in the run, and on initial

states and external inputs that processes have received (and the times at which they were

received). The precise definition ofE will depend on the application. We define a

continuous consensus(CC) service to be a distributed protocol that at all timesk≥ 0

provides each processi with a core Mi [k] of events ofE . In every run of this protocol

the following properties are required to hold, for all nonfaulty processesi and j.

Accuracy: All events inMi [k] occurred in the run.

Consistency: Mi [k] = M j [k] at all timesk.

2. Preliminaries 16

Completeness:If an evente∈E is known to processj at any point, thene∈Mi [k] must

hold at some timek.

The consistency property guarantees that the information in the local lists is in fact

shared among the nonfaulty processes at any given time. Since an event is inMi [k] for

some nonfaulty processi only if it is also in M j [k] for all other nonfaulty processesj,

it follows that a processi may know of the occurrence of a monitored evente∈ E long

beforee is in Mi [k]. In many cases it is, of course, desirable to have the shared list

in a continuous consensus application be as up-to-date as possible. A variant of this

problem, which we calluniform continuous consensus(UCC), is defined similarly, but

Accuracy and Consistency should hold for arbitrary processes and not just for nonfaulty

ones. Completeness, however, is still restricted to events that are known to nonfaulty

processes: If an evente∈E is known to anonfaultyprocessj at any point, thene∈Mi [k]

must hold (forall processesi, of course) at some timek.

2.5 Systems and Knowledge

Generally speaking, we identify asystemwith a setR of runs. For a general protocol,

a runr is an infinite sequence of states, and there is a well definedlocal state ri(m) for

every processi and timem. For theFIP we identify runs with execution graphs, while

in general every execution graph will determine a run of a protocolP (cf. [4, 5]). The

systems that we study in this thesis are thus parameterized by a tuple(n, t, fm,I), where

n≥ 2 is the number of processes,t is a bound on the number of faulty processes in a

run (wheret ≤ n−2), fm∈ {crash,omission} is a failure model, andI is a nonempty

set of (external) input assignments. The exact identity and internal structure ofI are

application-dependent. AFIP systemR= R(n, t, fm,I) is defined to be the set of all runs

of theFIP with n processes, at mostt of which fail according to the failure modelfm, and

where initial states and external inputs conform to one of the input assignments inI . Our

definitions imply that, in a precise sense, the inputs in aFIP systemR are independent

from the failures that occur (and hence carry no information about them): If there are

2. Preliminaries 17

runsr, r ′ ∈ R wherer = FIP(ζ,β) andr ′ = FIP(ζ′,β′), thenR will also contain the run

r ′′ = (ζ′,β).2

Our analysis makes use of the knowledge that processes achieve at different times in

various runs. As is standard in the literature, formulas will be considered true or false

at apoint, which is a pair(r,m) consisting of a runr ∈ R and a timem∈ N. Moreover,

since what is known at a point(r,m) may depend on what is true at other points, we

define truth with respect to a systemR. Let Φ = {p,q, p′, . . .} be a set of propositions.

Intuitively, a proposition is a basic primitive fact. An example of a relevant proposition

in the context of continuous consensus is “ζ(i,k) = e”, stating the arrival of an external

input e∈ I at a given processi at timek. Given a systemR, each propositionp∈ Φ is

identified with a set[[p]] of points ofR. A propositionp∈ Φ holds at(r,m), which we

denote by(R, r,m) |= p, if (r,m) ∈ [[p]]. For simplicity, we identify the set of monitored

eventsE with a subsetΦE ⊆ Φ, and restrict monitored events to depend only on the

external inputs in the current run. Thus, ifq∈ΦE then, for all input assignmentsζ and

runs r = FIP(ζ,β) and r ′ = FIP(ζ,β′), and timesm, we will have that(R, r,m) |= q iff

(R, r ′,m) |= q. The core maintained by a continuous consensus algorithm consists of a

setX⊆ΦE at any given time. We note that in our context the truth value of everyq∈ΦE

is independent of the time,m. Thus, in a given system,R, the truth value ofq depends

only on the run,r. We say that an eventq hasoccurredin a runr if (R, r,m) |= q for

all m≥ 0. The core constructed by our proposed protocols will consist of the monitored

events that are determined by a particular view computed at any given point. In order to

describe such cores more formally, we denote

E(V) , {q∈ΦE : (R, r,m) |= q for all points(r,m) whose execution graph containsV}.

2Recall that the input assignments inI establishes the initial states of processes as well as the external

inputs they receive. Often, initial states may be independent of external inputs, and the inputs at one

process may be independent of those at another. But our definitions do not require such independence.

There could be strong correlation among inputs inI . Our definitions only imply that inputs carry no

information about failures and vice-versa.

2. Preliminaries 18

Notice thatE is monotone: IfV is contained inV′, thenE(V)⊆ E(V′).

We construct a logical languageL by closingΦ under Boolean connectives∧ and

¬, and under modal knowledge operatorsKi , DS, ES, C andCN wherei ∈ P andS⊆ P

is a set of processes. HereKi stands for processi’s knowledge,DS corresponds to the

distributed knowledgethat is implicit in the set of processesS, ES refers to facts known

to everyprocess inS, C stands for common knowledge, andCN stands for common

knowledge among the nonfaulty processes. The semantics of the Boolean operators

is standard; we now review the definitions forKi and DS. Common knowledge and

“everyone knows” are defined in the next subsection. The formal definitions (cf. [5])

of satisfaction for knowledge and distributed knowledge formulas are briefly stated as

follows:

(R, r,m) |= Kiϕ iff (R, r ′,m′) |= ϕ for all(r ′,m′) such thatr ′ ∈ Randr i(m) = r ′i(m
′). (2.1)

(R, r,m) |= DSϕ iff (R, r ′,m′) |= ϕ for all (r ′,m′) such thatr ′ ∈ Randr j(m) = r ′j(m
′) for all j ∈ S. (2.2)

A process knowsϕ by this definition if its local state (which captures the information

it has access to) implies thatϕ holds. Distributed knowledge is defined similarly, but is

based on the combined information available to the members of a setSof processes. In a

full-information protocol, the distributed knowledge ofS is equivalent to the knowledge

of a process whose local state at a point(r,m) of R is the viewVr
S(m).

Knowledge in theFIP has a number of useful properties. For example, suppose that

processi receives messages in roundk+ 1 from the processes in the setS. Then, by

construction,VS(k) is contained ini’s view Vi(k+1) at the end of the round. As a result,

all facts about the past that are distributed knowledge ofS at timek are known byi at

time k+ 1. This observation plays a role in the solution to the continuous consensus

problem described in the next section.

2. Preliminaries 19

2.6 Common Knowledge

We defineESϕ or “everyonein S knowsϕ” as follows:

ESϕ ,
∧
i∈S

Ki(ϕ) (2.3)

The formulaCSϕ is true if everyone inSknowsϕ, everyone inSknows that everyone

in Sknowsϕ, etc. DefineE1
Sϕ , ESϕ, andE m

Sϕ , ESE m−1
S ϕ. Thuscommon knowledge

of ϕ among the processes in S, denotedCSϕ, is defined as the infinite conjunction ofEm
S :

CSϕ , ϕ∧ESϕ∧ESESϕ∧·· ·∧E m
Sϕ∧·· · (2.4)

Specifically, we have an interest in two particular cases:S= N, or S= P. We de-

note common knowledge among the nonfaulty processes byCN. CP stands for common

knowledge among all the processes in our system, and is denotedC for short.

We present an equivalent semantic definition of satisfaction forCN, which will be

more useful in the context of our analysis. Rather than defining common knowledge as

an infinite conjunction of “everyone knows”, we define it in term ofN-reachability.3 We

say that two points(r,m) and(r ′,m) areN-neighbors, and write(r ′,m)∼N (r,m), if there

is some processj that is nonfaulty in bothr andr ′ for which r ′j(m) = r j(m). In this case

we say that the points(r,m) and(r ′,m) are indistinguishableby j. The “∼N” relation

is also called thesimilarity relation. The point(r ′,m) is N-reachable from(r,m) in R,

if there is a finite sequence of points(r,m) = (r0,m),(r1,m), . . . ,(rk,m) = (r ′,m) such

that(r`,m)∼N (r`+1,m) holds for every 0≤ ` < k. Thus,N-reachability is the transitive

closure of the∼N relation. Moreover, it is an equivalence relation that defines a partition

over the points of a systemR. Common knowledge among the nonfaulty processes is

then formalized by:

3The fact that in our systems a process can always distinguish between points(r,m) and(r ′,m′) with

m 6= m′ simplifies the definitions here slightly.

2. Preliminaries 20

(R, r,m) |= CNϕ iff (R, r ′,m) |= ϕ for all points(r ′,m) that areN-reachable from(r,m) in R (2.5)

A formal proof for the equivalence of the two definitions of common knowledge, in

Equations 2.4 and 2.5 may be found in [5].

In other words, a factϕ is common knowledge among the processes inN at a point

(r,m) if ϕ is valid in all the points that areN-reachable from(r,m). Very similarly,

we can define common knowledge amongall processes,C, by replacing theN in the

definition ofCN by P, the set of all processes in the system. More precisely, we say that

the point(r ′,m) is reachablefrom (r,m) in R if there is a finite sequence of points ofR

(r,m) = (r0,m),(r1,m), . . . ,(rk,m) = (r ′,m) such that for every 0≤ ` < k there is some

j = j` for which r`
j(m) = r`+1

j (m). Then

(R, r,m) |= Cϕ iff (R, r ′,m) |= ϕ for all points(r ′,m) that are reachable from(r,m) in R (2.6)

Chapter 3

Solving Continuous Consensus

3.1 The CC Problem

The continuous consensus problem was formally defined in Section 2.4. In this section

we present our solution to this problem, which is the CONCON algorithm. We start

by presenting a simple protocol which solves the CC problem, after which we present

CONCON and prove its correctness. In the following subsection we provide some back-

ground which enables us to present the SIMPLE algorithm immediately afterwards.

Clean Rounds

As mentioned in the introduction, the concept ofclean roundsplayed a critical role in

the analysis of Simultaneous Byzantine Agreement (SBA) by Dwork and Moses [3] in

the crash model. In this model, a round of communication is clean if no new failure

is discovered in the round. Following a clean round, all processes can have the same

information about the past. Once it is common knowledge that a round was clean, the

information available to nonfaulty processes before this round becomes common knowl-

edge. We shall now present a formal definition of clean rounds.

We define the set ofActiveprocesses in(r,k), denotedA(r,k), as the set of processes

3. Solving Continuous Consensus 22

that did not fail in the firstk rounds ofr.1 We say that the failure of processp is

discoveredin roundk of r if k is the first time at whichp’s faulty behavior is distributed

knowledge, i.e.,k is the first time at which(r,k) |= D(“ p is f aulty”) holds. In this

contextD(·) refers to distributed knowledge among the active processes, i.e.,DA(r,k)(·).

Formally, aclean roundis a round in which no process failure is discovered by the

active processes. A round which is notclean is referred to asdirty. Notice that it is

possible that the failure of a processp will be discovered in roundk (which is thus a

dirty round), whereas some of the processes may learn ofp’s failure in roundk+ 1.

Even so, if no other failures are discovered in roundk+1, it is a clean round, sincep’s

failure was discovered in roundk.

An important property of a clean round, presented in [3], is the following: If round

k of r is clean, then every fact of which there is distributed knowledge ink−1, becomes

known to everyone at the end of roundk. It is an inherent property of the crash failure

model, that in a round in which processp fails, it may successfully send information

to any subset of the other processes. As a result, information sent byp in roundk may

be known to some of the processes ink, and not known to others. On the other hand,

the importance of clean rounds lies in the fact that all active processes successfully send

their messages, and thus at the end of this round they have consistent views of the system.

This property is phrased in the following theorem.

Theorem 3.1 (Dwork and Moses)Let (r,k− 1) |= Dϕ. If round k of r is clean, then

(r,k) |= Eϕ.

Once again, byEϕ we mean everyone among the active processes knowsϕ.

We say that a factϕ is a factabout the initial configurationof the runr if its truth

value is uniquely determined by the set of initial statesΣ in r. Similarly, we say that a

fact ϕ is about the firstm rounds ofr if its truth depends on the firstm rounds ofr. An

1The set of nonfaulty processes in the run is a subset of the active processes at timek. While the term

nonfaultyrefers to the entire run, the termactive refers to a specific time, and thus a processj who is

active at timek may crash at some later time, and is thus considered faulty in the run.

3. Solving Continuous Consensus 23

important connection between clean rounds and common knowledge is presented in a

theorem which was shown in [3] and is quoted below:

Theorem 3.2 (Dwork and Moses)Let cleanbe the fact “a clean round has occurred”,

and letϕ be a fact about the initial configuration. If(r,k) |= C(clean) then

(r,k) |= Dϕ i f f (r,k) |= Cϕ

The theorem implies that once it becomes common knowledge that a clean round has

occurred between times 0 andk, all information about the initial configuration becomes

common knowledge.

A direct corollary of Theorem 3.2 generalizes the result, and shows that if the ap-

pearance of a clean round in the time interval[m,k] is common knowledge at timek,

then all information about the firstm rounds becomes common knowledge.

Corollary 3.3 Let ϕ be a fact about the firstm rounds. Letclean(m,k) be the fact “a

clean round occurred between timesm andk”. If (r,k) |= C(clean(m,k)) then

(r,k) |= Dϕ i f f (r,k) |= Cϕ

Theorem 3.2 is a key tool in the characterization of common knowledge in [3]. How-

ever, while the definition of clean rounds, as well as the theorem, are valid in the crash

model, the (sending) omission failure model is significantly more complex, since infor-

mation about failures can be kept by faulty processes for a long while without reaching

nonfaulty processes. Such information can then be delivered to nonfaulty processes only

much later. Thus, in the omission model the information about failures evolves in a much

more erratic fashion. Hence in the omission model clean rounds no longer play the same

role as they do in the crash failure model. Previous to this work, no direct analog to the

notion of a clean round was found in the omissions model. The notion of clean rounds

in the omission model will be discussed in later sections.

3. Solving Continuous Consensus 24

A Simple Protocol for Continuous Consensus

Before proceeding to present the CONCON protocol, we shall first present a very simple

protocol for Continuous Consensus. In the scope of this subsection, we assume the crash

failure model.

SIMPLE(i)

for every roundk≥ 0 do
1 send local state and receive messages according toFIP

2 m ← k− (t +2)

3 Mi [k]←

{
E(λ) if k < t +2

E(VAi(r,m+1)(m)) otherwise.

Figure 3.1: The SIMPLE CC protocol for processi.

In the protocol, every processi computes the core in timek as the view of theactive

processest + 2 rounds before timek. On line 1 every process sends and receives mes-

sages according to a full information protocol. On line 3,i computes the core by assign-

ing the view of the active processest +2 rounds beforehand. We denote byAi(r,m+1)

the set ofactiveprocesses at timem+1 according toi’s view at time k = m+ t +2, i.e.,

the processes not known to have dropped any messages up to roundm+1:

Ai(r,m+1) , { j : (r,m+ t +2) |= ¬Ki(j crashed up to roundm+1)} (3.1)

Note that there aret +1 rounds betweenm+1 andk, during which there must occur

a clean round. Intuitively, by Theorem 3.1 we have that all facts that are distributed

knowledge to the nonfaulty processes at timem+1 become known to all processes by

timek, and in particular every nonfaultyi can computeAi(r,m+1) andVAi(r,m+1)(m) on

line 3.

Lemma 3.4 The SIMPLE protocol solves the Continuous Consensus problem.

3. Solving Continuous Consensus 25

m m+1 k�� �
t +2

� �At least one clean round

Figure 3.2: Illustration of the SIMPLE CC Protocol.

Proof: In order to prove that SIMPLE is a CC protocol, we have to prove that the three

properties of CC hold.

SinceMi [k] is defined asE(V) for some viewV in the run, all events inMi [k] have

occurred, and thus the Accuracy property holds. For completeness, assume that an event

e∈ E is known to a nonfaulty processj at timem, and is thus included inj ’s view at

time m. Since j is nonfaulty, in particular it is active at timem+1, and thus from line 3

in Simple, the evente will appear in the core of every nonfaulty processi no later than

time m+ t +2; completeness follows. Finally, for consistency, we have to prove that if

i and j are nonfaulty, then for allk we haveMi [k] = M j [k]. Since at timek, both i and

j produce the samem in line 2, all we have to prove is thatAi(r,m+1) = A j(r,m+1),

and thatVA(r,m+1)(m) is available toi and j at timek. Since there is a bound oft failures

in the system, during a time interval oft +1 rounds, theremustbe a clean round. From

Theorem 3.1, we deduce that any fact which is distributed knowledge among the active

processes at timem+1, is known to every correct process at timek. In particular, there

is distributed knowledge atm+1 about the identity of the processes inAi(r,m+1), and

thus at timek every correct process will have a copy ofAi(r,m+ 1), and specifically

Ai(r,m+1) = A j(r,m+1) = A(r,m+1). Moreover, since there is distributed knowledge

aboutVA(r,m+1)(m) at timem+1, it is necessarily available to every correct process by

k, and in particular toi and j. It follows thatVAi(r,m+1)(m) = VA j (r,m+1)(m), and thus

3. Solving Continuous Consensus 26

Mi [k] = M j [k]. The consistency property follows, and we are done.

�

Notice that processi’s computation ofE(VAi(r,m+1)(m)) on line 3 of the protocol

uses the set of active processes,Ai(r,m+1), atm+1 = k− (t +1), while the joint view

VAi(r,m+1)(m) of this set refers to roundm = k− (t + 2). This follows from the fact

that if an evente occurs at a processz at timem, in order fore to appear in the core,

the protocol requires thatz is active for at least one round afterm, so thatz will be

able to notify the correct processes ofe’s occurrence. More formally, the contents of

VA(r,m+1)(m) is distributed knowledge among the correct processes at timem+1, since

all processes inA(r,m+1) are guaranteed to have successfully sent their messages to the

correct processes in roundm+1. On the other hand,VA(r,m+1)(m+1) is not necessarily

distributed knowledge among the correct processes atm+ 1, since if a faulty process

z∈ A(r,m+ 1) fails to send all of its messages in roundm+ 2, then any evente that

occurs atz at timem+ 1 (and thuse∈ VA(r,m+1)(m+ 1)) is not distributed knowledge

among the correct processes atm+1, and in fact, since we are dealing exclusively with

crash failures in this subsection, no correct process will ever learn ofe.

Good and Bad Processes

As mentioned in the previous subsection, the analysis in [3] used a set ofactivepro-

cesses, whose view of the system defined which rounds were potentially clean. The

definition of active processes is useful in the crash model. However, when considering

the omission model, both faulty and nonfaulty processes can actively send messages, and

an appropriate analogue to the set of active processes is more difficult to define. While in

the crash model the failure of a process becomes known to all the other processes at most

one round after its occurrence, in the omission model a processi may omit a message to

a faulty processj without any nonfaulty process ever noticingi’s faulty behavior. In this

example, one might wonder whetheri should be consideredactiveor not. Moreover, in

3. Solving Continuous Consensus 27

the omission model, defining the set of processesknownto have failed may need a bit of

fine tuning as well, compared to our characterization of this set in the crash model.

The crux of our protocol, CONCON, which we present for the omission model, de-

pends on finding the appropriate replacement for the role played in the crash model for

the number of failures known toi. This is suitably generalized by the following two

definitions of sets ofgoodandbadprocesses fori with respect to timek. Processi de-

termines the identity of these sets one round later, at timek+1. The first set, which we

denoteGi(k), consists of the processes that appear toi to have been nonfaulty at timek

(and so, in particular, behaved correctly in roundk+1):

Gr
i (k) , { j : (R, r,k+1) |= ¬Ki(j is faulty) } (3.2)

As usual, we drop the superscriptr from terms when it is clear from context.Intu-

itively, Gi(k) is the set of processes who have not presented a faulty behavior up to round

k, and furthermore, have managed to pass their messages in roundk+1, allowing them

to share the information they know at timek with the other processes.Notice thatGi(k)

is defined in terms ofi’s knowledge at the end of the following roundk+1. In the crash

failure model,Gi(k) is the set of processes thati receives messages from in roundk+1,

while in the omissions model it is a possibly strict subset of these processes, sincei can

exclude j from Gi(k) based on a report thatj failed to send a message to a different

processi ′. TheG stands forgood. We associateGi(k) with time k rather thank+1 be-

cause the view of the members ofGi(k) at time kturns out to be especially important. It

serves a central role in determining the contents of the shared core. In addition, this view

facilitates the computation of the core, by allowing the definition a set ofbadprocesses

associated with timek, which we denote byBi(k). This set consists of the processes that

are distributedly known at timek to the members ofGi(k) to be faulty:

Br
i (k) , { j : (R, r,k) |= DGi(k)(j is faulty) } (3.3)

Intuitively, B is the set of processes which are known by processes inG to have failed.

3. Solving Continuous Consensus 28

Thus, every process inB is necessarily faulty (while processes in G are not necessarily

nonfaulty). Recall thati receives messages from all members ofGi(k) in roundk+ 1.

Hence, every member ofBi(k) is known byi at timek+ 1 to be faulty. It follows that

Bi(k)∩Gi(k) = /0 for all i ∈ P. Notice, however, that whileBi(k) andGi(k) are disjoint,

they are not necessarily complements. There are a number of different scenarios that

may cause these sets not to be complements. For example, consider a processj that

behaves correctly for the firstk rounds and fails to send a message toi in roundk+ 1.

Processj is then excluded fromGi(k), sincei knows thatj is faulty. Moreover,j /∈Bi(k)

because no process could have observed faulty behavior ofj in the firstk rounds; hence

j /∈Gi(k)∪Bi(k) and the sets are not complements.

There is a close connection between the identity ofBi(k) and the setsG j(k− 1).

Observe that, by definition ofG j , a processj knows, at timem that another processj ′ is

faulty exactly if j ′ /∈G j(m−1). In the crash and omission models, the set of processes

distributedly known to be faulty by a setS of processes is simply the union of those

known to be faulty by the members ofS. It thus follows that

Bi(k) =
⋃

j∈Gi(k)

(P\G j(k−1)). (3.4)

We denote bybi(k) the cardinality ofBi(k). SinceBi(k) consists of faulty processes,

necessarilybi(k) ≤ t. Figure 3.3 illustrates the setsBi(k) andGi(k) in the FIP given a

particular execution graph.

The Core

By definition, a Continuous Consensus task maintains at any given time acoreof shared

information. As defined in Chapter 2, the coreMi [k] is a subset ofE(V) w.r.t. a view

V. In our solution to the CC problem, which is described in the following sections, the

core is represented by a timec < k, and a setF , such thatMi [k] is uniquely determined

by the joint view of the processes inF at timec, i.e., Mi [k] = E(VF(c)). We call c

3. Solving Continuous Consensus 29

…

|

1

i

n

0 k k + 1

…

…

…

…

…

…

〈i, k +1〉

Bi (k)

Gi (k)

|
|

Figure 3.3: SetsGi(k) & Bi(k) are based onVi(k+1).

the critical time of k, denotedc = crit i(k), andF the critical set of k. In the context

of CONCON, we define the critical set,F , as the set of good processes at timec, i.e.

F = Gi(c). The challenge in CONCON is to compute at each time,k, the appropriate

critical time,crit i(k). In the following subsections we shall prove that by choosing the

core asMi [k] = E(VGi(c)(c)), we obtain an optimum solution for CC.

We definei’s destinationat timec, denoteddesti(c), as the first time,k, at which

E(VGi(c)(c)) ⊆ Mi [k] holds. Intuitively,desti(c) is the first time at which facts which

are distributed knowledge at timec join the core. In particular, ifc = crit i(k), then

desti(c) = crit−1
i (c) = k, however, it is also possible that for somec′ < crit i(k) we will

also havedesti(c′) = k. Formally, we say thatdesti(m) = k exactly if crit i(k) ≥m, and

crit i(k−1) < m.

3. Solving Continuous Consensus 30

Figure 3.4: The core computed at timek.

The Horizon

The analysis of simultaneous agreement in the crash failure model in [3] showed that

knowing that a clean round occurred within a certain time interval enables processes to

obtain a consistent view of information about earlier times. Thus a key goal in CONCON

will be to compute, in every round, a margin of time in which a clean round is guaranteed

to have occurred.2

The analysis in the following subsections will show that if at timek+ 1, processi

knows that at leastf processes failed before timek, then it knows that at least one clean

round must happen between timek and timehi(k) = k+t +1− f . We think ofhi(k) asi’s

horizonfor timek, denotedhorizoni(k). It turns out that ifi is a good process, thenVi(k)

will be common knowledge by timehorizoni(k). Intuitively, the properties of the crash-

failure model show that there will be a latest (critical) time c with k≤ c < horizoni(k)

such that roundc+ 1 is clean, and after which all nonfaulty processes can predict the

same horizon (i.e.,horizoni(c) = horizon j(c) for all processesi and j). We shall show

that the same holds in the omission model as well. Moreover, we shall show that at

time ` = horizoni(c), every nonfaulty process knows thatc is the critical time (for̀).

2At this point this is an intuitive description of our motivation in CONCON. A formal definition of

clean rounds in the omission model will be presented in Section 3.4.

3. Solving Continuous Consensus 31

This makes it common knowledge that roundc+1 was clean, allowing for an efficient

solution to simultaneous agreement. (Continuous consensus is a strict generalization of

simultaneous agreement.) Finally, it will then follow that the core information at time`

is the view of the good processes in the critical time,c.

Formally, we definei’s horizonfor timem as:

horizoni(m) = m+ t +1−bi(m) (3.5)

The value ofhorizoni(m) is defined for allm≥ 0. Recall thatbi(m) is i’s estimation

for the number of “bad” processes, whose failure has been discovered up to roundm.

Since no failures are known initially, we have thatbi(0) = 0. Thus, by definition of

horizoni(m), we have thathorizoni(0) = t +1. The facts that the processes communicate

according to the full-information protocol, and that the number of failures is bounded

from above byt, imply thatbi(m)≤ bi(m+1)≤ t for all m. The following observation

immediately follows.

Observation 3.5 For allm≥ 0:

(i) horizoni(m)≥m+1, and

(ii) horizoni(m+1)≤ horizoni(m)+1.

Notice from (ii) that the horizon cannot move forward by more than one at every

round. It can move backwards more rapidly, however. Ifbi(m+1) = bi(m)+d+1 then

horizoni(m+1) = horizoni(m)−d. This happens whend+1 new failures are discovered

in roundm by processes that are still trusted byi at timem+1.

CONCON

The CONCON protocol, shown in Figure 3.5, is run by each processi individually. CON-

CON is used in both the crash and the omission failure model. Observe, however, that

the value ofhorizoni(k−1) on line 2 of CONCON is a function ofbi(k−1) which, in

3. Solving Continuous Consensus 32

turn, is based on the knowledge of processi as well as on that of other processes. This

knowledge is evaluated with respect to different systemsR for each of the failure models.

The analysis presented in [4] is, roughly speaking, “backward looking”: at any point

in the execution, a process computes what it knows to be common knowledge. On

the other hand, the analysis in [3] takes a “forward looking” approach: every process

computes at what time facts about the initial configuration of the run become common

knowledge. Our approach in CONCON is hybrid — both forward and backward looking.

At the end of every roundk of the protocol, each processi performs two tasks: One is

to update a current estimate (upper bound) for when events in the viewVGi(k−1)(k−1)

of Gi(k− 1) will be part of the shared core view (forward looking). The other is to

determine the shared core at timek, at the end of the current round. For this purpose,

the value incrit i(k) , Latesti [k] is considered thecritical time for the core at timek

(backwardlooking). In the protocol text, we use the termhorizoni , which is defined in

Eq.3.5. Notice thathorizoni(m) is easily computable based onVi(m+1).

CONCON(i)

0 Latesti [`]←−1 for all `≥ 1
for every roundk≥ 1 do

1 send local state and receive messages according toFIP

2 computeGi(k−1), Bi(k−1) andhorizoni(k−1)
3 Latesti [horizoni(k−1)]← k−1
4 c← Latesti [k] � c is the critical time for k, denoted crit i(k)

5 Mi [k]←

{
E(λ) if c =−1

E(VGi(c)(c)) otherwise.
endfor

Figure 3.5: The CONCON protocol for processi.

In the protocol, each process performs the same set of actions in every round. Round

k≥ 1 starts at timek−1 and ends at timek. The first part of each round’s computation

3. Solving Continuous Consensus 33

consists of communicating according to the full-information protocol on line 1.In the

next part, on line 2, processi computes an upper bound on the time at which a view of

time k will become included in the core. Finally, on lines 4 and 5 it records inMi [k] the

view which is the core information at the current timek. We denote bycrit i(k) the value

of c that i sets in roundk on line 4.

To compute the value of the indexhorizoni(k−1) used on line 2 of CONCON, pro-

cessi needs to know the value ofbi(k−1) at the end of roundk. Since a processj is in

Gi(k−1) if i does not know thatj is faulty at timek, it follows that i receives roundk

messages from all members inGi(k−1). Thus,i has a copy ofVGi(k−1) at timek. In

particular,i can computeBi(k−1) andbi(k−1), as desired. Observe that steps 2 and 3

of the CONCON protocol depend only on the failures that occur in the run. As a result,

the nodes inVGi(c)(c) are independent of the (external) input assignment of the run. Fi-

nally, observe that, for allm< k, processi has a copy ofVGi(m)(m). Thus, processi is

able to computeE(VGi(c)(c),k) on line 5 of CONCON.

We now state two useful properties of CONCON. The first says that the horizon

is an upper bound on the time at which current round information is contained in the

shared core. Indeed, given Observation 3.5(i) above this will imply that every round’s

information will become common knowledge within a fixed bound of roughlyt − f

rounds, wheref is the number of failures discovered. The second says that once the

core is not empty, the critical time increases by at least one in every time step. Moreover,

every round is assigned a critical time.

Proposition 3.6 For all nonfaulty processesi and timesm and`:

(a) if horizoni(m)≤ ` thencrit i(`)≥m, and

(b) if crit i(`) 6=−1 thencrit i(`) < crit i(`+1).

We now present the following technical lemma that is based on Observation 3.5, and

will assist us in the proof of Proposition 3.6.

3. Solving Continuous Consensus 34

Lemma 3.7 If k < k′ andhorizoni(k)≤ ` < horizoni(k′), then there exists a timêk with

k≤ k̂ < k′ such that (a)horizoni(k̂) = ` and (b)horizoni(k̂+1) = `+1.

Proof: Assume thatk < k′ andhorizoni(k)≤ ` < horizoni(k′). By Observation 3.5(ii),

the functionhorizoni can advance only in steps of one. Hence,horizoni(k′′) = ` for some

intermediate timek≤ k′′ < k′, establishing part (a) of the claim. Letk̂ = max{k′′ : k′′ <

k′ andhorizoni(k′′) = `}. We claim thathorizoni(k̂+1) > horizoni(k̂). By definition of

k̂, we have thathorizoni(k̂+ 1) 6= `. Recall thathorizoni(k′) > ` and k̂ < k′. Hence, if

horizoni(k̂+ 1) < ` then k̂+ 1 < k′. We can now apply part (a) tôk+ 1 < k′ to obtain

thathorizoni(h) = ` for someh such that̂k+1≤ h < `. This contradicts the maximality

of k̂. It follows thathorizoni(k̂+1) > `. Finally, sincehorizoni(k̂+1) > horizoni(k̂), we

have by Observation 3.5(ii) thathorizoni(k̂+1) = horizoni(k̂)+1, and we are done.

�

Proof of Proposition 3.6: For part (a), assume thathorizoni(m)≤ `. Sincehorizoni(`)>

` we have by Lemma 3.7(a) thathorizoni(k̂) = ` for somek̂ such thatm≤ k̂ < `. In par-

ticular, Latesti [`] = k̂≥m after line 3 is executed in round̂k+1. Sincek̂ < `, we have

that k̂+ 1≤ `. Moreover, since the value ofLatesti [`] is nondecreasing in time, it fol-

lows thatLatesti [`] ≥ k̂ when line 4 is reached in round̀. It now follows by line 4 that

crit i(`) ≥ k̂≥ m, proving part (a). For part (b), assume thatcrit i(`) = m 6= −1. Then,

from the definition ofhorizoni(m), we have thathorizoni(m) = `. Sincehorizoni(`) > `,

we have by Lemma 3.7(b) that there existsk̂ such thatm≤ k̂ < ` andhorizoni(k̂+1) =

`+1. Applying part (a) we obtain thatcrit i(`+1) ≥ k̂+1. Sincem≤ k̂, we have that

k̂+1 > m, and thuscrit i(`+1) > m= crit i(`), which completes the proof.

�

So far we have looked at the properties of the protocol as executed by a single non-

faulty process in isolation. The correctness of the algorithm depends on the relationship

3. Solving Continuous Consensus 35

between executions of different processes in the same run. The following theorem shows

the main correctness claim for CONCON, namely that all cores agree at all times.

Theorem 3.8TheCONCON protocol solves the continuous consensus problem.

Proof: SinceMi [`] is a view of the run, all events inMi [`] have occurred, and thus

the Accuracy property holds. Completeness requires everyq ∈ ΦE that is known to a

nonfaulty processj will eventually appear inMi [`]. Suppose thatK jq holds no later

than timek. Notice thatj ∈Gi(k) for every nonfaulty processi, since j is nonfaulty. By

definition,horizoni(k)≤ k+t +1, and Proposition 3.6(a) implies thatcrit i(k+t +1)≥ k.

It follows that E(V j(k)) will be contained inMi [k+ t + 1]. In particular, we have that

q∈Mi [k+ t +1], and we have Completeness.

Finally, for Consistency, we need to show thatMi [`] = M j [`] for all times`≥ 0 and

nonfaulty processesi and j. The variablecrit i(`) is assigned the value ofLatesti [`] in

round` by line 4. Lines 0 and 3 guarantee thatLatesti [m] ≥ −1 andLatestj [m] ≥ −1

holds for all indicesm at all times. It follows thatcrit i(`) ≥ −1. We distinguish two

cases. First suppose thatcrit i(`) = crit j(`) = −1. In this case we have by line 5 and

the fact thatcrit i(`) = crit j(`) = −1 thatMi [`] = M j [`] = λ as desired. Second, sup-

pose without loss of generality thatm= crit i(`) 6= −1. We claim thatG j(m) ⊇ Gi(m)

andcrit j(`) ≥ crit i(`). If G j(m) 6⊇ Gi(m), then j knows at timem+ 1 of somez∈ Gi

that is faulty. Sincej is nonfaulty, j ∈ Gi(m+ 1), and hencez∈ Bi(m+ 1) so that

bi(m+ 1) > bi(m) and horizoni(m+ 1) ≤ horizoni(m) = `. It follows from Proposi-

tion 3.6(a) thatcrit i(`) ≥ m+ 1, contradicting the assumption thatcrit i(`) = m. Since

G j(m) ⊇ Gi(m) it follows that VGi(m)(m) is contained inVG j (m)(m) and hence that

B j(m) ⊇ Bi(m). This implies thatb j(m) ≥ bi(m), and thushorizon j(m) ≤ horizoni(m).

Again by Proposition 3.6(a) we can conclude thatcrit j(`)≥m= crit i(`), and the claim is

established. Moreover, sincecrit i(`) >−1, it follows thatcrit j(`) 6=−1. Applying this

argument toj instead ofi, we obtain also thatG j(m)⊆Gi(m) andcrit j(`)≤ crit i(`). We

thus have thatcrit i(`) = crit j(`) and thatGi(m) = G j(m). Finally, sinceGi(m) = G j(m),

3. Solving Continuous Consensus 36

we have by line 5 thatMi [`] = VGi(m)(m) = VG j (m)(m) = M j [`] and we are done.

�

More efficient implementations. The CONCON protocol sends messages according

to FIP, so that messages get larger over time. In many cases it is possible to derive

a more space- and communication-efficient implementation of CONCON. In order to

simulate the CONCON protocol a processi must in particular have enough information

about (knowledge regarding) failures to enable the computation of thehorizoni at all

points. The value ofhorizoni(k) depends onbi(k) which, in turn, can be computed

oncei knows the setsG j(k−1) for all j ∈Gi(k) (see Eq.3.4). This can be achieved if, in

every roundk+1 each processi sendsGi(k−1) to all other processes. The setGi(k−1)

consists of the processes thati does not know to be faulty at timek, which is when the

roundk+1 message is prepared. This set can be encoded as a string ofn bits. Initially,

processi knows of no failures. At every timek> 0, it can computeGi(k−1) by detecting

a process as faulty exactly if it is either reported as faulty in one of theG j(k−2) it has

received in roundk, or if the process in question has failed to deliver a message toi.

It can be checked that the setsGi(k−1) computed under this scheme are the same as

they are usingFIP. In order to carry out step 4 of CONCON, we must also guarantee that

all information about monitored events fromE be passed to everyone. In applications

in which there are only a few interesting events (e.g., fire alarms) then representing the

relevant data regarding them can be done succinctly. It follows that there is a protocol

for continuous consensus that is equivalent to CONCON, but sends short messages and

uses little space beyond that needed for the shared coreMi [k] and the aspects of the view

needed to determine the events ofΦE .

3.2 Continuous Consensus and Common Knowledge

We have developed the CONCON protocol using intuitions obtained from the analysis

of common knowledge in fault-prone systems. In fact, continuous consensus is closely

3. Solving Continuous Consensus 37

related to the problem of computing common knowledge. We now formalize this con-

nection, and use it in order to prove the optimality of CONCON.

The continuous consensus problem is specified in terms of the behavior of the non-

faulty processes, and does not require correct action from faulty ones. It was shown

in [4] (see also [10, 5]) that the appropriate variant of common knowledge correspond-

ing to such a situation is common knowledge among thenonfaultyprocesses, for which

our language has the operatorCN.

We say that a formulaϕ is valid in R, and writeR |= ϕ, if (R, r,m) |= ϕ for all points

(r,m) with r ∈ R. Recall that, by Theorem 3.8,Mi [k] = M j [k] holds for every pair of

nonfaulty processesi and j. For every possible stateX ⊆ E of the core, we define a

proposition Core= X that is true at a point(r,m) exactly if Mr
i [m] = X for all nonfaulty

processesi in r. We can now show a strong connection between common knowledge

and continuous consensus:

Proposition 3.9 Let P be a protocol for continuous consensus and letRP be the set of

all runs ofP with execution graphs inR= R(n, t, fm,I). Then for allX we have

RP |= ((Core= X)≡CN(Core= X)) .

Proof: We shall prove that Core= X holds iff CN(Core= X)). The ‘if’ direction is

trivial, since every fact that is common knowledge is necessarily true. For the ‘only if’

direction assume thatMr
i [m] = X for all nonfaulty processesi in r. Define the propo-

sition p as “Core= X”. It suffices to show that, for allr, r ′ ∈ R, if (R, r,m) |= p and

(r,m) ∼N (r ′,m) then(R, r ′,m) |= p, and the claim will follow by induction. Assume

that (R, r,m) |= p and(r,m) ∼N (r ′,m). Thus,r j(m) = r ′j(m) for some processj that

is nonfaulty in both runs. Since(R, r,m) |= p we have that Core= X holds at(r,m);

since j is nonfaulty it follows that, in particular,Mr
j [m] = X. Sincer j(m) = r ′j(m), we

have thatMr ′
j [m] = X as well. Finally, sinceP solves continuous consensus, we have by

Consistency thatMr ′
i [m] = X for all nonfaultyi in r ′, and hence(R, r ′,m) |= p.

�

3. Solving Continuous Consensus 38

Proposition 3.9 implies that the contents of the core in any protocolP for continuous

consensus (e.g., CONCON) are common knowledge among the nonfaulty processes at

every point. Hence, an event can be entered into the local copies of the core only once

its occurrence has become common knowledge. We shall now argue that the CONCON

protocol places events in the coresMi [m] as early as possible. This will establish that

CONCON is an optimum protocol for continuous consensus. More formally, we prove

the following

Theorem 3.10If R is aFIP system, r∈R, i is nonfaulty in r,P is a correct protocol for

continuous consensus, i’s core at(r,m) underCONCON is MC
i [m], and i’s core underP

is MP
i [m], then MP

i [m]⊆MC
i [m].

In Theorem 3.10 we assume, without loss of generality, thatP is aFIP. As Lemma A.2

in the appendix shows, the same argument holds for the general case, whenP is an ar-

bitrary protocol. Theorem 3.10 shows that CONCON is optimal in terms of recording

events in the core as early as possible. We prove the theorem by showing that the core

MC
i [m] produced by CONCON is precisely the view of the run that is common knowl-

edge at(r,m). Moses and Tuttle [4] completely characterized the connected components

of the N-reachability relation systems forFIP in crash and omission models, thereby

characterizing common knowledge as well. To set up the necessary background for the

proof, we now briefly review their fixed-point construction and related characterization

of common knowledge. The construction is performed individually by every processi

based on its viewVr
i (m) at a given point(r,m). It defines a sequence of pairs(k`, S̀)

consisting of a time and set of processes, for`≥ 0. In the construction,F̀ denotes the set

{ j : (R, r,k`) |= DS̀ (j is faulty)} of processes known at timek` to be faulty by processes

in S̀ . The setsS̀ andF̀ are analogous to, but in general distinct from, to the setsGi(k)

andBi(k) in CONCON. The construction proceeds inductively as follows.

Base: Setk0 = m andS0 = {i}.

3. Solving Continuous Consensus 39

Step: Setk`+1 = m− (t +1−|F̀ |) andS̀ +1 = P\ F̀ .

As Moses and Tuttle show, theF̀ ’s form a nonincreasing sequence of sets of pro-

cesses. As a result, theS̀ ’s form a nondecreasing sequence of sets of processes, and

the k`’s form a descending sequence of indices. Since|F̀ | ≤ t, for some indexh we

must have thatFh = Fh−1. When this happens for the first time, the construction reaches

a fixed-point becauseSh+1 = Sh andkh+1 = kh. We usek̂ = k̂(r,m) andŜ= Ŝ(r,m) to

denote the first valueskh andSh at which a fixed-point is reached. The construction can

reach two types of fixed-points. One in whichk̂ < 0 (andŜ= P), and the other in which

k̂≥ 0. To accommodate the former case, we defineVP(m′) = λ for all m′ < 0. (Recall

that λ is used to denote the empty view.) We remark that at the fixed point,Fh is the

complement ofSh. SinceS0 is a singleton and all members of everyF̀ are faulty, the

assumption thatt ≤ n−2 guarantees thath≥ 1 at the fixed point.

The final step of the construction is:

Output: The viewVŜ(k̂). (We denote this view bŷVi [r,m].)

As shown in [4], processi’s local stateVi(k0) at timek0 containsVS̀ (k`) for all k` ≥

0. As a result, processi can compute all of the stages of the construction at timem= k0

based on its local state there. Letr = FIP(ζ,β). When the construction is performed at

(r,m), the setsS̀ andF̀ depend only on theβ component (failures) inr. It follows that

the final outputV̂i [r,m] of the construction depends only onβ and on the restriction ofζ

(the inputs) to the nodes of̂V[r,m].3 Figure 3.6 illustrates an example computation of

the fixed-point construction.

The fixed-point construction is shown to characterizeN-reachability relation (and

hence also the common knowledge) in the crash and omission models:

Proposition 3.11 (Moses and Tuttle)Let r andr ′ be runs of aFIP systemR, and assume

3We shall denote bŷV[r,m] the viewV̂ j [r,m] obtained by the nonfaulty processesj in r, sinceV̂ j [r,m]

is the same for all nonfaulty processesj, by Proposition 3.11.

3. Solving Continuous Consensus 40

rr
rr
rr
rr
rr
r

k̂=k3

Ŝ=S3

F̂=F3

rr
rr
rr
rr
rr
r

k2

S2

F2

rr
rr
rr
rr
rr
r

k1

S1

F1

rr
rr
rr
rr
rr
r

k0 = m

i S0

F0

Figure 3.6: An instance of Moses and Tuttle’s fixed-point construction byi at timem.

that i is a nonfaulty process inr and j a nonfaulty process inr ′. Then(r ′,m) is N-

reachable from(r,m) iff V̂ j [r ′,m] = V̂i [r,m].

In other words, Proposition 3.11 states that the fixed-point construction performed

by a nonfaulty processi at (r,m) outputs the same view as the one it outputs for any

nonfaulty process at any point in theN-connected component of(r,m). Proposition 3.11

thus implies that, in a precise sense,V̂[r,m] summarizes and uniquely determines the

set of facts that are common knowledge at any given point(r,m). As a result, we can

show that only input events ofE that appear in̂V are common knowledge among the

nonfaulty processes:

Corollary 3.12 Let q ∈ ΦE , let P be aFIP, and assume thati is nonfaulty inr. Then

(RP, r,m) |= CNq iff q∈ E(V̂i [r,m]).

Proof: Fix r = FIP(ζ,β) ∈ R andm≥ 0, let i be nonfaulty inr, let q ∈ ΦE and let

V = V̂i [r,m]. To prove the ‘if’ direction, assume thatq ∈ E(V). By Proposition 3.11,

V = V̂ j(r ′,m) for every nonfaulty processorj at a point(r ′,m) that isN-reachable from

(r,m). It follows thatV is contained inGr ′, andq ∈ E(V) implies that(R, r ′,m) |= q.

Since this holds for all pointsN-reachable from(r,m), we have that(R, r,m) |= CNq.

3. Solving Continuous Consensus 41

For the ‘only if’ direction, assume thatq /∈ E(V). By definition of E(V), it follows

that (R, r ′,m) 6|= q for some runr ′ = FIP(ζ′,β′) whose execution graph containsV. In

particular,ζ andζ′ agree on the inputs at the nodes ofV. Consider the runr ′′= FIP(ζ′,β)

with the same failure pattern (β) as in r, and the same external inputs (ζ′) as in r ′.

The assumption that inputs inR= R(n, t, fm,I) are independent of failures and of each

other ensures thatr ′′ ∈ R. Sinceq∈ ΦE it depends only on the external inputs. Since

(R, r ′,m) 6|= q, and the fact thatr ′′ sharesζ′ with r ′ implies that(R, r ′′,m) 6|= q. Recall,

that the nodes and edges of the execution graph inV = V̂i [r,m] depend only on the

failure patternβ. Moreover, sincer andr ′′ share the same failure patternβ, processi is

nonfaulty inr ′′ as it is inr. Since, in addition,ζ′ agrees withζ on the inputs assigned to

nodes ofV, it follows thatV̂[r ′′,m] = V = V̂[r,m]. Proposition 3.11 implies that(r ′′,m)

is N-reachable from(r,m). Hence, from(R, r ′′,m) 6|= q we obtain that(R, r,m) 6|= CNq

and we are done. �

Based on this characterization, we can prove our claim that CONCON is optimal:

Proof of Theorem 3.10: Fix a runr of FIP. We will abuse notation slightly and denote

the runs of bothP and CONCON with execution graphGr by the same namer, andV̂[r,m]

by V̂. By Proposition 3.9, the events inMP
i [m] are common knowledge. By definition

of the core,MP
i [m] ⊆ ΦE . Hence, Corollary 3.12 implies thatMP

i [m] ⊆ E(V̂). We will

show thatV̂ is contained inVG(c)(c) for c = critr
i (m). SinceMC

i [m] = E(VG(c)(c)), this

will imply that MC
i [m] ⊇ E(V̂) ⊇ MP

i [m], from which the claim follows. The case in

which V̂ = λ is immediate, sinceλ is by definition contained in all views, including

VG(c)(c). It remains to consider the case in whichV̂ 6= λ. In this case, let̂k = kh and

Ŝ= Sh be the fixed-point values in the Moses and Tuttle construction performed in the

run r. SinceV̂ 6= λ we have that̂k ≥ 0. Moreover, recall that the construction ends

with h≥ 1 sincet ≤ n−2. Sincekh is the first place at which a fixed-point is obtained,

we obtain thatkh < kh−1 ≤ k0. Observe that the setsF̀ in the fixed-point construction

contain only faulty processes. Sincei ∈ S0 and i is nonfaulty, it follows thati ∈ S̀

3. Solving Continuous Consensus 42

for every ` ≤ h. In particular,i ∈ Sh−1. By definition of Sh and Fh−1, we have that

Sh = { j : (R, r,kh−1) |= ¬DSh−1(j is faulty)}. Sincei ∈ Sh−1, we have in particular that

(R, r,kh−1) |= ¬Ki(j is faulty), for all j ∈ Sh. It follows thatSh ⊆ Gi(kh−1−1), where

Gi is the set ofgoodprocesses according toi in CONCON. Fromkh < kh−1 we have

that kh ≤ kh−1− 1. The perfect recall property of theFIP implies that the setsGi(k)

are monotonically nonincreasing. Thus,Sh ⊆ Gi(kh−1− 1) ⊆ Gi(kh). It follows that

Bi(kh) ⊇ Fh, and hence also thatbi(kh) ≥ |Fh|. Sincekh = k̂ is the fixed point, we have

thatkh = m− (t +1−|Fh|) and hencem= kh + t +1−|Fh|. By definition of CONCON,

horizoni(kh) = kh + t +1−bi(kh). Sincebi(kh)≥ |Fh|, we obtain thathorizoni(kh)≤m.

By Proposition 3.6(a) we have thatcritr
i (m)≥ k̂. It follows thatVG(c)(c)⊇ V̂ and we are

done.

�

Extending the core. So far, the monitored events that we allowed (which we identified

with the propositions inΦE) have been facts about the external inputs to the system.

This is reasonable because such facts are independent of the protocol used to implement

continuous consensus, and such events allow us to monitor information that is relevant

in a broad range of applications. It is possible, however, to extend the core and allow

it to monitor events that are concerned with the failure pattern as well as the external

inputs. In the context of theFIP this could actually determine all communications and

all message contents. We say that a propositionp∈Φ is objectiveif its truth depends on

the failure pattern and input assignment of the run. Namely, if there is a setTp of pairs

(ζ,β) such that, for every runr ′ = FIP(ζ′,β′) and timem′, we have that(R, r ′,m′) |= p

exactly if (ζ′,β′) ∈ Tp. In particular, an objective proposition is independent of time.

Notice that the propositions inΦE , which depend on the external input component,ζ, of

the run, are by definition objective propositions. Another feature of the new definition

is that an objective proposition has the same truth value in runs of different protocols,

becauseTp is independent of the protocol being followed.

3. Solving Continuous Consensus 43

We can now define anextendedcontinuous consensus problem, whose specification

differs from the original problem only in that the core consists of a setΦ′E ⊆ Φ of ob-

jective facts. The proof of Theorem 3.8 shows that the viewVGi(c)(c) computed by a

nonfaulty processi in the CONCON protocol at a point(r,k) is shared among the non-

faulty processes, and hence contained inV̂i [r,k]. The proof of Theorem 3.10 shows that

VGi(c)(c) containsV̂i [r,k]. Thus, the CONCON protocol executed at nonfaulty processes

in fact computeŝV[r,k] at each point(r,k). The information inV̂[r,k] can imply that cer-

tain processes are faulty, and that particular messages were sent successfully in the run

while others were not. By Proposition 3.9 all of this information is common knowledge

at (r,k). But there may be (objective) facts about the failure pattern that are common

knowledge at(r,k) and do not appear explicitly inV[r,k]. For example, there are no

explicit failures and/or successful message deliveries in the empty viewλ. Nevertheless,

if, for example,V̂i [r,3] = λ then among other things the nonfaulty processes did not dis-

covert failures in the first round. This translates into an objective factq about the run.

And since, as shown in Proposition 3.9, the identity ofV̂[r,k] for the nonfaulty processes

is common knowledge,CNq would hold at(r,3) in this case. In order to obtain an opti-

mum solution for the extended continuous consensus problem, we need to add this type

of fact to the core. We do this by replacing the definition ofE(V) used in CONCON by

E ′(V,k) , {q∈Φ′E : (R, r,k) |= q for all points(r,k) such thatV̂[r,k] = V}.

We denote by CONCON′ the protocol obtained from CONCON by replacingE(λ) by

E ′(λ,k) and replacingE(VGi(c)(c)) by E ′(VGi(c)(c),k) on line 5. Since CONCON′ com-

putes the viewV̂[r,m] at every point(r,m), we obtain an analogous result to Corol-

lary 3.12 for arbitrary objective propositions inΦ′E . An analogous proof to that of

Theorem 3.10 can now be shown to yield:

Corollary 3.13 CONCON′ is an optimum protocol for the extended continuous consen-

sus problem.

3. Solving Continuous Consensus 44

3.3 Waste and CONCON

Waste

The concept ofwastewas defined in [3]. In this section we shall review the definition

of wasteand extend the term further to definelocal waste. The task discussed in [3]

was obtaining agreement in a crash failure model about the initial configuration of the

system.Wastewas defined in the context of this analysis.Local wasteis a generalization

of waste, which helps us analyze when agreement can be reached about any fact in the

system (rather than just about timek = 0). Moreover, our definition of local waste will

apply to both the crash and the omission models.

Recall that according to Theorem 3.2, once it becomes common knowledge that a

clean round has occurred, all the facts about the initial configuration become common

knowledge. It is easy to show that at timet + 1 it is common knowledge that a clean

round has occurred during the firstt + 1 rounds, and thus all the facts about the initial

configuration are common knowledge. However, ifk+ j failures are discovered by the

end of roundk, Dwork and Moses’ analysis in [3] shows that by the end of roundt +1− j

there must be a clean round. Moreover, it can be shown that by the end of roundt +1− j

it is common knowledge that a clean round has occurred. From the point of view of an

adversary trying to delay the agreement as much as possible, this may be considered as

a “waste” of j failures.

We now formally define the waste of a run,W(r). First, defineN (r,k) as the number

of faulty processes discovered by timek in r. Next, we defined(r,k) as the difference

betweenN (r,k) andk, and finally we can define the waste,W(r), as the maximal value

of d(r,k):

N (r,k) , max{ j : (r,k) |= D(“ j processes have f ailed”)} (3.6)

d(r,k) , N (r,k) − k (3.7)

3. Solving Continuous Consensus 45

W(r) , max
k≥0

d(r,k) (3.8)

Note that in this subsection the operatorsD andC refer to distributed knowledge and

common knowledge w.r.t. the set of active processes. The analysis in [3] shows that at

the end of roundt +1−W(r) it is common knowledge that a clean round has occurred

in the run. Thus att +1−W(r) all facts about the initial configuration of the nonfaulty

processes become common knowledge. The concept is summarized in the following

lemma from [3], which is quoted here without proof:

Lemma 3.14 Let ϕ be a fact about the initial configuration. Then:

(r, t +1−W(r)) |= Dϕ iff (r, t +1−W(r)) |= Cϕ.

Lemma 3.14 implies that at the end of roundt + 1−W(r), any fact known to an

active process4 at timek = 0 becomes common knowledge. An immediate corollary of

Lemma 3.14 is the following:

Corollary 3.15 Let ϕ be a fact about the initial configuration. If(r,0) |= DNϕ then

(r, t +1−W(r)) |= CNϕ.

Proof: Assume(r,0) |= DNϕ. It is easy to see that also(r, t + 1−W(r)) |= DNϕ,

and thus(r, t + 1−W(r)) |= Dϕ. By Lemma 3.14 we have that(r, t + 1−W(r)) |=

Cϕ, i.e., thatϕ is common knowledge among the active processes,A(r, t + 1−W(r)).

It is straightforward from the definition of common knowledge that any fact which is

common knowledge among the active processes, is also common knowledge among any

subset of this set. SinceN⊆ A(r, t +1−W(r)), we obtain(r, t +1−W(r)) |= CNϕ, and

we are done.

�

4An active process w.r.t. timet +1−W(r)

3. Solving Continuous Consensus 46

We refer to the last round,̀w in which d(r,k) reaches its maximal value as the

round in whichthe waste was reached, i.e.,`w = max{argmax
k≥0

d(r,k)}. An interesting

property, which is straightforward from the definition of waste, the round following the

last time the waste is reached — round`w +1 — is a clean round.

A Generalized Definition of Waste

The concept ofwastewas defined in the context of the crash model, and was aimed at

analyzing when facts about timek = 0 can be agreed upon.Local wasteis an extension

to the definition of waste, which relates to any timek ≥ 0. In addition, our analysis

in this subsection will be relevant to both the crash and the omission models. A key

difference between waste and local waste is that waste is a property of the run,W(r),

whereas the local waste,W(m)
i , is a value which is computed locally with respect to a

specific timem, and a processi. Moreover, two different nonfaulty processes,i and j,

may compute different local wastes w.r.t. a timem, i.e.,W(m)
i 6= W(m)

j . We omit ther

from our definitions, as it is clear from context. We now present three definitions that

lead to the notion of local waste:

N (m)
i (k) , bi(k)−bi(m) (3.9)

d(m)
i (k) , N (m)

i (k) − (k−m) (3.10)

W(m)
i , max

k≥m
d(m)

i (k) (3.11)

Notice that form= 0, the definition ofW(m)
i bares a strong resemblance to the def-

inition of waste from the previous subsection, with the exception thatbi(k) plays the

role of N (r,k). This observation is not surprising, sincebi(k) in the omission model

is analogous toN (r,k) in the crash model. Once again, we define the last round,`lw

3. Solving Continuous Consensus 47

in which d(m)
i (k) reaches its maximal value as the round in whichthe local waste is

reached, or more formally,̀ lw = max{argmax
k≥m

d(m)
i (k)}. The following lemma captures

the connection between local waste and common knowledge.

Lemma 3.16 Let i be a nonfaulty process, letr be a run ofFIP. If (r,m) |= DNϕ, then

(r , m+(t +1−bi(m)−W(m)
i)) |= CNϕ.

Proof: Defineκ , m+(t + 1−bi(m)−W(m)
i). Sincer is a run of a full-information

protocol, let us assume without loss of generality thati is running CONCON.5 Thus at

mprocessi computeshorizoni(m). Define`lw as the round in whichthe local waste was

reached. From Equations 3.9- 3.11 we have thatW(m)
i = (bi(`lw)−bi(m))− (`lw−m).

At the end of round̀ lw , processi computes thehorizon according to CONCON, and we

have that:

horizoni(`lw) = `lw + t +1−bi(`lw) = (3.12)

= `lw + t +1−bi(`lw) +bi(m)−bi(m)+m−m=

= [m+ t +1−bi(m)] − [(bi(`lw) −bi(m))− (`lw−m)] =

= [m+ t +1−bi(m)] − W(m)
i , κ

Sincehorizoni(`lw) = κ, from Proposition 3.6(a) we have thatcrit i(κ) ≥ `lw . With-

out loss of generality, assumecrit i(κ) = `′ ≥ `lw . ThusMi [κ] = VGi(`′)(`
′). Now since

(r,m) |= DNϕ by the assumption, and sinceN⊂Gi(`′), we necessarily haveϕ∈VGi(`′)(`
′),

and thusϕ ∈Mi [κ]. From Proposition 3.9 we have that(r,κ) |= CNϕ, and we are done.

�
5We require thati will run CONCON is order to be able to definehorizoni(·), however running CON-

CON is not a necessary condition for the correctness of the lemma

3. Solving Continuous Consensus 48

Lemma 3.16 presents the strong connection betweenlocal wasteand common knowl-

edge, by showing that facts about timembecome common knowledge(t−bi(m))+1−

W(m)
i rounds afterm. For the special case ofm= 0, it is interesting to compare our anal-

ysis in this subsection regarding the local waste, to the analysis in [3]. We first present

the following lemma, which argues thatwasteis indeed a special case oflocal waste.

Lemma 3.17 Let i be a nonfaulty process, letR be a system in the crash failure model,

i.e., fm= crash, and letr ∈ R be a run ofFIP. Moreover, let̀ w and`lw be the rounds in

which the wasteW(r) and the local wasteW(0)
i are reached, respectively. Then:

(i) `w = `lw

(ii) W(0)
i = W(r)

Proof: For (i), assume by way of contradiction that`w 6= `lw . Notice that sincèw is

the round in which the waste is reached, round`w +1 must be clean, which means that

no failure is discovered by the active processes. Notice thatGi(`w) ⊆ A(r, `w), since

Gi(`w) does not include processes whose faulty behavior was discovered byi in round

`w+1. Notice also thatGi(`w)⊇A(r, `w), since if there is a processj ∈A(r, `w)\Gi(`w),

then j ’s faulty behavior must be discovered by the nonfaulty processi in round`w +1,

which not possible sincèw +1 is a clean round. Thus we have thatGi(`w) = A(r, `w).

Notice that using a similar argumentGi(`lw) = A(r, `lw) also holds. SinceN (r, `w) is

computed according to the knowledge of the setA(r, `w), andbi(`w +1) is based on the

knowledge ofGi(`w), it follows thatbi(`w) = N (r, `w). We thus have thatd(r, `w) =

d(0)
i (`w). Similarly, we also havebi(`lw) = N (r, `lw), and thusd(r, `lw) = d(0)

i (`lw).

Now assumèw > `lw , and thusd(r, `w)≥ d(r, `lw). It follows thatd(0)
i (`w)≥ d(0)

i (`lw),

which contradicts the fact that̀lw is the round in which the local waste is reached.

Assume, on the other hand that`w < `lw , and thusd(0)
i (`w) ≤ d(0)

i (`lw), which means

thatd(r, `w)≥ d(r, `lw), contradicting the fact that̀w is the round in which the waste is

reached. Thus̀w = `lw .

3. Solving Continuous Consensus 49

For (ii), since`w = `lw , and we have shown that alsod(r, `w) = d(0)
i (`w), by the

definition ofW(0)
i andW(r) it follows thatW(0)

i = W(r), and we are done.

�

Lemma 3.17 shows that our analysis of the local waste is a direct enhancement of

Dwork and Moses’ analysis ofwastein the crash model. The result in Lemma 3.16

both extends the previous analysis to the omission failure model, and generalizes the

discussion from agreeing about the initial configuration to agreeing on facts about any

later timem. By using the results of CONCON from the previous sections, we were able

to prove Lemma 3.16, which is a direct generalization of Lemma 3.15.

Following the proof of Lemma 3.16, it is interesting to observe thatκ = horizoni(m)−

W(m)
i , and thus an immediate corollary is:

Corollary 3.18 Let i be a nonfaulty process, letr be a run ofFIP, and letϕ be a fact

about timem. If (r,m) |= Dϕ, then(r , horizoni(m)−W(m)
i)) |= Cϕ.

Our proof of Lemma 3.16 made use of CONCON, however, Corollary 3.18 presents

an even stronger connection between local waste and CONCON. Indeed, we defined

horizoni(m) as processi’s upper bound on thedestinationof m, and showed that in

fact i’s estimation form’s destination may beimprovedcompared tohorizoni(m). By

Corollary 3.18 we realize that thisimprovementis preciselyW(m)
i .

The following lemma will complete the picture regarding the connection between

local waste and CONCON.

Lemma 3.19 Let i be a nonfaulty process, letm≥ 0, and letr be a run ofFIP. Further-

more, let̀ lw be the round in which the local waste,W(m)
i is reached. Then:

(a) `lw = crit i(horizoni(m)−W(m)
i)

(b) desti(m) = horizoni(m)−W(m)
i

3. Solving Continuous Consensus 50

Proof: Define κ , horizoni(m)−W(m)
i . The proof of Lemma 3.16 showed us that

crit i(κ)≥m. In order to show that̀lw = crit i(κ), let us assume by way of contradiction

that `lw < crit i(κ), i.e., thatcrit i(κ) = `′ > `lw . Thus by our analysis of CONCON, it

is easy to see thathorizoni(`′) = κ. By the proof of Lemma 3.16, we have that also

horizoni(`lw) = κ, and thus:

horizoni(`lw) = horizoni(`′) (3.13)

`lw + t +1−bi(`lw) = `′+ t +1−bi(`′)

bi(`lw)− `lw = bi(`′)− `lw

Now also notice that:

d(m)
i (`′) = N (m)

i (`′)− (`′−m) = (bi(`′)−bi(m))− (`′−m) (3.14)

= bi(`′)− `′ +m−bi(m) = bi(`lw)− `lw +m−bi(m)

= (bi(`lw)−bi(m))− (`lw−m) = d(m)
i (`lw)

And thus we haved(m)
i (`lw) = d(m)

i (`′), which contradicts our definition of̀lw , as

the latest round at which the waste is reached, and we are done with part (a).

Recall thatdesti(m) = κ exactly if crit i(κ) ≥m, andcrit i(κ−1) < m. The proof of

Lemma 3.16 showed us thatcrit i(κ)≥m. In order to prove thatcrit i(κ−1) < m, let us

assume by way of contradiction thatcrit i(κ−1) , m′ ≥m. Thushorizoni(m′) = κ−1,

and recall that̀ lw = crit i(κ).

3. Solving Continuous Consensus 51

κ−1 = horizoni(m′) = horizoni(`lw)−1 (3.15)

m′+ t +1−bi(m′) = `lw + t +1−bi(`lw)−1

bi(m′)−m′ = bi(`lw)− `lw +1

And if we observed(m)
i (m′), we find that:

d(m)
i (m′) = (bi(m′)−bi(m))− (m′−m) (3.16)

= bi(m′)−m′ + m−bi(m)

= bi(`lw)− `lw +1 + m−bi(m)

= (bi(`lw)−bi(m))− (`lw−m)+1 = d(m)
i (`lw)+1

And we obtain thatd(m)
i (m′) = d(m)

i (`lw)+1, which contradicts the assumption that

`lw is the round in which the value ofd(m)
i (·) is maximal, and we are done with (b) as

well.

�

By Lemma 3.19(b) we have that thei’s horizon andi’s local waste atmuniquely de-

terminem’s destination, which is preciselyhorizoni(m)−W(m)
i . Moreover, Lemma 3.19(a)

shows that athorizoni(m)−W(m)
i all facts about the first̀lw rounds become common

knowledge.

3.4 Clean Rounds Revisited

In our description of clean rounds in Section 3.1, we said that up to this work clean

rounds were discussed in the context of the crash model. After having presented CON-

CON, we extend the definition of clean rounds to the omission model. We say that a

3. Solving Continuous Consensus 52

roundk is clean ifbi(k− 1) = bi(k) for all nonfaulty processesi. Thus, it is not the

discovery of a failure in a round that makes it dirty; rather, a round is dirty if, for some

processz, it is the first round in whichz’s failure is reported by a process that is trusted

by some nonfaulty process.

Intuitively, it is straightforward from the definition ofhorizon that our computation of

horizoni(m) = m+(t +1)−bi(m) guarantees that there exists at least one roundk, such

thatm< k≤ horizoni(m), in whichbi(k−1) = bi(k). This fact does not guarantee a clean

round, however, the following lemma implies that indeed a clean round is guaranteed to

occur in this interval.

Lemma 3.20 Let i be a nonfaulty process. Then for allk≥ 0 if crit i(k) = m 6=−1 then

m+1 is a clean round.

Proof: Assume by way of contradiction that for some nonfaultyj we haveb j(m) 6=

b j(m+ 1). By definition ofB j , we have thatb j is a nondecreasing function ofm, and

thusb j(m) < b j(m+1). Since bothi and j are nonfaulty, we have by Theorem 3.8 that

crit i(k) = crit j(k) = m. It follows that horizon j(m) = k. Sinceb j(m) < b j(m+ 1), it

follows by the definition ofhorizon that horizon j(m) ≥ horizon j(m+ 1). By Proposi-

tion 3.6(a)crit j(k) ≥ m+ 1, which contradicts the fact thatcrit j(k) = m, and we are

done.

�

Thus the round following a critical time must be a clean round. In fact, this ob-

servation is not surprising following Section 3.3, since by Lemma 3.19 and by the fact

thathorizoni(m) = k we have thatW(m)
i = 0, and thusm is the round in whichW(m)

i is

reached. It is immediate from the definition ofW(m)
i that the next round,m+1, must be

clean.

Another interesting property of clean rounds in our context is presented below.

Lemma 3.21 Let m+1 be a clean round. ThenBi(m)∪Gi(m) = P for every nonfaulty

processi.

3. Solving Continuous Consensus 53

Proof: Assume by way of contradiction that for some nonfaultyi there exists anm

and a processj such thatm+ 1 is a clean round andj 6∈ Gi(m)∪Bi(m). Since i is

nonfaulty, we havei ∈ Gi(m+ 1), and sincei knows aboutj ’s faulty behavior at time

m+ 1, we havej ∈ Bi(m+ 1), while we assumedj 6∈ Bi(m). Thus it must be the case

thatbi(m+1) > bi(m), which is in contradiction to the assumption thatm+1 is a clean

round.

�

Notice that Lemmas 3.20 and 3.21 imply that ifm is a critical time of somek, then

Bi(m)∪Gi(m). Intuitively, Moses and Tuttle’s fixed-point construction (Figure 3.6) pro-

posed a similar claim, however their definitions of the sets of faulty and nonfaulty pro-

cesses, the setsF andSare a bit different than our definitions of good and bad processes.

Finally, we conclude this section by presenting the following lemma:

Lemma 3.22 Let ϕ be a fact about the firstk−1 rounds, leti be a nonfaulty process in

r and assume thatS= Gi(k−1). If (r,k−1) |= DS(ϕ) and roundk of r is clean, then

(r,k) |= ENϕ.

Proof: Assume that roundk is clean, and that(r,k−1) |= DS(ϕ). We shall prove that

(r,k) |= ENϕ by showing that for all nonfaulty processes,j, we have that(r,k) |= K jϕ.

Assume thatj is nonfaulty. We claim thatBi(k−1) = B j(k−1). Assume by way of

contradiction thatBi(k−1) 6= B j(k−1). Without loss of generality, assume that there

exists a processz∈ Bi(k− 1) \B j(k− 1). Thus, at timek processi knows aboutz’s

failure. Sincei is nonfaulty, we have thati ∈ G j(k), and thusz∈ B j(k). It follows that

B j(k−1) 6= B j(k), which contradicts the assumption thatk is a clean round. Thus we

have thatBi(k−1) = B j(k−1). Since roundk is clean, Lemma 3.21 implies that we

also haveS= Gi(k−1) = G j(k−1). It follows that(r,k−1) |= DS(ϕ). Notice that by

the definition ofG j(k−1), all messages from processes inG j(k−1) are delivered toj

successfully in roundk, and since we assume aFIP, we must have that(r,k) |= K jϕ, and

we are done.

�

3. Solving Continuous Consensus 54

One of the key results by Dwork and Moses [3], which is presented in Theorem 3.1,

is that following a clean round every fact that was previously distributed knowledge,

becomes known to all the nonfaulty processes. By Lemma 3.22, we see that the same

result holds in the omission model, in the context ofclean roundsas presented in this

section. It follows that our new definition ofclean roundsplays essentially the same

role in the omission model as the original definition of clean rounds played in the crash

model; after a clean round all nonfaulty processes share a consistent view of the system.

3.5 A Run of CONCON

In this section we discuss some interesting properties of the CONCON protocol, of the

horizon, and of the sets of good and bad processes. We discuss these properties by

presenting an example of a run,r of CONCON. In our examplen = 16, t = 6, and we

assume that processesi and j are nonfaulty.

The horizon Revisited

Intuitively, we describedhorizoni(k) as processi’s estimation of when facts about time

k will join the core. Figure 3.7 gives further intuition about thehorizon, by showing

horizoni andhorizon j as a function ofk for two nonfaulty processes,i and j in r. Let us

point out some observations aboutr, which are illustrated in Figure 3.7. These observa-

tions follow from the properties of thehorizon which were described in Section 3.1.

• No processes are initially known to be faulty, i.e.,bi(0) = 0, and thushorizoni(0) =

t +1 = 7.

• Thehorizon increases by at most one in every round.

• Horizons at different processes are not necessarily the same, e.g.,horizoni(9) =

14, whilehorizon j(9) = 15 (however, recall that the correct processes’ horizons

are identical at a critical time).

3. Solving Continuous Consensus 55

• The graph shows the functionf (k) = k as a reference, since in a way it can be

thought of as an “asymptote” of thehorizon. If the system reaches a point(r,k) at

which bi(k) = t, i.e., all faulty processes have been discovered, then for all` > k

we will havehorizoni(`) = `+ 1. Indeed, in our example we can see that at any

time ` > 16, we havehorizoni(`) = `+1.

0

5

10

15

20

0 5 10 15 20

k

h
o

ri
zo

n
(k

)

horizoni(k)
horizonj(k)
f(k)=k

Figure 3.7: The Horizon vs.k in a runr.

Critical Times Revisited

In Figure 3.8 we can see a graph of the critical time,crit i(k) as a function ofk for r.

Notice the following observations:

• There are times which are not critical times, e.g., 12 is not the critical time of

anyk.

• If horizoni(k) 6= horizon j(k) thenk cannot be a critical time. This follows from

Theorem 3.6, since ifk = crit i(`) of some timè , then it must be so for all non-

faulty processesi. In our example,horizoni(12) 6= horizon j(12), and indeed 12 is

not a critical time.

3. Solving Continuous Consensus 56

• If crit i(k) = m, then we can check in Figure 3.7 and see that indeedhorizoni(m) =

k. For example, Figure 3.8 shows thatcrit i(10) = 4, and in Figure 3.7 we can see

thathorizoni(4) = 10.

• Much like the graph of thehorizon, we showf (k) = k as a reference, and similarly,

it can be thought of as an “asymptote” forcrit i(k), with crit i(`) = `−1 whenbi = t.

-5

0

5

10

15

20

0 5 10 15 20

k

cr
it

(k
)

crit(k)
f(k)=k

Figure 3.8: Critical time vs.k in a runr.

Good and Bad Processes Revisited

Our subtle definitions of the good and bad process are the basis of thehorizon computa-

tion, and are thus a key notion in CONCON. As discussed in Section 3.1, our definition

of Gi(k) usesi’s knowledge at timek+1, enablingi to receive information about roundk

from all processes inGi(k), and thusi’s computation ofBi(k) is based on the knowledge

of all the good processesGi(k). The following properties are straightforward from the

definitions ofG andB, and can be seen quite vividly in Figure 3.9:

• Notice thatGi(k) andBi(k) are distinct sets, i.e.,Gi(k)∩Bi(k) = /0 for all k.

3. Solving Continuous Consensus 57

• Bi is a monotonously nondecreasing set, i.e.,Bi(k)⊆ Bi(k+1), andGi is a

monotonously nonincreasing set, i.e.,Gi(k)⊇Gi(k+1).

• Another interesting property ofB and G, which is a corollary of Lemma 3.21,

is that if m is a critical time of somek, i.e., m= crit i(k), then we haveBi(m)∪

Gi(m) = P. For example, recall from the previous subsection thatcrit i(10) = 4,

and indeed we can see in Figure 3.9 thatBi(4)∪Gi(4) = P.

• By Lemma 3.20 it follows that round 5 must be clean, and indeed we can see that

bi(4) = bi(5).

Figure 3.9:Gi(k) andBi(k) in r.

Local Waste and Destination

Figure 3.10 showsdesti(k) andhorizoni(k) as a function ofk. The following observations

may be seen from the graph:

• It is possible for several points,m,m′ to have the same destination. For example,

desti(9) = desti(10) = 14. Recall that for this reason the destination is not defined

ascrit−1
i .

3. Solving Continuous Consensus 58

• Processi’s horizon atm is an estimation ofdesti(m). As we can see in Figure 3.10,

indeeddesti(m) andhorizoni(m) are equivalent most of the time. By Lemma 3.19

we have that the connection between thehorizon and the destination isdesti(m) =

horizoni(m)−W(m)
i , and thus the destination is different than thehorizon at times

m in whichW(m)
i > 0. In our particular example, the only such timem is m= 12.

0

5

10

15

20

0 5 10 15 20

k

horizoni(k)
desti(k)
f(k)=k

Figure 3.10:desti(k) andhorizoni(k) in r.

Figure 3.11 illustrates the computation of the local waste,W(m)
i . The first graph,

3.11(a), presentsN (0)
i (k), and the second, 3.11(b) showsN (12)

i (k). Observe that:

• SinceN (0)
i (k) = bi(k), 3.11(a) in fact shows the number of bad processes as a

function ofk.

• Notice that in our exampleW(0)
i = 0, since no failures are discovered “fast enough”

after time 0. On the other hand, as we can see in 3.11(b) sincebi(k) increases by

2 in round 13, we have thatW(12)
i = 1

• In both graphs we presentk−m as a reference. Recall thatd(m)
i (k) = N (m)

i (k)−

(k−m), and that the waste is reached when the difference,d(m)
i (k), is maximal. In

3. Solving Continuous Consensus 59

the graphs,d(m)
i (k) is positive precisely whenN (m)

i (k) is over thek−m line. Thus

whenN (m)
i (k) reaches its highest point over thek−m line, the waste is reached.

In our example form= 12, the only time at whichN (12)
i (k) is over the line is at

k = 13, which is when the waste is reached.

3. Solving Continuous Consensus 60

0

5

10

15

20

0 5 10 15 20

k

N
(k

) N(k)
k-m

(a) N (0)
i (k) vs. k for m= 0.

0

5

10

0 5 10 15 20

k

N
(k

) N(k)
k-m

(b) N (12)
i (k) vs. k for m= 12.

Figure 3.11: Local Waste

Chapter 4

Uniform Continuous Consensus

4.1 The UCC Problem

The continuous consensus problem specifies constraints only on the cores of nonfaulty

processes, guaranteeing nothing about faulty ones. Observe, however, that failures in our

models are not considered malicious—there is no lying and faulty behavior is closely re-

lated to crashing or communication malfunction. It is thus natural to consider a stronger

version of the problem, which we calluniform continuous consensus(UCC). The spec-

ification of UCC is similar to that of CC (see Section 3.1), except that Accuracy and

Consistency are required to hold for arbitrary processes and not just for nonfaulty ones.

Completeness, however, is still restricted to events that are known to nonfaulty pro-

cesses: If an evente∈ E is known to anonfaultyprocessj at any point, thene∈Mi [k]

must hold (forall processesi, of course) at some timek. One can expect a solution to

UCC to be similar in spirit to CONCON, because the failures we consider,both in the

crash and the (sending) omission models, only affect the ability of a process tosend

messages, so that even faulty processes receive all incoming messages. In this chapter

we consider how the CONCON protocol can be modified to obtain UNICONCON, an

optimal protocol for UCC.

As shown in [2, 5], simultaneously consistent behavior by all participants is closely

related to (standard) common knowledge, that is, the traditional notion equivalent to an

infinite conjunction of “everyone knows” (while in the previous chapter our analysis

4. Uniform Continuous Consensus 62

referred to common knowledge among the nonfaulty processes).

Common knowledge amongall processes (see Section 2.6) and UCC are related in

the same way asCN and continuous consensus are, and a result analogous to Proposi-

tion 3.9 holds. Neiger and Tuttle [10] show that in our settings (crash and omission

failure models) the two notions of common knowledge coincide:

Theorem 4.1 (Neiger and Tuttle)R |= (Cϕ ≡ CNϕ) for every formulaϕ and FIP sys-

tem R.

Intuitively, the claim of Theorem 4.1 can be explained by the fact that failures in

these models affect only the ability of a process to send messages; even faulty processes

receive all incoming messages.

A natural question in light of Theorem 4.1 is whether CONCON itself solves the

UCC problem. Unfortunately, it does not. The problem with using CONCON is that a

faulty processx might know of failures at timek but not tell the nonfaulty processes. If

x∈ Gx(k), then these failures will be counted inbx(k) and will therefore play a role in

determininghorizonx(k), but if x is silent from roundk+1 on, for example, then these

failures will not affect the calculations of other processes. An inconsistency betweenx’s

core and those of the nonfaulty processes will arise as a consequence.

A protocol for UCC

We now present a variant of CONCON, called UNICONCON, that solves the UCC prob-

lem. The UNICONCON protocol is based on the following intuition. Whether or not a

processx is faulty, it is still guaranteed in our models to receive all messages that are sent

to it. Moreover, ifg∈ Gx(k), then no nonfaulty process has discovered thatg is faulty

by timek−1. The information available tog at timek−2 has thus been transmitted to

the (truly) nonfaulty processes in roundk−1, and they are guaranteed to relay it tox

(and to all other processes) in roundk. Hence, a possibly faulty processx can simulate

in roundk what a nonfaulty processg would compute two rounds earlier. As a result, it

is possible to design a uniform protocol that mimics the behavior of CONCON as long

4. Uniform Continuous Consensus 63

as the distance to the horizon is three rounds or more. Special care needs to be taken

when the distance to the horizon becomes two rounds or one.

In this section we usei, j,x,z,g ∈ P to denote processes in our system, such thati

and j are nonfaulty processes,x andz arepotentiallyfaulty processes, andg is agood

process.1

The UNICONCON protocol is given in Figure 4.1. We distinguish the values of

Latesti , crit i andMi computed in CONCON from the corresponding values computed in

UNICONCON by adding the superscriptu to instances of the latter. On line 2 of the

protocol, the processx chooses an arbitrary memberg of Gx(k−1) whose computation

in roundk−2 of CONCON processx will simulate in roundk.2 Notice thathorizong(k−

3) is available tox in roundk becausex’s local state has a copy ofVg(k− 2) (since

otherwiseg /∈ Gx(k− 1)). Lines 4, 5 and 6 of UNICONCON play the same role as

lines 3, 4 and 5 of CONCON respectively. On lines 3 and 4 of UNICONCON processx

simulates what a nonfaulty process would have computed two rounds earlier. Line 5

computes the critical time, distinguishing three distinct cases: there are special tests for

whether the critical time is one or two rounds back; when neither is the case, the process

uses the critical time obtained by simulating the critical round that a seemingly nonfaulty

process would compute in CONCON. Finally, line 6 computes the core in much the same

way as in CONCON.

The correctness claim for UNICONCON is summarized by the following theorem:

Theorem 4.2Fix a run r in a FIP system R. Let i be a nonfaulty process in r, let x be an

arbitrary process, and let k≥ 1. Then Mu
x [k] = Mi [k].

The proof of Theorem 4.2 as well as intermediate lemmas used in its proof are pre-

sented in Appendix A.2. An immediate corollary of Theorems 4.1 and 4.2 is

Corollary 4.3 UNICONCON is an optimum protocol for Uniform Continuous Consen-

sus.
1Good here stands simply for the fact thatg∈Gx(k) for some processx at a certain timek of interest.
2A processx can choose itself asg as long asx∈Gx(k−1), so thatx does not know that it is faulty.

4. Uniform Continuous Consensus 64

UNICONCON(x)

0 Latestux [`]←−1 for all `≥ 1

for every roundk≥ 1 do
1 send local state and receive messages according toFIP

2 g← arbitrary member ofGx(k−1)
if k≥ 3 then

3 computeGg(k−3), Bg(k−3) andhorizong(k−3)
� x simulates g’s behavior in CO NCO N :

4 Latestux [horizong(k−3)]← k−3
endif

5 cu←


k−1 if horizonx(k−1) = k

k−2 if horizong(k−2) = k ∧ horizonx(k−1) 6= k

Latestux [k] otherwise

6 Mu
x [k]←


E(λ) if cu =−1

E(VGx(k−1)(k−1)) if cu = k−1 ≥ 0

E(VGg(cu)(cu)) otherwise
endfor

Figure 4.1: Processx’s computation in UNICONCON.

Chapter 5

Conclusion

In the present study we have presented and analyzed the continuous consensus (CC)

problem, which generalizes simultaneously consistent action in fault-prone synchronous

systems. Using a knowledge-based approach, a solution to the CC problem called CON-

CON was presented, as well as its uniform variant, UNICONCON. These protocols are

both simpleandoptimal. Continuous consensus is closely related to common knowl-

edge. Moreover, the optimal solution to the CC problem is equivalent to computing all

the facts that are common knowledge. The definition of the CC problem sheds a new

light on the study of simultaneously consistent actions, and allows for a simpler and

more intuitive analysis.

5.1 Summary of Results

Continuous Consensus and CONCON. A continuous consensus service requires each

processi to maintain at every timek an up-to-date coreMi [k] of information about the

past, so that the cores at all correct processes are guaranteed to be identical. A solution

to the CC problem in the crash and omission failure models calledCONCON was pre-

sented. A striking aspect of the solution is its simplicity: At every round, each process

updates a single value based on a straightforward computation. Moreover, while the

solution is stated in the context of the full-information protocol, it can be implemented

in a more efficient manner.

5. Conclusion 66

Optimality and Connection to Common Knowledge. Continuous consensus is shown

to be closely related to the problem of computing what is common knowledge at any

given point. It is shown that the contents of the coreMi [k] of any CC protocol is com-

mon knowledge among the nonfaulty processes at timek. Moreover, it is shown that the

core computed in CONCON contains precisely all the facts that are common knowledge

at timek, which the derivesoptimality of CONCON: the core produced by CONCON is

the largest possible core at any given time. Moreover, the cores of all correct protocols

for continuous consensus are subsets of CONCON’s core.

Uniform Continuous Consensus. The uniform variant of the continuous consensus

(UCC) problem requires thatall processes, both faulty and nonfaulty, will maintain the

same core at all times. Our solution to UCC in the crash and omission models, called

UNICONCON, enables a potentially faulty processx to compute in every roundk the

same coreas a nonfaulty processi would produce in CONCON, i.e., Mi [k] = Mu
x [k].

Processx performs this computation bysimulatingwhat a nonfaulty processi would

have computed according to CONCON. Interestingly, the solution to UCCdoes not

incur any degradation in the information contained in the core of shared information.

UCC is related to common knowledge amongall processes in the same way that CC

is related to common knowledge among the nonfaulty processes. The optimality of

UNICONCON follows fromMi [k] = Mu
x [k], and from the equivalence in [10].

Clean Rounds. This work bridges a gap between the analysis of common knowledge

with crash failures in [3] and that for omission failures in [4]. In the case of crash

failures, clean rounds are rounds in which no new failures are discovered. However,

prior to this work no analogous definition of clean rounds was found in the context

of the omission model. The CONCON and UNICONCON protocols presented in this

work, do, however, suggest a natural generalization of clean rounds to the omission

model. We define roundk to beclean in this case ifbi(k− 1) = bi(k− 2) holds for

every nonfaulty processi. We show that ifcrit i(m) 6= −1 then the identity ofcrit i(m),

5. Conclusion 67

as well as the fact thatcrit i(m) + 1 is a clean round, become common knowledge at

time m. Moreover, it is shown that a clean round enables all “good” processes to send

their messages successfully, allowing the nonfaulty processes to have a consistent view

of the system at the end of this round. This key property of clean rounds plays a very

similar role in [3] and in the analysis in the present work.

Waste and Local Waste. The termlocal wasteis defined as a direct generalization of

the termwastewhich was defined in [3]. Waste was defined in [3] in the context of the

crash model, as a key tool in the analysis of the question when facts about the initial state

of the system became common knowledge. Local waste extends this work, and allows

for the analysis of the time at which factsabout time m become common knowledge.

Furthermore, using the analysis of CONCON, we show that the properties of waste and

local waste in the crash model apply to the omission model as well.

“Good” and “Bad” Processes. Our algorithms shed an interesting light on the dis-

tinction between evidence supplied by processes that are known to be faulty and ones

that are not. Recall that failures in the models we considered are benign. No process

ever deviates from the protocol by sending incorrect messages. Thus, every piece of in-

formation obtained from a process can be trusted. Nevertheless, the computation of the

horizon by processi in roundk, and thus ultimately the times at which common knowl-

edge is obtained, depends only on the set ofbadprocesses,Bi(k−1). Thus, despite the

fact that information from faulty processes is correct, this central computation considers

only failures reported by thegoodprocesses, i.e., the potentially nonfaulty processes.

This distinction seems an essential aspect of the evolution of common knowledge over

time in these models.

5. Conclusion 68

5.2 Future Work

Our analysis has hitherto been restricted to the crash and sending omission models.

However, the continuous consensus problem is amenable to study and analysis in harsher

failure models as well. An extension to the current work [11] (work in progress) consid-

ers the CC problem in the generalized omission and the authenticated Byzantine failure

models. In the generalized model a faulty process may either omit to send messages

or fail to receive them, and thus a message failure does not uniquely identify a faulty

process. In the authenticated Byzantine model processes may lie, possibly without ever

being discovered as liars. Thus, in both these models it is not possible to definegoodor

badprocesses solely based on the message loss in the system, as we did in Chapter 3,

which makes the analysis more subtle.

Despite these challenges, it is possible to prove an analogous result to Proposition 3.9

for these more complex failure models, i.e., to show that the core,Mi [k], is common

knowledge at timek. However, finding a solution to the CC problem which coincides

with all the events that are common knowledge (as we did in Chapter 3 for the sim-

pler models) may prove problematic in these models. For example, testing for common

knowledge in the generalized omission model was shown in [4] to be an NP-hard compu-

tation. Thus, anoptimumsolution for CC in this model is NP-hard as well. Furthermore,

in the Byzantine model we may expect an optimum solution to be even more compu-

tationally complex. When we go beyond sending omissions, it is worthwhile to seek

tractablesolutions to the CC problem that are not necessarilyoptimal.

The authenticated Byzantine model [12] assumes that although faulty processes may

be “liars”, they cannot alter any relayed information. This assumption is enforced by

using an authentication scheme: all messages sent in the system are authenticated by un-

forgeable signatures. In the full-information protocol in this model, in every round each

process sends asignedmessage encoding all the information it knows. More specifi-

cally, a processi signs and relays every piece of information it receives. The nature of

the model enables us to monitor eventse of the form “processi claims thatp” for some

5. Conclusion 69

processi and propositionp ∈ ΦE . Oncei creates a signed message containinge, no

other process can forge it.

A protocol called ACC (short for authenticated continuous consensus) solves the

CC problem in the authenticated Byzantine model, under the assumption thatn > 2t.

The protocol is fairly simple: When processi receives a message containing an evente

signed by a sequence oft +1 distinct processes, it insertse into its core. Intuitively, the

fact thatt + 1 different processes have signed and relayede before it reached processi

guarantees that at least one of the signing processes is nonfaulty. This nonfaulty process

will have forwarded the message to all nonfaulty processes, which, in turn, are able to

sign and forward it. This guarantees that all nonfaulty processes simultaneously receive

a message regardingewith t +1 signatures.

A variant of the ACC protocol is ACCD (short for ACC with d signatures), in which

we assumen > t, rather thann > 2t. In ACCD, if processi receives at timek a message

containingd signatures by distinct processes about an evente for somed ≤ t + 1, it

insertse into Mi [`]. The time` = k+ t + 1− d bares some resemblance to the idea

of the horizon in Chapter 3. Roughly, it is the time at whiche with t + 1 signatures

would be delivered to all processes if there were at leastt + 1 nonfaulty processes in

the system. It can be shown that if a nonfaulty process receives at timek a message

bearingd signatures regarding an evente, then at timè = k+ t +1−d, the eventewill

simultaneously appear in the core of all nonfaulty processes. In a sense this protocol is

early stoppingcompared to ACC, since it requiresi to process the evente at timek, but

edoes not require any further attention byi in later rounds.

The generalized omission model, in which processes may fail by either omitting to

send messages, or failing to receive them, is more complex than the sending omission

model, and yet simpler than the authenticated Byzantine model. A solution to the CC

problem in this model may be reached by either of the solutions we have seen for the

authenticated Byzantine model. However, some measures may be taken to improve any

of these protocols, by estimating the number and the identity of the faulty processes in

the run according to the omitted messages. This task is, of course, not as simple as in

5. Conclusion 70

the sending omission model, since for example, the fact that processz failed to send

a message to processx may imply that either of these processes is faulty. Information

about failures in this model can be extracted by keeping track of aconflict graphamong

processes based on the omitted messages. For example, if a processz has conflicts with

more thant others, then it must be faulty. (The minimal vertex covers of the conflict

graph yield more detailed information about failures — see, e.g., [4]). Clearly, different

information about conflicts is known to different processes at any given time. A key

observation is that if we monitor information about conflicts in the core, then it is pos-

sible to use information about failures simultaneously and consistently by the different

processes. Once the core contains information determining that a process is faulty, this

process can be ignored, and the rest can act as if the boundt on the number of failures

is reduced by 1. This allows the nonfaulty processes to consistently ”shift gears” as a

result of failures appearing in the core.

The continuous consensus problem in the harsher failure models has a rich mathe-

matical and promises to provide exciting challenges and insights.

[13]

Bibliography

[1] T. Mizrahi and Y. Moses, “Continuous consensus via common knowledge,” inThe-

oretical Aspects of Rationality and Knowledge: Proc. Tenth Conference, pp. 236–

252, 2005.

[2] J. Y. Halpern and Y. Moses, “Knowledge and common knowledge in a distributed

environment,”Journal of the ACM, vol. 37, no. 3, pp. 549–587, 1990.

[3] C. Dwork and Y. Moses, “Knowledge and common knowledge in a Byzantine en-

vironment: crash failures,”Information and Computation, vol. 88, no. 2, pp. 156–

186, 1990.

[4] Y. Moses and M. R. Tuttle, “Programming simultaneous actions using common

knowledge,”Algorithmica, vol. 3, pp. 121–169, 1988.

[5] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi,Reasoning about Knowledge.

Cambridge, Mass.: MIT Press, 1995.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman,Concurrency Control and Recov-

ery in Database Systems. Addison-Wesley, 1987.

[7] L. Lamport, “The part-time parliament,”ACM Trans. on Computer Systems,

vol. 16, no. 2, pp. 133–169, 1998.

[8] B. A. Coan, D. Dolev, C. Dwork, and L. J. Stockmeyer, “The distributed firing

squad problem.,”SIAM J. Comput., vol. 18, no. 5, pp. 990–1012, 1989.

Bibliography 72

[9] B. Coan, “A communication-efficient canonical form for fault-tolerant distributed

protocols,” in Proc. 5th ACM Symp. on Principles of Distributed Computing,

pp. 63–72, 1986.

[10] G. Neiger and M. R. Tuttle, “Common knowledge and consistent simultaneous

coordination,”Distributed Computing, vol. 6, no. 3, pp. 181–192, 1993.

[11] T. Mizrahi and Y. Moses, “Byzantine continuous consensus,”work in progress,

2006.

[12] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of

faults,” Journal of the ACM, vol. 27, no. 2, pp. 228–234, 1980.

[13] A. Bar-Noy, D. Dolev, C. Dwork, and H. R. Strong, “Shifting gears: Changing

algorithms on the fly to expedite Byzantine agreement,” vol. 97, pp. 205–233, Apr.

1992.

Appendix A

Detailed Proofs

A.1 Optimality of C ONCON Revisited

In Theorem 3.10 we showed thatMP
i [m]⊆MC

i [m] holds for aFIP P. In Lemma A.2 we

shall show that the same argument holds for an arbitrary protocol. Intuitively, since a

full information protocol requires that all processes send all of the information available

to them in every round, one would expect this protocol to give each process as much

information about events in the system as any protocol could. Thus we expect that the

core of aFIP will include at least as much information as that of any other protocol given

the exact same environment. We start by quoting the following lemma from [4], which

serves us in our proof.

Lemma A.1 (Moses and Tuttle) Let ϕ∈ΦE , let r be a run of a full-information-protocol

P, and letr ′ be a run of an arbitrary protocolP , with the exact same execution graph as

r, i.e.,Gr = Gr ′. If (RP , r ′,m) |= CNϕ then(RP, r,m) |= CNϕ.

The following lemma is a corollary of Theorem 3.10, which refers to an arbitrary

protocol,P , rather than aFIP protocol.

Lemma A.2 Let r ′ be a run of an arbitrary protocolP that solves continuous consensus.

ThenMP
i [m]⊆MC

i [m] for all m.

A. Detailed Proofs 74

Proof: Define a runr of a FIP P such thatGr = Gr ′. We have to show that for any

primitive factϕ, if ϕ∈MP
i [m], thenϕ∈MC

i [m]. Assumeϕ∈MP
i [m]. By Proposition 3.9

we have that the contents ofMP
i [m] is common knowledge, and thus in particular we

have that(r ′,m) |= Cϕ. Then by Lemma A.1 we have that also(r,m) |= Cϕ, which

implies thatϕ appears in̂Vi [r,m]. The proof of Theorem 3.10 showed us thatV̂i [r,m]⊆

MC
i [m] for every full-information-protocolP, i.e., that all the primitive facts that are

common knowledge inr appear in the core, and thus we haveϕ ∈ MC
i [m], and we are

done.

�

A.2 Correctness proofs for UNI CONCON

In this section we prove Theorem 4.2. The first part of the proof is broken down into a

number of claims. In the technical development below, keep in mind that the value of

everyhorizon j(m) is a function of theFIP execution and the values ofj andm, but not

of the consensus protocol being followed (whether CONCON or UniConCon).

Lemma A.3 For allx∈ P, m≥ 0 andg,g′ ∈Gx(m+2), if horizong(m) 6= horizong′(m),

then

horizong(m+1)≤ min
i∈{g,g′}

horizoni(m).

Proof: Sincehorizong(m) 6= horizong′(m), we have that eitherhorizong(m)< horizong′(m)

or horizong(m) > horizong′(m). We consider each case separately. First assume that

horizong(m) < horizong′(m). From the definition ofhorizon we have thatbg(m) >

bg′(m). It follows from the definitions ofBg(m) andBg′(m) that there exists a process

z∈ Gg(m) such thatz /∈ Gg′(m). Sinceg,g′ ∈ Gx(m+2), processg receives a message

from g′ in roundm+2, since otherwiseg would tellx in roundm+3 thatg′ has failed to

send a message, and we would haveg′ 6∈Gx(m+2). It follows thatg learns ofz’s failure

from g′ in roundm+2, soz∈ Bg(m+1). It follows that at the end of roundm+2 we

A. Detailed Proofs 75

have thatbg(m+1) ≥ bg(m)+1, and we obtainhorizong(m+1) ≤ horizong(m). Since

bg(m) > bg′(m), and sincebg(m) is a nondecreasing function ofm, we also have that

bg(m+1)≥ bg′(m)+1, sohorizong(m+1)≤ horizong′(m).

Now assume thathorizong(m) > horizong′(m). Again, from the definition ofhorizon,

we have thatbg(m) < bg′(m). It follows from the definitions ofBg(m) and Bg′(m)

that there exists a processz∈ Gg′(m) such thatz /∈ Gg(m). Once again, sinceg,g′ ∈

Gx(m+2), in particularg receives a message fromg′ in all rounds up tom+2, and thus

g′ ∈ Gg(m+1). SinceBg(m+1) is based on the distributed knowledge of processes in

Gg(m+1) at timem+1, in particularBg(m+1) includes all processes known byg′ at

time m+1 to be bad. Thus we haveBg′(m)⊆ Bg(m+1). Sinceg∈Gx(m+2), it must

be the case thatg∈Gg(m+1), since otherwisex would learn ofg being faulty in round

m+3. It follows thatz’s failure is distributed knowledge at timem+1 among the pro-

cesses inGg(m+1), and thus by the definition ofBg(m+1), we have thatz∈Bg(m+1).

SinceBg′(m)⊆Bg(m+1) andz∈Bg(m+1), it follows thatbg(m+1)≥ bg′(m)+1, and

thushorizong(m+1)≤ horizong′(m). Sincehorizong′(m) < horizong(m) by the assump-

tion, we havehorizong(m+1)≤ horizong(m), and we are done.

�

The next two lemmas provide the formal justification for the choice of critical time

in the first two cases of line 5 of the UNICONCON protocol, wherecritux is not chosen

according to the value ofLatestux [k]. The first captures the fact that once the horizon is

one round away for at least one process, allt faulty processes are known to the nonfaulty

processes, and the identity of the faulty processes becomes common knowledge.

Lemma A.4 If r is a run,x,z∈ P, andk≥ 1, then:

(a) if horizonx(k−1) = k then Gz(k−1) = Gx(k−1);

(b) horizonx(k−1) = k iff horizonz(k−1) = k.

A. Detailed Proofs 76

Proof: By definition ofhorizon, we have thathorizonx(k−1) = k+t−bx(k−1). Hence,

if horizonx(k−1) = k thenbx(k−1) = t. Let Gx = Gx(k−1) andBx = Bx(k−1). By

the definition ofBx(k−1) and the fact thatt is an upper bound on the number of faulty

processes, it follows that

(R, r,k−1) |= DGx(the set of faulty processes is Bx)

and

(R, r,k−1) |= DGx(the set of nonfaulty processes is Gx).

Every setGz(m) is guaranteed to contain all nonfaulty processes inr. SinceGx = Gx(k−

1) is the set of nonfaulty processes, it follows thatGz(k−1) ⊇ Gx(k−1) = Gx. As a

result, the two facts above are distributed knowledge among the processes inGz(k−1)

as well. SinceGz(k−1)∩Bz(k−1) = /0, we conclude thatBz(k−1) = Bx(k−1) and

Gz(k−1) = Gx(k−1). The latter yields part (a) of the claim. By the former, we have

thatbz(k−1) = t and sohorizonz(k−1) = k. This establishes the only-if direction of the

claim in part (b). Switching the roles ofx andz in the proof yields the other direction of

(b) and we are done.

�

Lemma A.5 If r is a run, i,x and g are processes such thati is nonfaulty in r, and

g∈Gx(k−1), k≥ 1, andhorizonx(k−1) 6= k, then:

(a) if horizong(k−2) = k then Gg(k−2) = Gi(k−2);

(b) horizong(k−2) = k iff horizoni(k−2) = k.

Proof of A.5(a): Sincei is nonfaulty, we have thati,g∈Gx(k−1), and thus the roundk

messages of bothg and i are received byx. Assume, by way of contradiction, that

Gg(k−2) 6= Gi(k−2). Thus, there are two distinct cases:

(1) Gg(k−2)\Gi(k−2) 6= /0 : Let z∈ Gg(k−2) \Gi(k−2). By the definition of

Gg(k−2), sincez∈Gg(k−2), we have thatz /∈Bg(k−2). Recall thatBx(k−1) is

A. Detailed Proofs 77

computed according to the distributed knowledge of processes inGx(k−1). Since

i,g∈Gx(k−1), we have thatBx(k−1) includes all processes known to eitheri or

g at timek−1 to be bad. ThusBg(k−2)⊆Bx(k−1) andz∈Bx(k−1). Now since

z /∈Bg(k−2), we have thatBx(k−1) = Bg(k−2)∪{z}. Sincehorizong(k−2) = k

by the assumption, we havehorizong(k−2) = (k−2) + t +1 − bg(k−2) = k,

and thusbg(k−2) = t−1. Hence we have thatbx(k−1) = bg(k−2)+1 = (t−

1)+1 = t. It now follows thathorizonx(k−1) = (k−1)+ t +1−bx(k−1) = k,

contradicting the assumption thathorizonx(k−1) 6= k.

(2) Gi(k−2)\Gg(k−2) 6= /0 : Let z∈ Gi(k−2)\Gg(k−2). In this case, too, we

distinguish two distinct cases. Ifz /∈Bg(k−2), then this case is very similar to (1),

and thus by using essentially the same argument, again we reach a contradiction.

On the other hand, assumez∈ Bg(k−2). Thusz’s faulty behavior is distributed

knowledge among the processes inGg(k−2), and thus at timek−2 some process

z′ ∈ Gg(k− 2) knows thatz is faulty. It is easy to see thatz′ fails to send its

messages toi in roundk−1, since had it successfully sent toi, processi would

have known thatz is faulty, causingz /∈ Gi(k− 2). Sincez′ fails to send toi in

roundk− 1, we havez′ /∈ Gi(k− 2). Sincez′ ∈ Gg(k− 2), by the definition of

Gg(k−2) we have thatz′ /∈ Bg(k−2). Again, as in (1), Sincei,g∈Gx(k−1), we

have thatBx(k−1) includes all processes known to eitheri or g at timek−1 to be

bad. ThusBx(k−1) = Bg(k−2)∪{z′}, and again we havebx(k−1) = t, which

implies thathorizonx(k− 1) = (k− 1) + t + 1− bx(k− 1) = k, contradicting the

assumption thathorizonx(k−1) 6= k.

Proof of A.5(b): For part (b), our proof consists of two parts:

(1) We first assume thathorizong(k−2)= k and show thathorizoni(k−2)= horizong(k−

2). Assume, by way of contradiction, thathorizoni(k−2) 6= horizong(k−2), i.e.,

eitherhorizoni(k−2) < horizong(k−2) or horizoni(k−2) > horizong(k−2). We

shall handle each of the two cases separately.

A. Detailed Proofs 78

horizon i(k−2) < horizon g(k−2): By our assumption for part (b) we have that

horizong(k− 2) = k, and thus ifhorizoni(k− 2) < horizong(k− 2), then it must

be the case thathorizoni(k−2) ≤ k−1. By definition ofhorizon, and since the

number of bad processes is bounded byt, we havehorizoni(k− 2) = (k− 2) +

t + 1−bi(k−2) ≥ (k−2)+ t + 1− t = k−2. Since bothhorizoni(k−2) ≤ k−

1 andhorizoni(k− 2) ≥ k− 1, we have thathorizoni(k− 2) = k− 1. Since by

definitionhorizoni(k−2) = (k−2)+ t +1−bi(k−2), we have thatbi(k−2) = t.

From the definition ofBi(k− 2), we have thatBi(k− 2) ⊆ Bi(k− 1), and thus

bi(k− 2) ≤ bi(k− 1). It follows that bi(k− 1) = t, and thushorizoni(k− 1) =

k. By Lemma A.4(b) we obtain thathorizonx(k− 1) = k, which contradicts the

assumption thathorizonx(k−1) 6= k.

horizon i(k−2) > horizon g(k−2): By the definition ofhorizon, it follows that

bi(k−2) < bg(k−2). It then follows thatBi(k−2) 6= Bg(k−2), and thus from

the definitions ofBi(k− 2) andBg(k− 2) we have thatGi(k− 2) 6= Gg(k− 2),

althoughhorizong(k−2) = k by the assumption, which contradicts part (a). We

have shown that ifhorizong(k−2) = k thenhorizoni(k−2) = k.

(2) For the second half of the proof, we assume thathorizoni(k− 2) = k, and we

have to show thathorizoni(k−2) = horizong(k−2). Again, we assume by way

of contradiction thathorizoni(k− 2) 6= horizong(k− 2), and distinguish the two

possible cases.

horizon i(k−2) > horizon g(k−2): The proof is similar to thefirst half of (1).

horizon i(k−2) < horizon g(k−2): By the assumption we have thathorizoni(k−

2) = k, and thus it is easy to see from the definition ofhorizon we have thatbi(k−

2) = t−1. Sincehorizoni(k−2) < horizong(k−2), by the definition ofhorizon

we have thatbi(k−2) > bg(k−2). Hence there exists a processz∈ Bi(k−2) \

A. Detailed Proofs 79

Bg(k−2). Thusz’s faulty behavior is distributed knowledge among the processes

in Gi(k−2), and thus at timek−2 some processz′ ∈ Gi(k−2) knows thatz is

faulty. Sincez /∈ Bg(k− 2), it follows that z′ /∈ Gg(k− 2), since otherwise the

faulty behavior ofz would be distributed knowledge amongGg(k− 2), causing

z∈ Bg(k−2). Sincez′ ∈ Gi(k−2), by the definition ofGi(k−2) we have that

z′ /∈Bi(k−2). Sincei,g∈Gx(k−1), we have thatBx(k−1) includes all processes

known to eitheri or g at timek−1 to be bad. As we have seen,z′ /∈ Bi(k−2),

and thusBx(k−1) = Bg(k−2)∪{z′}. It follows thatbx(k−1) = bi(k−2)+1 =

(t−1)+1= t, which implies thathorizonx(k−1) = (k−1)+t +1−bx(k−1) = k,

contradicting the assumption thathorizonx(k−1) 6= k.

�

We are now ready to prove that the critical timecritux(k) chosen in UNICONCON by

an arbitrary processx is the same as the corresponding timecrit i(k) that is chosen in the

sameFIP execution by a nonfaulty process in the CONCON protocol.

Lemma A.6 Let i be a nonfaulty process inr, letx be an arbitrary process, letk≥ 1, and

let g∈Gx(k−1). If horizonx(k−1) 6= k andhorizong(k−2) 6= k, thencritux(k) = crit i(k).

Proof: Let m= crit i(k). By lines 3 and 4 of CONCON, it follows thatk = horizoni(m).

By Lemma A.5(b),horizong′(k− 2) = k iff horizoni(k− 2) = k for all g′ ∈ Gx(k− 1).

Hence, sincehorizonx(k−1) 6= k andhorizong(k−2) 6= k, we have thatcritux(k) is as-

signedLatestux [k] in the third case of line 5 in UNICONCON. By line 5 of the pro-

tocol, we thus have thatcritux(k) ≤ k− 3. Also notice thathorizoni(k− 1) 6= k and

horizoni(k−2) 6= k by Lemmas A.4(b) and A.5(b) respectively, and thuscrit i(k)≤ k−3.

We claim thatcritux(k) = crit i(k). Assume, by way of contradiction, thatcritux(k) 6=

crit i(k). We consider two distinct cases.

• First, suppose thatcritux(k) < crit i(k). We claim thathorizong(m) = horizoni(m)

for all g∈Gx(m+2). Assume, again by way of contradiction thathorizong(m) 6=

A. Detailed Proofs 80

horizoni(m). Then we have by Lemma A.3 thathorizoni(m+ 1) ≤ horizoni(m).

By assumption,m = crit i(k), and in particularhorizoni(m) = k. It follows that

horizoni(m+ 1) ≤ k. By Proposition 3.6(a) we have thatcrit i(k) ≥m+ 1, which

contradicts the assumption thatm, crit i(k). We have proved thathorizong(m) = k

for all g∈ Gx(m+2), and thus in roundm+3 when processx executes line 4 of

UNICONCON, it assignsLatestux [k] the valuem. Notice thatLatestux [k] may be

updated again on line 4 of the protocol at a later round` > m+3, but it can then be

assigned only values̀−3> m. It follows thatLatestux [k]≥m. Recall that we have

shown thatcrit i(k) ≤ k−3, which implies thatk≥ m+ 3. SinceLatestux [k] ≥ m

holds at timem+ 3 and at any later time, it follows thatcritux(k) ≥ m= crit i(k),

contradicting the assumption thatcritux(k) < crit i(k).

• Now suppose thatcritux(k) > crit i(k). Let critux(k) = mu > −1. Thus by lines 4

and 5 of UNICONCON for someg∈ Gx(mu +2) we have thathorizong(mu) = k.

We shall prove thathorizong(mu)= horizoni(mu). Assume by way of contradiction

thathorizong(mu) 6= horizoni(mu) then by Lemma A.3 we havehorizoni(mu+1)≤

horizong(mu) = k. Thus by Proposition 3.6(a), we have thatcritux(k) ≥ mu + 1,

which is in contradiction to the fact thatcritux(k) = mu. We have shown that

horizong(mu) = horizoni(mu), i.e., thathorizoni(mu) = k. By Proposition 3.6(b)

we obtaincrit i(k) ≥ mu = critux(k), contradicting the assumption thatcritux(k) >

crit i(k), and we are done.

�

We can now finally prove the correctness of UNICONCON:

Proof of Theorem 4.2: We first argue that processx has access to all of the data

necessary to carry out the actions specified in every line of UNICONCON. Since knowl-

edge is defined with respect to the fixed system of runs of theFIP, processx can de-

termine the identity of the members ofGx(k−1) at timek. Hence,x can perform the

choice ofg∈ Gx(k−1) on line 2. Moreover, observe that for everyg′ ∈ Gx(k−1), at

A. Detailed Proofs 81

time k processx has a copy ofVg′(k′) for all k′ ≤ k−1. It follows thatx can compute

horizong(k− 3) used on line 4, as well ashorizong(k− 2) used in the middle case of

line 5. Finally, it can computeE(VGx(k−1)(k−1)) andE(VGg(cu)(cu)) whencu < k−1,

and thus is able to perform the commands on line 6.

It remains to show thatcritux(k) = crit i(k) and thatGi(c) = Gg(c) for all g∈Gx(k−

1). From line 6 in UNICONCON and line 5 in CONCON, it will then follow thatMu
x [k] =

Mi [k]. Notice that line 5 of UNICONCON assigns one of three values tocritux(k). Thus

in our proof we handle the three possible assignments on line 5 as three distinct cases.

Theses cases are indeed distinct since each of the first two cases in the assignment on

line 5 implies that the value ofcritux(k) is k−1 ork−2 respectively, while the third case

on line 5 assignsLatestux [k] to critux(k). Notice thatLatestux [k] is last updated in some

roundm≤ k on line 4 of UNICONCON, and thus the value assigned toLatestux [k] was

m−3. ThusLatestux [k] = m−3≤ k−3, and thus in the third case of line 5 we necessarily

havecritux(k)≤ k−3.

critux(k) = k−1 : By line 5 of UNICONCON we have thathorizonx(k−1) = k. Thus,

by Lemma A.4(b) we also have thathorizoni(k−1) = k, and hencecrit i(k) = critux(k) =

k− 1. By Lemma A.4(a) we have thatGz(k− 1) = Gi(k− 1) for all z∈ P, and in

particularGx(k−1) = Gi(k−1). It follows thatMu
x [k] = Mi [k].

critux(k) = k− 2 : Sincecritux(k) = k− 2, by line 5 of UNICONCON we have that

horizong(k− 2) = k for someg ∈ Gx(k− 1), and also thathorizonx(k− 1) 6= k. By

Lemma A.5(b) we have thathorizoni(k− 2) = k, and by Lemma A.4(b) we have that

horizoni(k−1) 6= k. Thus, in roundk−1 on line 3 of CONCON processi assignsk−2

to Latesti [k], andLatesti [k] is not updated in roundk. It follows thatcrit i(k) = k−2. By

Lemma A.5(a) we have thatGg(k−2) = Gi(k−2), and we again obtain thatMu
x [k] =

Mi [k].

A. Detailed Proofs 82

critux(k) < k− 2: This case applies only ifk ≥ 2. By Line 5 of UNICONCON, in

this case we have thatcritux(k) = Latestux [k]. Moreover, by Lemma A.6 we have that

critux(k) = crit i(k). Letc, critux(k) = crit i(k). It remains to show thatGi(c) = Gg(c). Set

g∈Gx(k−1). Assume by way of contradiction thatGi(c) 6= Gg(c). First we claim that

bi(c+1) > bi(c). Notice that in roundc+2 bothi andg receive each other’s messages,

sinceg∈ Gx(c+2), andi is nonfaulty. If there exists ap∈ Gi(c) such thatp /∈ Gg(c),

then processi learns ofp’s failure fromg in roundc+2, and moreover,p∈ Bi(c+1),

and thusbi(c+ 1) > bi(c). On the other hand, if there exists ap /∈ Gi(c) such that

p∈Gg(c), then it must be the case thati learns ofp’s faulty behavior in roundc+1, and

thus p /∈ Bi(c). However,p∈ Bi(c+ 1), and thus againbi(c+ 1) > bi(c). Thus, in all

casesbi(c+1) > bi(c), and by the definition ofhorizon we have thathorizoni(c+1) ≤

horizoni(c). Thus, by the definition ofc, we have thathorizoni(c+ 1) ≤ k. Now, from

Proposition 3.6(a) we obtain thatcrit i(k)≥ c+1, i.e., thatc≥ c+1, which contradicts

our assumption, and we are done with the third case.

�

d

