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Abstract

In a distributed system it is often necessary for all processes to maintain a consistent view
of the world. However, the existence of communication failures in a system may prevent
processes from obtaining a consistent vigBontinuous consensus the problem of

having each processmaintain at each timk an up-to-date cor®l;[k] of information

about the past, so that the cores at all processes are guaranteed to be identical. Our
analysis assumes an unreliable synchronous system, with an upper bauadwes.

The notion of continuous consensus enables a new perspective on classical problems
such as the consensus or the Simultaneous Byzantine Agreement (SBA) problems, and
allows for simpler analysis. A simple algorithm for continuous consensus in fault-prone
systems with crash and sending omission failures called@>N is presented, based

on a knowledge-based analysis. Continuous consensus is shown to be closely related to
common knowledge. Via this connection, the characterization of common knowledge
by Moses and Tuttle is used to prove thadXEZON is optimal—it produces the largest
possible core at any given time. Finally, a second algorithm is presented that provides an
optimumuniform solution to continuous consensus, in which all processes (faulty and

nonfaulty) maintain the same core information at any given time.
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Chapter 1

Introduction

1.1 Motivation

Maintaining consistency of the information held by different nodes in an unreliable dis-
tributed system is a challenging problem. Whether it is a system whose nodes share
resources, or a system in which critical decisions are made according to the most recent
data at hand, it is highly important to maintain consistency of the nodes’ information.

A core of identical information maintained at different sites allows decisions per-
formed in a distributed manner to be compatible with each other. Moreover, with the
rapid growth of the internet over the last two decades, distributed systems operations are
no longer restricted to being internal. In many cases, external elements interact concur-
rently with different nodes of the system. This places a stronger emphasis on the need
to present a consistent view to the world at different nodes at a given time. A core of
information that is guaranteed to be identical at all sites at any given time, and contains
as much information as possible, is a very desirable tool in implementing such a consis-
tent view. This thesis deals with the design of efficient protocols for maintaining such a
core.

The challenge, however, is that different nodes in a distributed system typically
have asymmetric information. Part of this information—the facts that are common
knowledge—is identical for all agents and, moreover, can in principle be identified by
each agent. By acting on information that is common knowledge, agents are guaranteed
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to be acting on consistent information available to all agents.

1.2 Previous Work

The role of common knowledge for consistent simultaneous actions has been firmly
established in the literature [2, 3, 4, 5]. Dwork and Moses [3] presented an optimal
solution to simultaneous Byzantine agreement in the presence of crash failures, by using
the notions ofclean roundsandwaste They proved that simultaneous agreement can
be reached exactly when the value of at least one agent’s initial vote becomes common
knowledge. Moses and Tuttle [4] extended this work to the more complex (sending)
omission failure model, and presented optimal solutions for a broader class of simul-
taneous choice problems. Implicit in the latter work is the computation of a core of
information that characterizes the common knowledge at any given point in time. This
computation is based on a subtle fixed-point construction.

Providing an up-to-date consistent picture of the system at different sites can some-
times alleviate the need to explicitly activate voting or agreement protocols to handle
individual transactions (see, for example, [6]). Weaker guarantees than simultaneous
consistency are popular, where consistency is guaranteed over time: If one process can
determine that an event has occurred, the others will eventually know this as well [7].
These weaker consistency conditions are essential in some systems since simultaneous
coordination requires nontrivial common knowledge, and this is not attainable in truly

asynchronous systems [2].

1.3 Research Goals

The current work introduces tlentinuous consensysoblem, in which a coré/; K]

of information is continuously maintained at every correct proc@ésshe system. All

Throughout this work we use the teroptimal referring to the time it takes to reach agreement or

consensus, rather than the computation complexity.
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local copies of the core must be identical at all tirkeand every interesting event from

a set of possible event%, should eventually enter the core. The continuous consensus
problem is studied in synchronous systems with crash and omission failures. We assume
an upper bound dffailures in every run of our system. We shall show that the analysis

of continuous consensus (CC for short) shown in this work allows for a simple and
elegant solution to the problem of maintaining simultaneously consistent views in the
system.

The continuous consensus problem generalizes many problems having to do with
simultaneous coordination. For example, in the distribdieng squadproblem [8],
the system may receive afarm message from the outside world. If a correct process
receives such a message, then it is required that at some later point all correct processes
“fire” simultaneously. In addition, “firing” is not allowed to occur in different rounds
by different processes (hence in a non-simultaneous fashion), nor is it allowed to take
place in a run before aslarm message has been received in the system. Clearly, if the
arrival of analarm message is a monitored event in a continuous consensus protocol,
then the presence of atarm in the shared core can be used as a necessary and suffi-
cient condition for firing. Continuous consensus can also be used as a generalization of
simultaneous versions of Byzantine agreement and the consensus problem (cf. [3]), as
well as for the class of simultaneous choice problems of [4].

In this work we present an algorithm calledb@8CoN that solves the CC problem.
CoNCoN is optimal in providing at any given time the largest and most informative
core possible. The algorithm will provide the most up-to-date consistent picture of the
system, without the need to explicitly activate voting or agreement protocols to handle
individual transactions.

A variant of the CC problem, which we calhiform continuous consens(i$CC),
requires that the core be consistent amalhgrocesses in the systems, rather than just
among the correct ones. We presemtiGoONCON, which is a variant of ©NCON that
solves the UCC problem.

Our solutions to CC and UCC rely on a knowledge-based analysis. A close connec-
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tion is shown between continuous consensus and common knowledge: it is shown that
the core of shared informatioNl; (k] is common knowledge among the correct processes

at timek. Moreover, the optimality of GNCON is proven using the characterization of
common knowledge in the crash and omission failure models given in [4]. Our analysis
also aims at extending Dwork and Moses’ analysis of clean rounds and waste [3] to the

more complicated omission model.

1.4 Outline

This work is organized as follows. Chapter 2 provides a formal definition of our system,
and some technical background to the notions described in later chapters. Chapter 3,
which is the heart of this work, presents the continuous consensus problem and its so-
lution, CONCON, as well as proving its correctness and optimality. Chapter 4 describes
the uniform continuous consensus problem, and introduc@sONCoON. Finally, a

few concluding remarks are presented in Chapter 5. Some of the detailed proofs are

given in Appendix A.



Chapter 2

Preliminaries

Our treatment of the continuous consensus problem will be driven by a knowledge-based
analysis. A general approach to modelling knowledge in distributed systems was initi-
ated in [2] and given a detailed foundation in [5] (most relevant to the current work are
Chapters 4 and 6). The lion’s share of technical analysis in this thesis will be performed
with respect to a single protocol, which gives rise to a specific class of systems. For ease

of exposition, our definitions will be tailored to this particular setting.

2.1 The Communication Network

We consider a synchronous network with> 2 possibly unreliable processes, denoted

by P ={1,2,...,n}. Each pair of processes is connected by a two-way communica-
tion link. Processes correctly identify the sender of every message they receive. They
share a discrete global clock that starts out at time 0 and advances by increments of one.
Communication in the system proceeds in a sequencriofls with roundk+ 1 taking

place between timk and timek + 1. Each process starts in soiméial stateat time 0.

Then, in every following round, the process first sends a set of messages to other pro-
cesses, and then receives messages sent to it by other processes during the same round.
In addition, a process may also receive requests for service from clients external to the
system (think, for example, of deposits and withdrawals at branches of a bank), or input
from sensors with information about the world outside of the system (e.g., smoke detec-
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tors). Finally, the process may perform local computations based on the messages it has

received. The history of an infinite execution of such a network will be callesha

2.2 Nature’s Role: Inputs and Failures

We think of a solution to the continuous consensus problem as a protocol operating (or
playing) against an adversary calledture Nature determines two central aspects of

any given run: inputs and failures.

Inputs. We consider a setting in which every process starts out in an initial local state
from some sek;, and can receive an external input in any given rolargthis input is
considered aarriving at timek). The initial local state of each process can be thought
of as its external input at time 0. We represent the external inputs in an infinite execution
as follows. Define a s&f = P x N of process-time node®r nodes for short). An
(external) input assignmei a function{ associating with every (initial) nodg, 0) at

time O an initial state fronz; and with each nodé, k) an input from a set of possible
inputs, 7. Our analysis is independent of the type or structures of the elemeits of

Failures. The second aspect of a run that is determined by nature is the identity of the
faulty processes, and the details of their faulty behavior. These depend on the particular
failure model being assumed. In this thesis we consider two closely-related failure mod-
els, called therashmodel and thesending omissiomodel, which is a generalization of

the crash model. For simplicity, a process will be considered faulty in a run if it displays
faulty behavior at any point during the run. In the crash failure model, a faulty process
crashesn some roundk > 1. In this case, it behaves correctly in the fikst 1 rounds

and sends no messages from rolridl on. During its crashing rounk] the process

may succeed in sending messages on an arbitrary subset of its channels. In the sending
omission model (or the omission model for short), a faulty process may omit to send
messages in any given round. It sends messages only according to its protocol (it cannot
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misrepresent or lie), and nature determines for every round what subset of its messages
will successfully be delivered. We remark that even faulty processes receive all mes-
sages sent to them over non-blocked channels. If a message is not delivered, its sender
is necessarily faulty. We formally represent tadure patternin a given run via an
edge-labelled graptV,E,3), whereV is the set of process-time nodes defined above,
andE = {((i,k), (j,k+1)) :i+# j,k>0}. An edgee = ((i,k),(j,k+ 1)) € E stands

for the roundk 4+ 1 communication in the channel fronto j. The labelling function

B:E — {Y,N} captures when such channels are blocked and when they operate cor-
rectly. Intuitively, 3(e) = N means thae is blocked for communication, whilg(e) =Y

means that it is not blocked. In the latter case, a messaggifssent, will be delivered.

Nature’s combined contribution to a rans captured by aexecution graphThis is
alabelled grapls" = (V, E, ¢, B) with labels on the vertices giving the input assignment
and label$3 on the edges defining the failure pattérilotice that all execution graphs
overn processes have the same edge and verteX\édfig— a complete grid oh x N
nodes, with edges from each node V at levelk to all nodes of levek+ 1 with a
process name different froo’s. Different execution graphs differ only in the labelling
functions¢ andp. Figure 2.1 contains an illustration of the nodes of an execution graph,
with some of the edges describing roukig 1. Observe that all edges from one time
point to the next are in the graph—some are crossed, depicting their being blocRed by
while the others are available for communication.

We now consider particular subgraphsof= (V, E, {, B) that will be useful later on.
Given a nodau = (i,m) € V, we denote by, the set of nodes containing the nodes
(i,£) e V for all £ < mas well as all noded’ = (j,k) € V such that there is a directed
path of edges oE from U’ to u, in which all edges are labelled ‘Y’ . Intuitivel\,
contains all nodes about whichhas potentially received information either directly or
via a sequence of messages. We definartagimal potential viewor viewfor short) at
nodeu = (i,m) in G, denoted by;(m), to be the subgraph & generated by, , i.e.,

1The runr appears in the superscript . Throughout the thesis, we omit explicit reference to the

run whenever it is clear from context.



2. Preliminaries 14

Vi(m) = (V,E",T",') = (Mu,E [ Vi, { [V, B | E'). See Figure 2.1 for an illustration of
aviewV;(m). The viewVs(k) of a setSC P of processes at a tirieis defined to be the
union of the graph¥;(k), over allj € S We say that a view is containedin a view
V' if the nodes ol are a subset of those \ff, andV is the subgraph of’ generated by
these nodes. Thus, every nodévirhas the same external input asvif) and for every
pair of nodes irV, they are connected by an edgévirexactly if they are connected by
one inV’. In some cases, it will be convenient to talk about vi&gk) at a timek < 0.
The view in this case is denoted By It is called anemptyview, and is contained in

every possible viewg(K').

1 Q Q Q Q
O O Q x Q
O O RS
™\
i O O Vit 1) O (i, k+1)
e O ~ Q
e Q g 0
0 1 k k+1 -

Figure 2.1: An execution graph aiid view Vj(k+1).

2.3 Full-Information Protocols

A full-information protocol(FIP) is one in which processes haperfect recalland ob-

serve all incoming messages and external inputs that they receive. Moreover, in every
round, every process sends a message encoding all of its information to all other pro-
cesses. Itis not hard to show that in any such protocol a process is able to reconstruct
Vi(k) from its information at timek. Without loss of generality, we will assume for the
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sake of concreteness that the local state of a process is maintained in the form of a view
Vi(Kk), and the message sentibiy roundk+ 1 is Vj(k).

Since in &FIP a message is sent on every channel in every round, the execution graph
describes all aspects of a run: i.e., what inputs are received by the processes, which
processes are faulty, and, for every message, whether or not it is delivered. Moreover,
the contents of delivered messages can also be derived from the @raptom now
on we shall identify aun r of a FIP with its execution graplit". Since a run ofiIP is
determined by the inputs and failures, we sometimes denote such aruaby(, ).

It is a folk theorem, perhaps first proven formally in a fault-prone setting by Coan [9],
that any deterministic protocol can be simulated lsyra

Using aFip as we defined it above may be quite inefficient in terms of communica-
tion complexity. However, in practice@p may be implemented quite efficiently (see,
for example, [5]). Further discussion of the communication complexity ofithan our

context appears in Section 3.1.

2.4 Definition of the Continuous Consensus Problem

We now specify the continuous consensus problem formally. With respect tatacset
monitored evenisve would like each procesgo hold a copy of a shared list of events

of £. An event is defined based on the messages delivered in the run, and on initial
states and external inputs that processes have received (and the times at which they were
received). The precise definition @& will depend on the application. We define a
continuous consensy€C) service to be a distributed protocol that at all tinkes O
provides each processvith a core M (K] of events ofE. In every run of this protocol

the following properties are required to hold, for all nonfaulty procesaes |.
Accuracy: All events inM;[k| occurred in the run.

Consistency: M; k] = Mj[k] at all timesk.
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Completeness:If an evente € ‘£ is known to processgat any point, thee € M;[k] must

hold at some timé.

The consistency property guarantees that the information in the local lists is in fact
shared among the nonfaulty processes at any given time. Since an evel; jk] ifor

some nonfaulty processonly if it is also in Mj[k] for all other nonfaulty processgs

it follows that a processmay know of the occurrence of a monitored evert‘E long
beforee is in Mi[k]. In many cases it is, of course, desirable to have the shared list
in a continuous consensus application be as up-to-date as possible. A variant of this
problem, which we caluniform continuous consens(l3CC), is defined similarly, but
Accuracy and Consistency should hold for arbitrary processes and not just for nonfaulty
ones. Completeness, however, is still restricted to events that are known to nonfaulty
processes: If an eveat £ is known to anonfaultyprocesg at any point, thee € M;[K|

must hold (forall processeg of course) at some time

2.5 Systems and Knowledge

Generally speaking, we identifysystenmwith a setR of runs. For a general protocol,

a runr is an infinite sequence of states, and there is a well defoead state {(m) for
every process and timem. For theFiP we identify runs with execution graphs, while
in general every execution graph will determine a run of a protBc@lf. [4, 5]). The
systems that we study in this thesis are thus parameterized by gtuplen, 7), where

n > 2 is the number of processdsis a bound on the number of faulty processes in a
run (wheret < n—2), fm € {crashomissior} is a failure model, and is a nonempty
set of (external) input assignments. The exact identity and internal structureref
application-dependent. AP systemR = R(n,t,fm, I) is defined to be the set of all runs
of theFiP with n processes, at maisof which fail according to the failure modéh, and
where initial states and external inputs conform to one of the input assignment®ur
definitions imply that, in a precise sense, the inputs mresystemR are independent
from the failures that occur (and hence carry no information about them): If there are
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runsr,r’ € Rwherer = FIP(¢,B) andr’ = FIP({',f’), thenR will also contain the run
r"=({,B)

Our analysis makes use of the knowledge that processes achieve at different times in
various runs. As is standard in the literature, formulas will be considered true or false
at apoint, which is a pair(r,m) consisting of a rum € Rand a timem € N. Moreover,
since what is known at a poirit,m) may depend on what is true at other points, we
define truth with respect to a systédfn Let ® = {p,q, p/,...} be a set of propositions.
Intuitively, a proposition is a basic primitive fact. An example of a relevant proposition
in the context of continuous consensus{si;k) = €, stating the arrival of an external
inpute € I at a given procesisat timek. Given a systenR, each propositiomp € ® is
identified with a sef p]] of points ofR. A propositionp € ® holds at(r,m), which we
denote by(R r,m) = p, if (r,m) € [[p]]. For simplicity, we identify the set of monitored
eventsE with a subsetb C ®, and restrict monitored events to depend only on the
external inputs in the current run. ThusgiE @ then, for all input assignmenisand
runsr = FIP({,B) andr’ = FIP({, '), and timesm, we will have that(R r,m) = q iff
(R,r’;m) = g. The core maintained by a continuous consensus algorithm consists of a
setX C &4 at any given time. We note that in our context the truth value of eyergp«
is independent of the timen. Thus, in a given systenR, the truth value of} depends
only on the runy. We say that an evemfhasoccurredin a runr if (R;r,m) |= q for
allm> 0. The core constructed by our proposed protocols will consist of the monitored
events that are determined by a particular view computed at any given point. In order to

describe such cores more formally, we denote

E(V) £ {ge @« : (R r,m) = qfor all points(r,m) whose execution graph contaiviy.

2Recall that the input assignmentsiirestablishes the initial states of processes as well as the external
inputs they receive. Often, initial states may be independent of external inputs, and the inputs at one
process may be independent of those at another. But our definitions do not require such independence.
There could be strong correlation among inputd inOur definitions only imply that inputs carry no

information about failures and vice-versa.
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Notice thatZ is monotone: IV is contained iV/, thenE(V) C E(V').

We construct a logical language by closing® under Boolean connective's and
-, and under modal knowledge operat&sDs, Es, C andCy wherei € P andSC P
is a set of processes. Helg stands for processs knowledge,Ds corresponds to the
distributed knowledg#hat is implicit in the set of process&8sEs refers to facts known
to everyprocess inS, C stands for common knowledge, afg stands for common
knowledge among the nonfaulty processes. The semantics of the Boolean operators
is standard; we now review the definitions i¢r and Ds. Common knowledge and
“everyone knows” are defined in the next subsection. The formal definitions (cf. [5])
of satisfaction for knowledge and distributed knowledge formulas are briefly stated as

follows:

(Rrr,m) = K¢ iff (Rr’,m) = ¢ forall(r’,m) such that’ € Randr;(m) = r{(n). (2.1)

(Rr,m) = Dst iff (R,r',n) = ¢ for all (r',nf) such that’ € Randrj(m) =rj(nf) forall j € S (2.2)

A process knowg by this definition if its local state (which captures the information
it has access to) implies th@tholds. Distributed knowledge is defined similarly, but is
based on the combined information available to the members ofSo$etocesses. Ina
full-information protocol, the distributed knowledge $fs equivalent to the knowledge

of a process whose local state at a p¢imnmn) of Ris the viewVg(m).

Knowledge in therip has a number of useful properties. For example, suppose that
process receives messages in roukd- 1 from the processes in the set Then, by
constructionyVs(k) is contained in’s view V;(k+ 1) at the end of the round. As a result,
all facts about the past that are distributed knowledg8 aff timek are known byi at
time k+ 1. This observation plays a role in the solution to the continuous consensus

problem described in the next section.
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2.6 Common Knowledge

We defineEsd or “everyonean S knowsh” as follows:

Esp £ A\ Ki(d) (2.3)
ieS
The formulaCg is true if everyone irfknowsg, everyone ir6knows that everyone
in Sknows¢, etc. DefineEdd £ Esp, andETp £ EsE T 1¢. Thuscommon knowledge

of ¢ among the processes in@notedCsd, is defined as the infinite conjunctionBE"

C5¢éq)/\Esd)/\EsEsd)/\n-/\qu)/\'“ (2.4)

Specifically, we have an interest in two particular cases: N, or S=P. We de-
note common knowledge among the nonfaulty process&bZp stands for common
knowledge among all the processes in our system, and is de@dtechort.

We present an equivalent semantic definition of satisfactioiCfgrwhich will be
more useful in the context of our analysis. Rather than defining common knowledge as
an infinite conjunction of “everyone knows”, we define it in term\bfeachability? We
say that two pointér,m) and(r’, m) areN-neighborsand write(r’, m) ~y (r,m), if there
is some procespthat is nonfaulty in botn andr’ for which r’j (m) =rj(m). In this case
we say that the pointg, m) and (r’,;m) areindistinguishableby j. The “~y” relation
is also called thesimilarity relation. The poin{r’,m) is N-reachable from(r,m) in R,
if there is a finite sequence of poinism) = (r% m), (rX,m),.... (r,m) = (r’,m) such
that(r, m) ~n (r+1, m) holds for every (< ¢ < k. Thus,N-reachability is the transitive
closure of thevy relation. Moreover, it is an equivalence relation that defines a partition
over the points of a systeR. Common knowledge among the nonfaulty processes is
then formalized by:

3The fact that in our systems a process can always distinguish between (poimtand (r’, ') with

m # m' simplifies the definitions here slightly.



2. Preliminaries 20

(Rr,m) =Cno iff (Rr',m) [ ¢ forall points(r’,m) that areN-reachable fronfr,m) inR (2.5)

A formal proof for the equivalence of the two definitions of common knowledge, in
Equations 2.4 and 2.5 may be found in [5].

In other words, a faap is common knowledge among the processe st a point
(r,m) if ¢ is valid in all the points that ar®&l-reachable from(r,m). Very similarly,
we can define common knowledge amalbprocessesC, by replacing theN in the
definition ofCy by P, the set of all processes in the system. More precisely, we say that
the point(r’,m) is reachablefrom (r,m) in Rif there is a finite sequence of points Rf
(r,m) = (r%m),(rt,m),..., (rk,m) = (r',m) such that for every & ¢ < k there is some
j = j for whichr{(m) = r{**(m). Then

(Rr,m) =Co iff (Rr',m) [ ¢ forall points(r’,m) that are reachable frofn,m)inR  (2.6)



Chapter 3

Solving Continuous Consensus

3.1 The CC Problem

The continuous consensus problem was formally defined in Section 2.4. In this section
we present our solution to this problem, which is theNCCoN algorithm. We start

by presenting a simple protocol which solves the CC problem, after which we present
CoNCoN and prove its correctness. In the following subsection we provide some back-

ground which enables us to present the&_E algorithm immediately afterwards.

Clean Rounds

As mentioned in the introduction, the conceptotéan roundslayed a critical role in

the analysis of Simultaneous Byzantine Agreement (SBA) by Dwork and Moses [3] in
the crash model. In this model, a round of communication is clean if no new failure
is discovered in the round. Following a clean round, all processes can have the same
information about the past. Once it is common knowledge that a round was clean, the
information available to nonfaulty processes before this round becomes common knowl-

edge. We shall now present a formal definition of clean rounds.

We define the set dictiveprocesses ifr, k), denotedA(r, k), as the set of processes
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that did not fail in the firstk rounds ofr.! We say that the failure of procegsis
discoveredn roundk of r if k is the first time at whiclp's faulty behavior is distributed
knowledge, i.e.k is the first time at which(r,k) = D(“p is faulty') holds. In this
contextD(-) refers to distributed knowledge among the active processeD iy (*)-
Formally, aclean roundis a round in which no process failure is discovered by the
active processes. A round which is red¢anis referred to aslirty. Notice that it is
possible that the failure of a procepswill be discovered in roundk (which is thus a
dirty round), whereas some of the processes may leamisofailure in roundk + 1.
Even so, if no other failures are discovered in rolnel, it is a clean round, sincgs
failure was discovered in rourid
An important property of a clean round, presented in [3], is the following: If round
k of r is clean, then every fact of which there is distributed knowledde-ii, becomes
known to everyone at the end of roukdlt is an inherent property of the crash failure
model, that in a round in which procegsfails, it may successfully send information
to any subset of the other processes. As a result, information sgnirbsoundk may
be known to some of the processexkjrand not known to others. On the other hand,
the importance of clean rounds lies in the fact that all active processes successfully send
their messages, and thus at the end of this round they have consistent views of the system.

This property is phrased in the following theorem.

Theorem 3.1 (Dwork and Moseslet (r,k—1) = D¢. If round k of r is clean, then
(k) =E.

Once again, b¥ ¢ we mean everyone among the active processes khows
We say that a faap is a factabout the initial configuratiorof the runr if its truth
value is uniquely determined by the set of initial stafeis r. Similarly, we say that a

fact ¢ is about the firstn rounds ofr if its truth depends on the firsh rounds ofr. An

1The set of nonfaulty processes in the run is a subset of the active processeskatwitite the term
nonfaultyrefers to the entire run, the terattiverefers to a specific time, and thus a proc¢ssho is

active at timek may crash at some later time, and is thus considered faulty in the run.
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important connection between clean rounds and common knowledge is presented in a

theorem which was shown in [3] and is quoted below:

Theorem 3.2 (Dwork and Mosesl.et cleanbe the fact “a clean round has occurred”,

and letd be a fact about the initial configuration. (f,k) = C(clean then

(k) =ED¢ iff (r,k)=Co

The theorem implies that once it becomes common knowledge that a clean round has
occurred between times 0 akdall information about the initial configuration becomes
common knowledge.

A direct corollary of Theorem 3.2 generalizes the result, and shows that if the ap-
pearance of a clean round in the time interjralk] is common knowledge at timle
then all information about the firsh rounds becomes common knowledge.

Corollary 3.3 Let ¢ be a fact about the firsh rounds. Letclean(m, k) be the fact “a
clean round occurred between tirmsndk”. If (r,k) = C(cleanm,k)) then

(rkyE=D¢ iff (r,k)=Céd

Theorem 3.2 is a key tool in the characterization of common knowledge in [3]. How-
ever, while the definition of clean rounds, as well as the theorem, are valid in the crash
model, the (sending) omission failure model is significantly more complex, since infor-
mation about failures can be kept by faulty processes for a long while without reaching
nonfaulty processes. Such information can then be delivered to nonfaulty processes only
much later. Thus, in the omission model the information about failures evolves in a much
more erratic fashion. Hence in the omission model clean rounds no longer play the same
role as they do in the crash failure model. Previous to this work, no direct analog to the
notion of a clean round was found in the omissions model. The notion of clean rounds

in the omission model will be discussed in later sections.
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A Simple Protocol for Continuous Consensus

Before proceeding to present th@@CoN protocol, we shall first present a very simple
protocol for Continuous Consensus. In the scope of this subsection, we assume the crash

failure model.

SIMPLE(i)

for every rounck >0 do
1 send local state and receive messages accordimg to
2 m«— k—(t+2)

3 MK — E(N) |fk<t.+2
E(Va(rme1) (M) otherwise.

Figure 3.1: The 81pPLE CC protocol for process

In the protocol, every procesgsomputes the core in timeas the view of thactive
processes—+ 2 rounds before tim& On line 1 every process sends and receives mes-
sages according to a full information protocol. On liné 8&omputes the core by assign-
ing the view of the active processes 2 rounds beforehand. We denoteAyr,m+ 1)
the set ofactiveprocesses at timm—+ 1 according ta’s view at time k=m+t+2, i.e.,
the processes not known to have dropped any messages up tamguid

A(rm+1)={j :(r,m+t+2) = -K(j crashed up to roundan+ 1)} (3.1)

Note that there are+ 1 rounds betweem+ 1 andk, during which there must occur
a clean round. Intuitively, by Theorem 3.1 we have that all facts that are distributed
knowledge to the nonfaulty processes at time 1 become known to all processes by
timek, and in particular every nonfaultycan compute (r,m+1) andV,r m1) (M) on

line 3.

Lemma 3.4 The SMPLE protocol solves the Continuous Consensus problem.
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At least one clean round

1 1

T T
m m+1
\.

o4

t+2

Figure 3.2: lllustration of the MPLE CC Protocol.

Proof: In order to prove that PLE is a CC protocol, we have to prove that the three

properties of CC hold.

SinceM;[K] is defined as£(V) for some viewV in the run, all events it;[k] have
occurred, and thus the Accuracy property holds. For completeness, assume that an event
e € ‘£ is known to a nonfaulty procegsat timem, and is thus included ifj's view at
time m. Sincej is nonfaulty, in particular it is active at timma+ 1, and thus from line 3
in Simple the evenke will appear in the core of every nonfaulty process later than
time m+t + 2; completeness follows. Finally, for consistency, we have to prove that if
i and j are nonfaulty, then for ak we haveM,; k] = Mj[k]. Since at timek, bothi and
j produce the samm in line 2, all we have to prove is th#§(r,m+1) = Aj(r,m+ 1),
and thatva; my1) (M) is available td andj at timek. Since there is a bound bfailures
in the system, during a time interval of- 1 rounds, therenustbe a clean round. From
Theorem 3.1, we deduce that any fact which is distributed knowledge among the active
processes at timm+ 1, is known to every correct process at tikadn particular, there
is distributed knowledge ah+ 1 about the identity of the processeshitr, m+ 1), and
thus at timek every correct process will have a copy Afr,m-+ 1), and specifically
Ai(r,m+1) = Aj(r,m+1) = A(r,m+1). Moreover, since there is distributed knowledge
aboutVayme1) (M) attimem-+-1, it is necessarily available to every correct process by

k, and in particular ta and j. It follows thatVam;1)(M) = Va;rm+1)(M), and thus
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Mi[k] = Mj[K]. The consistency property follows, and we are done.
|

Notice that processs computation ofE(Va,rm1)(M)) on line 3 of the protocol
uses the set of active process&gr,m+ 1), atm+1 =k — (t + 1), while the joint view
Vi r,my-1) (M) of this set refers to rounch = k — (t +2). This follows from the fact
that if an evente occurs at a processat timem, in order fore to appear in the core,
the protocol requires thatis active for at least one round after, so thatz will be
able to notify the correct processeseasd occurrence. More formally, the contents of
Varm+1) (M) is distributed knowledge among the correct processes atrtimé, since
all processes iA(r,m+ 1) are guaranteed to have successfully sent their messages to the
correct processes in roungH 1. On the other hand/a my-1)(M+ 1) is not necessarily
distributed knowledge among the correct processes-atl, since if a faulty process
ze A(r,m+ 1) fails to send all of its messages in roundt 2, then any eveng that
occurs atz at timem+1 (and thuse € Va my1)(M+ 1)) is not distributed knowledge
among the correct processesrat 1, and in fact, since we are dealing exclusively with

crash failures in this subsection, no correct process will ever leagn of

Good and Bad Processes

As mentioned in the previous subsection, the analysis in [3] used a setioé pro-

cesses, whose view of the system defined which rounds were potentially clean. The
definition of active processes is useful in the crash model. However, when considering
the omission model, both faulty and nonfaulty processes can actively send messages, and
an appropriate analogue to the set of active processes is more difficult to define. While in
the crash model the failure of a process becomes known to all the other processes at most
one round after its occurrence, in the omission model a proceag omit a message to

a faulty procesg without any nonfaulty process ever noticirgfaulty behavior. In this
example, one might wonder whetheshould be considereattiveor not. Moreover, in
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the omission model, defining the set of processesvnto have failed may need a bit of
fine tuning as well, compared to our characterization of this set in the crash model.

The crux of our protocol, GNCON, which we present for the omission model, de-
pends on finding the appropriate replacement for the role played in the crash model for
the number of failures known to This is suitably generalized by the following two
definitions of sets ofjoodandbad processes foirwith respect to timé&. Process de-
termines the identity of these sets one round later, atkimé. The first set, which we
denoteG;(k), consists of the processes that appearttohave been nonfaulty at time

(and so, in particular, behaved correctly in rodnd1):

Gk = {]j:(Rrk+1) [ —K(jisfaulty) } (3.2)

As usual, we drop the superscriptrom terms when it is clear from contexintu-
itively, Gj(K) is the set of processes who have not presented a faulty behavior up to round
k, and furthermore, have managed to pass their messages inkeuhdallowing them
to share the information they know at tirkevith the other processeslotice thatG; (k)
is defined in terms afs knowledge at the end of the following roukd- 1. In the crash
failure model G; (k) is the set of processes thatceives messages from in rouké 1,
while in the omissions model it is a possibly strict subset of these processes, camce
excludej from G;j(k) based on a report thatfailed to send a message to a different
process’. TheG stands forgood We associat&; (k) with time k rather thark+ 1 be-
cause the view of the members@f(k) at time kturns out to be especially important. It
serves a central role in determining the contents of the shared core. In addition, this view
facilitates the computation of the core, by allowing the definition a sbadfprocesses
associated with timk, which we denote b;(k). This set consists of the processes that
are distributedly known at timleto the members d®; (k) to be faulty:

B(K 2 {j:(RrK) EDegol(]isfaulty) } (33)

Intuitively, B is the set of processes which are known by process€stinhave failed.
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Thus, every process B is necessarily faulty (while processes in G are not necessarily
nonfaulty). Recall thati receives messages from all member&gfk) in roundk + 1.

Hence, every member &; (k) is known byi at timek+ 1 to be faulty. It follows that

Bi(k) NG;j(k) = 0 for all i € P. Notice, however, that whilB;(k) andG;(k) are disjoint,

they are not necessarily complements. There are a number of different scenarios that
may cause these sets not to be complements. For example, consider a pribagss
behaves correctly for the firktrounds and fails to send a message itoroundk + 1.
Procesg is then excluded frorg; (k), sincei knows thatj is faulty. Moreover,j ¢ B;(k)
because no process could have observed faulty behavjandhe firstk rounds; hence

j ¢ Gi(k) UBj(k) and the sets are not complements.

There is a close connection between the identitygigk) and the set$5j(k— 1).
Observe that, by definition @;, a procesg knows, at timenthat another procegs$is
faulty exactly if j’ ¢ Gj(m—1). In the crash and omission models, the set of processes
distributedly known to be faulty by a s&of processes is simply the union of those

known to be faulty by the members 8f It thus follows that

Bik)= (J (P\Gj(k—1)). (3.4)
J€Gi(k)
We denote by (k) the cardinality oB; (k). SinceB;(k) consists of faulty processes,
necessarilyb;(k) <t. Figure 3.3 illustrates the seBs(k) andG;(k) in the FIP given a

particular execution graph.

The Core

By definition, a Continuous Consensus task maintains at any given thore af shared
information. As defined in Chapter 2, the cdviglk] is a subset ofE(V) w.r.t. a view

V. In our solution to the CC problem, which is described in the following sections, the
core is represented by a tinge< k, and a seF, such thatv;[K] is uniquely determined

by the joint view of the processes i at timec, i.e., Mj[k] = E(Vge(c)). We callc
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Figure 3.3: Set&i(k) & Bj(k) are based ol/(k+1).

the critical time of k, denotedc = critj(k), andF the critical setof k. In the context

of CONCoN, we define the critical sef, as the set of good processes at timee.

F = Gi(c). The challenge in GNCON is to compute at each timé&, the appropriate
critical time, critj(k). In the following subsections we shall prove that by choosing the
core aM[k] = E(Vg;(¢)(C)), we obtain an optimum solution for CC.

We definei’s destinationat timec, denoteddest(c), as the first timek, at which
E(Vgi(c)(c)) € MiK] holds. Intuitively,dest(c) is the first time at which facts which
are distributed knowledge at timejoin the core. In particular, it = critj(k), then
dest(c) = crit; *(c) = k, however, it is also possible that for somfe< crit; (k) we will
also havedest(c') = k. Formally, we say thadest(m) = k exactly if crit; (k) > m, and
criti(k—1) <m.
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Figure 3.4: The core computed at tirfke

The Horizon

The analysis of simultaneous agreement in the crash failure model in [3] showed that
knowing that a clean round occurred within a certain time interval enables processes to
obtain a consistent view of information about earlier times. Thus a key goaNCON
will be to compute, in every round, a margin of time in which a clean round is guaranteed
to have occurred.

The analysis in the following subsections will show that if at tikne 1, process
knows that at least processes failed before tinkethen it knows that at least one clean
round must happen between titaand timeh; (k) = k+t+1— f. We think ofh; (k) asi’s
horizonfor timek, denotechorizon; (k). It turns out that ifi is a good process, théf(k)
will be common knowledge by timieorizon; (k). Intuitively, the properties of the crash-
failure model show that there will be a latestiical) time c with k < ¢ < horizon; (k)
such that rounat + 1 is clean, and after which all nonfaulty processes can predict the
same horizon (i.ehorizon;(c) = horizonj(c) for all processes and j). We shall show
that the same holds in the omission model as well. Moreover, we shall show that at

time ¢ = horizonj(c), every nonfaulty process knows thats the critical time (for¢).

2At this point this is an intuitive description of our motivation iro@CoN. A formal definition of

clean rounds in the omission model will be presented in Section 3.4.
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This makes it common knowledge that rounigt 1 was clean, allowing for an efficient
solution to simultaneous agreement. (Continuous consensus is a strict generalization of
simultaneous agreement.) Finally, it will then follow that the core information at fime

is the view of the good processes in the critical time,

Formally, we definé’s horizonfor timemas:

horizonj(m) = m+t+1—b;(m) (3.5)

The value otorizon;(m) is defined for alim > 0. Recall thab;(m) is i’s estimation
for the number of “bad” processes, whose failure has been discovered up tomound
Since no failures are known initially, we have ttgt0) = 0. Thus, by definition of
horizon;(m), we have thahorizon;(0) =t + 1. The facts that the processes communicate
according to the full-information protocol, and that the number of failures is bounded
from above by, imply thatb;(m) < b;(m+ 1) <t for all m. The following observation

immediately follows.

Observation 3.5 For allm > 0:
(i) horizonj(m) > m+1, and
(i)) horizonj(m+ 1) < horizon;j(m) + 1.

Notice from (ii) that the horizon cannot move forward by more than one at every
round. It can move backwards more rapidly, howevel; (ifn+ 1) = bj(m) +d + 1 then
horizon; (Mm+-1) = horizon;(m) —d. This happens wheth+ 1 new failures are discovered

in roundm by processes that are still trusteditat timem+ 1.

CoNCON

The CoNCoN protocol, shown in Figure 3.5, is run by each prodesdividually. CON-
CoN is used in both the crash and the omission failure model. Observe, however, that
the value ofhorizon;(k— 1) on line 2 of GNCON is a function ofbj(k — 1) which, in
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turn, is based on the knowledge of proceas well as on that of other processes. This

knowledge is evaluated with respect to different systBrwg each of the failure models.

The analysis presented in [4] is, roughly speaking, “backward looking”: at any point
in the execution, a process computes what it knows to be common knowledge. On
the other hand, the analysis in [3] takes a “forward looking” approach: every process
computes at what time facts about the initial configuration of the run become common
knowledge. Our approach indlCoN is hybrid — both forward and backward looking.

At the end of every roundé of the protocol, each procesperforms two tasks: One is
to update a current estimate (upper bound) for when events in theMdgiv 1) (k— 1)

of Gj(k— 1) will be part of the shared core vieviofward looking). The other is to
determine the shared core at tifkeat the end of the current round. For this purpose,
the value incritj(k) = Latest[k] is considered theritical time for the core at timek
(backwardlooking). In the protocol text, we use the tetrorizon;, which is defined in

Eqg.3.5. Notice thalhorizon;(m) is easily computable based df{m-+1).

CONCON(i)

0 Latest[(]— —1forall/>1
for every roundk > 1 do
send local state and receive messages accordmg to
computeG;(k— 1), Bj(k— 1) andhorizon;(k — 1)
Latest[horizon;(k—1)] «— k—1
c«< Latestk] > cis the critical time for K, denoted crit (k)

MK E(N) ifc=-1
K= E(Vg(¢)(c)) otherwise.

a1 A OWN P

endfor

Figure 3.5: The ©NCON protocol for process

In the protocol, each process performs the same set of actions in every round. Round
k > 1 starts at timé& — 1 and ends at timk. The first part of each round’s computation
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consists of communicating according to the full-information protocol on linmthe
next part, on line 2, procescomputes an upper bound on the time at which a view of
time k will become included in the core. Finally, on lines 4 and 5 it recordiifk] the
view which is the core information at the current tilkné/\Ve denote byrit; (k) the value
of c thati sets in roundk on line 4.

To compute the value of the indéwrizon;(k— 1) used on line 2 of ©NCON, pro-
cess needs to know the value bf(k— 1) at the end of roun&. Since a procesgis in
Gi(k—1) if i does not know thaj is faulty at timek, it follows thati receives roundk
messages from all members@(k —1). Thus,i has a copy o¥g,_1) at timek. In
particular,i can computd;(k— 1) andbj(k— 1), as desired. Observe that steps 2 and 3
of the CoNCON protocol depend only on the failures that occur in the run. As a result,
the nodes iV, ¢ () are independent of the (external) input assignment of the run. Fi-
nally, observe that, for ath < k, process has a copy o¥g,m(m). Thus, processis
able to computeE(Vg (¢ (c), k) on line 5 of GNCON.

We now state two useful properties oO8CoON. The first says that the horizon
is an upper bound on the time at which current round information is contained in the
shared core. Indeed, given Observation 3.5(i) above this will imply that every round’s
information will become common knowledge within a fixed bound of roughlyf
rounds, wheref is the number of failures discovered. The second says that once the
core is not empty, the critical time increases by at least one in every time step. Moreover,

every round is assigned a critical time.

Proposition 3.6 For all nonfaulty processesand timesm and/:
(@) if horizon;(m) < ¢ thencritj(¢) > m, and
(b) if critj(¢) # —1 thencritj(¢) < critj(£+1).

We now present the following technical lemma that is based on Observation 3.5, and
will assist us in the proof of Proposition 3.6.
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Lemma 3.7 If k < k' andhorizon; (k) < ¢ < horizon;(K'), then there exists a timewith

k < k < K such that (aorizon; (k) = ¢ and (b)horizon; (k+1) = ¢+ 1.

Proof: Assume thak < k' andhorizon;(k) < ¢ < horizon;(k’). By Observation 3.5(ii),

the functionhorizon; can advance only in steps of one. Hertegijzon; (k") = ¢ for some
intermediate timé < k” < K/, establishing part (a) of the claim. Liet= max{k” : K’ <
K andhorizon;(K”) = ¢}. We claim thatorizon; (k+ 1) > horizon; (k). By definition of
k, we have thahorizon; (k-+ 1) # ¢. Recall thathorizonj (k') > ¢ andk < K. Hence, if
horizon;(k+ 1) < ¢ thenk+1 < K. We can now apply part (a) o+ 1 < K’ to obtain
thathorizon; (h) = ¢ for someh such thak+ 1 < h < ¢. This contradicts the maximality
of k. It follows thathorizon;(k+ 1) > ¢. Finally, sincenorizon; (k+ 1) > horizon; (k), we

have by Observation 3.5(ii) thabrizon; (k4 1) = horizon;(k) + 1, and we are done.
|

Proof of Proposition 3.6: For part (a), assume thiadrizon; (m) < ¢. Sincehorizon;(¢) >
¢ we have by Lemma 3.7(a) thiarizon; (k) = ¢ for somek such tham < k < ¢. In par-
ticular, Lates[(] = k > m after line 3 is executed in rourid+ 1. Sincek < ¢, we have
thatk+ 1 < ¢. Moreover, since the value dfatesf[(] is nondecreasing in time, it fol-
lows thatLatest[¢] > k when line 4 is reached in rourd It now follows by line 4 that
critj(¢) > k > m, proving part (a). For part (b), assume teaitj(¢) = m# —1. Then,
from the definition ohorizon;(m), we have thahorizon;(m) = ¢. Sincehorizon;(¢) > ¢,
we have by Lemma 3.7(b) that there existsuch tham < k < ¢ andhorizon; (I2+ 1) =
¢+ 1. Applying part (a) we obtain thafrit;(¢/+ 1) > k+ 1. Sincem < k, we have that
k41> m, and thugrit; (¢4 1) > m = crit;(¢), which completes the proof.

|

So far we have looked at the properties of the protocol as executed by a single non-
faulty process in isolation. The correctness of the algorithm depends on the relationship
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between executions of different processes in the same run. The following theorem shows

the main correctness claim fora®CoN, namely that all cores agree at all times.

Theorem 3.8 The CoNCON protocol solves the continuous consensus problem.

Proof: SinceM;[/] is a view of the run, all events iM;[¢] have occurred, and thus
the Accuracy property holds. Completeness requires eyery - that is known to a
nonfaulty procesg will eventually appear irVij[¢]. Suppose thaK;q holds no later
than timek. Notice thatj € G (k) for every nonfaulty procedssincej is nonfaulty. By
definition,horizon; (k) < k+t+ 1, and Proposition 3.6(a) implies thatt; (k+t+1) > k.

It follows that £(V;(k)) will be contained inM;k+t + 1]. In particular, we have that
g € Mijlk+t + 1], and we have Completeness.

Finally, for Consistency, we need to show th{¢] = M;[¢] for all times¢ > 0 and
nonfaulty processeisand j. The variablecrit;(¢) is assigned the value afatest[¢] in
round/ by line 4. Lines 0 and 3 guarantee thattesi{m > —1 andLatesj[m] > —1
holds for all indicesm at all times. It follows thatritj(¢) > —1. We distinguish two
cases. First suppose thait;(¢) = critj(¢) = —1. In this case we have by line 5 and
the fact thatfcritj(¢) = critj(¢) = —1 thatM;[¢] = Mj[{] = A as desired. Second, sup-
pose without loss of generality that= critj(¢) # —1. We claim thatG;(m) 2 Gj(m)
andcritj(¢) > critj(¢). If Gj(m) 2 Gi(m), thenj knows at timem+ 1 of somez € G;
that is faulty. Sincej is nonfaulty, j € Gi(m+ 1), and hence € Bi(m+ 1) so that
bi(m+ 1) > bj(m) and horizon;(m+ 1) < horizon;(m) = ¢. It follows from Proposi-
tion 3.6(a) thatritj(¢) > m+ 1, contradicting the assumption thait;(¢) = m. Since
Gj(m) 2 Gi(m) it follows that Vg, (m) is contained inVg,m(m) and hence that
Bj(m) 2 Bi(m). This implies thab;(m) > bj(m), and thushorizon;(m) < horizon;(m).
Again by Proposition 3.6(a) we can conclude vt (¢) > m= crit;(¢), and the claim is
established. Moreover, sinceitj(¢) > —1, it follows thatcritj(¢) # —1. Applying this
argument tg instead of, we obtain also tha®;(m) C G;(m) andcritj(¢) < critj(¢). We
thus have thatrit; (¢) = critj(¢) and thaiG;(m) = Gj(m). Finally, sinceG;(m) = G;j(m),
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we have by line 5 tha¥li[{] = Vg, (m) (M) = Vg, m)(M) = Mj[¢] and we are done.

More efficient implementations. The CoNCON protocol sends messages according

to FIP, so that messages get larger over time. In many cases it is possible to derive
a more space- and communication-efficient implementation@i@oN. In order to
simulate the ©NCON protocol a processmust in particular have enough information
about (knowledge regarding) failures to enable the computation ofidtigon; at all
points. The value ohorizon;(k) depends orb;j(k) which, in turn, can be computed
oncei knows the set§;j(k—1) for all j € Gj(k) (see Eq.3.4). This can be achieved if, in
every rounck+ 1 each processsendsG;(k— 1) to all other processes. The €&{k—1)
consists of the processes thatoes not know to be faulty at time which is when the
roundk+ 1 message is prepared. This set can be encoded as a stritg®f Initially,
process knows of no failures. At every timie> 0, it can comput&;(k— 1) by detecting

a process as faulty exactly if it is either reported as faulty in one oGiffk — 2) it has
received in round, or if the process in question has failed to deliver a message to

It can be checked that the s&bgk — 1) computed under this scheme are the same as
they are usingipP. In order to carry out step 4 of @VCON, we must also guarantee that

all information about monitored events frofibe passed to everyone. In applications

in which there are only a few interesting events (e.g., fire alarms) then representing the
relevant data regarding them can be done succinctly. It follows that there is a protocol
for continuous consensus that is equivalent mNCoN, but sends short messages and
uses little space beyond that needed for the sharedwi¢keand the aspects of the view

needed to determine the eventsinf.

3.2 Continuous Consensus and Common Knowledge

We have developed thedBICON protocol using intuitions obtained from the analysis

of common knowledge in fault-prone systems. In fact, continuous consensus is closely
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related to the problem of computing common knowledge. We now formalize this con-
nection, and use it in order to prove the optimality a§iGCON.

The continuous consensus problem is specified in terms of the behavior of the non-
faulty processes, and does not require correct action from faulty ones. It was shown
in [4] (see also [10, 5]) that the appropriate variant of common knowledge correspond-
ing to such a situation is common knowledge amonghefaultyprocesses, for which
our language has the opera@y.

We say that a formulé is valid in R and writeR |= ¢, if (R,r,m) = ¢ for all points
(r,m) with r € R. Recall that, by Theorem 3.8/i[k] = M;[k] holds for every pair of
nonfaulty processeisand j. For every possible staté C ‘£ of the core, we define a
proposition Core= X that is true at a poinfr, m) exactly if M{ [m] = X for all nonfaulty
processesin r. We can now show a strong connection between common knowledge

and continuous consensus:

Proposition 3.9 Let P be a protocol for continuous consensus andRlebe the set of

all runs ofP with execution graphs iR= R(n,t,fm, 7). Then for allX we have
Rp = ((Core= X) =Cn(Core= X)) .

Proof: We shall prove that Core X holds iff Cy(Core= X)). The ‘if’ direction is
trivial, since every fact that is common knowledge is necessarily true. For the ‘only if’
direction assume thall [m| = X for all nonfaulty processeisin r. Define the propo-
sition p as “Core= X". It suffices to show that, for alt,r’ € R, if (R;r,m) = p and
(r,m) ~y (r',;m) then (R ;r’,m) = p, and the claim will follow by induction. Assume
that (R,r,m) = p and (r,m) ~n (r,m). Thus,r;j(m) = rj(m) for some process that

is nonfaulty in both runs. SincéR,r,m) = p we have that Core- X holds at(r,m);

since] is nonfaulty it follows that, in particulaiM|[m| = X. Sincerj(m) = rj(m), we

have thaMJf'[m] = X as well. Finally, sincé solves continuous consensus, we have by

Consistency that!! [m] = X for all nonfaultyi in r’, and hencéR,r’,m) = p.
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Proposition 3.9 implies that the contents of the core in any pro@éot continuous
consensus (e.g., GNCoN) are common knowledge among the nonfaulty processes at
every point. Hence, an event can be entered into the local copies of the core only once
its occurrence has become common knowledge. We shall now argue thab k&o®
protocol places events in the corel§im| as early as possible. This will establish that
CoNCoN is an optimum protocol for continuous consensus. More formally, we prove

the following

Theorem 3.10If R is aFIP system, i R, iis nonfaulty inr,P is a correct protocol for
continuous consensus, i's core(atm) under CONCoON is MS[m], and i’'s core undeP

is MP[m], then M’ [m] € M&[m.

In Theorem 3.10 we assume, without loss of generality,RhaaFip. As LemmaA.2
in the appendix shows, the same argument holds for the general casePwhan ar-
bitrary protocol. Theorem 3.10 shows thadb&CoON is optimal in terms of recording
events in the core as early as possible. We prove the theorem by showing that the core
Mic[m] produced by ©NCON is precisely the view of the run that is common knowl-
edge afr,m). Moses and Tuttle [4] completely characterized the connected components
of the N-reachability relation systems fenp in crash and omission models, thereby
characterizing common knowledge as well. To set up the necessary background for the
proof, we now briefly review their fixed-point construction and related characterization
of common knowledge. The construction is performed individually by every praocess
based on its view/[ (m) at a given pointr,m). It defines a sequence of paitls,S)
consisting of a time and set of processes/fer0. In the constructiorf;, denotes the set
{i : (Rr,ke) =Ds(] is faulty) } of processes known at tinke to be faulty by processes
in S. The setsS andF, are analogous to, but in general distinct from, to the Ggtk)
andB;(k) in CONCON. The construction proceeds inductively as follows.

Base: Setkop=mandS = {i}.
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Step: Setkjy 1 =m—(t+1—|F|) andS 1 =P\ F.

As Moses and Tuttle show, tHe’s form a nonincreasing sequence of sets of pro-
cesses. As a result, ti#’s form a nondecreasing sequence of sets of processes, and
the k,'s form a descending sequence of indices. Sifkge<t, for some indexh we
must have thak, = F,_;. When this happens for the first time, the construction reaches
a fixed-point becauss, 1 = §, andkn,1 = kn. We usek = k(r,m) andS= §r,m) to
denote the first valudg, andS, at which a fixed-point is reached. The construction can
reach two types of fixed-points. One in whikk: 0 (andéz IP), and the other in which
k > 0. To accommodate the former case, we definén') = A for all m' < 0. (Recall
that A is used to denote the empty view.) We remark that at the fixed pging the
complement of5,. SinceS is a singleton and all members of evdfyare faulty, the
assumption that< n— 2 guarantees th&t> 1 at the fixed point.

The final step of the construction is:

Output: The viewvé(R). (We denote this view by;[r,m.)

As shown in [4], procesgs local stateV; (ko) at timekg containsVs, (k,) for all k, >
0. As a result, procesan compute all of the stages of the construction at tmekg
based on its local state there. ket FIP({,3). When the construction is performed at
(r,m), the setsS, andF, depend only on th component (failures) in. It follows that
the final output\7i [r,m| of the construction depends only frand on the restriction df
(the inputs) to the nodes &f[r, m].3 Figure 3.6 illustrates an example computation of
the fixed-point construction.

The fixed-point construction is shown to charactetizeeachability relation (and

hence also the common knowledge) in the crash and omission models:

Proposition 3.11 (Moses and Tuttle)Letr andr’ be runs of &iP systemR, and assume

3We shall denote by/[r, m] the view\71 [r,m] obtained by the nonfaulty processeis r, since\7j [r, m]

is the same for all nonfaulty processedy Proposition 3.11.
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Figure 3.6: An instance of Moses and Tuttle’s fixed-point constructionabyimem.

thati is a nonfaulty process in and j a nonfaulty process in’. Then(r’,m) is N-
reachable frongr, m) iff \7j[r’,m] = Vi[r,m].
In other words, Proposition 3.11 states that the fixed-point construction performed

by a nonfaulty processat (r,m) outputs the same view as the one it outputs for any
nonfaulty process at any point in thleconnected component af m). Proposition 3.11

thus implies that, in a precise sensér,m summarizes and uniquely determines the

set of facts that are common knowledge at any given p@jm). As a result, we can

show that only input events of that appear in/ are common knowledge among the

nonfaulty processes:

Corollary 3.12 Let q € @4, let P be aFip, and assume thatis nonfaulty inr. Then

(Rp.r,m) =Cng iff ge E(Vi[r,m]).

Proof: Fix r = FIP({,B) € Randm > 0, leti be nonfaulty inr, let q € ®« and let
V = Vi[r,m]. To prove the ‘i’ direction, assume thate (V). By Proposition 3.11,
V= \7,— (r’,m) for every nonfaulty processqrat a point(r’,m) that isN-reachable from
(r,m). It follows thatV is contained inG", andq € £(V) implies that(R,r’,m) k= q.
Since this holds for all pointsl-reachable fron(r,m), we have tha{R,r,m) = CnQ.
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For the ‘only if’ direction, assume that ¢ £(V). By definition of £(V), it follows
that (R r’,m) k£ q for some runr’ = FIP({’, ') whose execution graph contaikis In
particular and{’ agree on the inputs at the noded/ofConsider the run” = Fir(’, 3)
with the same failure patter8Y as inr, and the same external input&)(as inr’.
The assumption that inputs R= R(n,t,fm, I') are independent of failures and of each
other ensures that' € R. Sinceq € ® it depends only on the external inputs. Since
(R;r’,m) }~= g, and the fact that” shares(’ with r’ implies that(R,r”, m) }= g. Recall,
that the nodes and edges of the execution grap¥t in Vi [r,m] depend only on the
failure patterr3. Moreover, sinceg andr” share the same failure pattgdnprocess is
nonfaulty inr” as it is inr. Since, in addition{’ agrees with{ on the inputs assigned to
nodes ofV, it follows thatV[r”,m] = V = V[r,m]. Proposition 3.11 implies that”, m)

is N-reachable fron{r,m). Hence, from(R r” ;m) = q we obtain tha{ R r,m) }= Cnq

and we are done. [ |

Based on this characterization, we can prove our claim tled@ON is optimal:

Proof of Theorem 3.10: Fix a runr of FIP. We will abuse notation slightly and denote
the runs of both? and GONCoN with execution grapk’ by the same nane and\7[r, m

by V. By Proposition 3.9, the events MF [m] are common knowledge. By definition

of the core,MiP[m] C ®%. Hence, Corollary 3.12 implies thMiP[m] C ‘E(\?). We will

show thatV is contained iVg(g)(c) for ¢ = critf (m). SinceM[m] = E(Vg(g)(C)), this

will imply that M[m] D E(V) D MP[m], from which the claim follows. The case in
which V = \ is immediate, sinca is by definition contained in all views, including
V(g (C). It remains to consider the case in whigh# A. In this case, lek = k, and

S= §, be the fixed-point values in the Moses and Tuttle construction performed in the

runr. SinceV # A we have thak > 0. Moreover, recall that the construction ends
with h > 1 sincet < n— 2. Sinceky, is the first place at which a fixed-point is obtained,
we obtain thaky, < ky_1 < kg. Observe that the seE in the fixed-point construction

contain only faulty processes. Sinte & andi is nonfaulty, it follows that € S
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for every/ < h. In particular,i € §,_1. By definition of S, andFR,_1, we have that
S ={j: (Rrkn1) =-Ds, ,(jisfaulty)}. Sincei € §,_1, we have in particular that
(Rr,kn_1) = —Ki(] is faulty), for all j € §,. It follows thatS, C Gj(ky_1 — 1), where
Gj is the set ofgood processes according tan CONCON. Fromk, < ky_; we have
thatk, < kn_1 — 1. The perfect recall property of ttrep implies that the set&;(k)
are monotonically nonincreasing. Thus, C Gj(kn_1 — 1) C Gj(ky). It follows that
Bi(kn) 2 Fn, and hence also that(k,) > |F|. Sincek, = k is the fixed point, we have
thatk, = m— (t+1— |R,|) and hencen=ky 4+t + 1 — |R,|. By definition of CONCON,
horizonj(kn) = kn+t 4+ 1—bj(ky). Sincebj(kn) > |F|, we obtain thahorizon;(kp) < m.
By Proposition 3.6(a) we have thait! (m) > k. It follows thatVg g (C) 2 V and we are

done.

Extending the core. So far, the monitored events that we allowed (which we identified
with the propositions irfP¢) have been facts about the external inputs to the system.
This is reasonable because such facts are independent of the protocol used to implement
continuous consensus, and such events allow us to monitor information that is relevant
in a broad range of applications. It is possible, however, to extend the core and allow
it to monitor events that are concerned with the failure pattern as well as the external
inputs. In the context of thelp this could actually determine all communications and

all message contents. We say that a proposjiern® is objectiveif its truth depends on

the failure pattern and input assignment of the run. Namely, if there ish, sétpairs

(¢,B) such that, for every run’ = FiIp({’, ') and timem', we have thatR,r’,m’) = p
exactly if ({',p') € Tp. In particular, an objective proposition is independent of time.
Notice that the propositions #+, which depend on the external input componénaf

the run, are by definition objective propositions. Another feature of the new definition
is that an objective proposition has the same truth value in runs of different protocols,
becausd, is independent of the protocol being followed.
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We can now define aextendedontinuous consensus problem, whose specification
differs from the original problem only in that the core consists of afgetC @ of ob-
jective facts. The proof of Theorem 3.8 shows that the Wy (c) computed by a
nonfaulty processin the CONCON protocol at a pointr, k) is shared among the non-
faulty processes, and hence containeﬁi{m, k|. The proof of Theorem 3.10 shows that
Vai(c)(C) containsV; [r,Kk]. Thus, the @NCON protocol executed at nonfaulty processes
in fact computed/[r, k] at each poinr, k). The information inV[r, k] can imply that cer-
tain processes are faulty, and that particular messages were sent successfully in the run
while others were not. By Proposition 3.9 all of this information is common knowledge
at (r,k). But there may be (objective) facts about the failure pattern that are common
knowledge af(r,k) and do not appear explicitly iN[r,k]. For example, there are no
explicit failures and/or successful message deliveries in the empty\idlgvertheless,
if, for example,\7i [r, 3] = A then among other things the nonfaulty processes did not dis-
covert failures in the first round. This translates into an objective ggabout the run.
And since, as shown in Proposition 3.9, the identity{]t k| for the nonfaulty processes
is common knowledgeégng would hold at(r, 3) in this case. In order to obtain an opti-
mum solution for the extended continuous consensus problem, we need to add this type

of fact to the core. We do this by replacing the definitior&gl/) used in @NCON by
E'(V,k) £ {ge ®,: (Rrk) = qfor all points(r,k) such that/[r,k] = V}.
We denote by ©NCoN’ the protocol obtained from @ICoN by replacingZ(A) by

£'(A, k) and replacingg (Vg ) (¢)) by E'(Vg,(¢)(c),k) online 5. Since ©NCON’ com-

putes the vie\AA7[r, m| at every point(r,m), we obtain an analogous result to Corol-
lary 3.12 for arbitrary objective propositions .. An analogous proof to that of

Theorem 3.10 can now be shown to yield:

Corollary 3.13 CoNCoN’ is an optimum protocol for the extended continuous consen-

sus problem.
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3.3 Waste and @WNCON

Waste

The concept ofvastewas defined in [3]. In this section we shall review the definition

of wasteand extend the term further to defitazal waste The task discussed in [3]

was obtaining agreement in a crash failure model about the initial configuration of the
system Wastewas defined in the context of this analydiscal wastds a generalization

of waste which helps us analyze when agreement can be reached about any fact in the
system (rather than just about tirke= 0). Moreover, our definition of local waste will
apply to both the crash and the omission models.

Recall that according to Theorem 3.2, once it becomes common knowledge that a
clean round has occurred, all the facts about the initial configuration become common
knowledge. It is easy to show that at tirhe- 1 it is common knowledge that a clean
round has occurred during the fitst 1 rounds, and thus all the facts about the initial
configuration are common knowledge. Howevek if j failures are discovered by the
end of roundk, Dwork and Moses’ analysis in [3] shows that by the end of raunti — |
there must be a clean round. Moreover, it can be shown that by the end oftredndj
it is common knowledge that a clean round has occurred. From the point of view of an
adversary trying to delay the agreement as much as possible, this may be considered as
a “waste” of | failures.

We now formally define the waste of a rof(r). First, defineA((r,k) as the number
of faulty processes discovered by tirkén r. Next, we definal(r,k) as the difference
betweer\((r,k) andk, and finally we can define the wasW#(r), as the maximal value
of d(r,k):

AL(r,k) 2 max{j : (r,k) = D(*]j processes have fail&gl} (3.6)

d(r7 k) £ N(ﬂ k) — k (37)
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W(r) £ max d(r,k) (3.8)

Note that in this subsection the operatbrandC refer to distributed knowledge and
common knowledge w.r.t. the set of active processes. The analysis in [3] shows that at
the end of round + 1 —W(r) it is common knowledge that a clean round has occurred
in the run. Thus at+1—W(r) all facts about the initial configuration of the nonfaulty
processes become common knowledge. The concept is summarized in the following

lemma from [3], which is quoted here without proof:

Lemma 3.14 Let ¢ be a fact about the initial configuration. Then:
(nt+1—W(r)) = D¢ iff (r,t+1—-W(r)) =Cé.

Lemma 3.14 implies that at the end of roung 1 —W(r), any fact known to an
active proces$ at timek = 0 becomes common knowledge. An immediate corollary of

Lemma 3.14 is the following:

Corollary 3.15 Let ¢ be a fact about the initial configuration. (f,0) = Dn¢ then
(rnt+1—W(r)) =Cno.

Proof: Assume(r,0) = Dn¢. It is easy to see that algo,t +1—W(r)) = Dn,
and thus(r,t +1—-W(r)) = D¢. By Lemma 3.14 we have that,t +1—W(r)) =
Co, i.e., thatp is common knowledge among the active processést +1—W(r)).
It is straightforward from the definition of common knowledge that any fact which is
common knowledge among the active processes, is also common knowledge among any
subset of this set. Sind¢ C A(r,t +1—W(r)), we obtain(r,t + 1 —W(r)) = Cn¢, and
we are done.
[

4An active process w.r.t. time+1—W(r)
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We refer to the last round}" in which d(r,k) reaches its maximal value as the

round in whichthe waste was reachede., /Y = maxarg Lr;%xd(r, K)}. An interesting

property, which is straightforward from the definition of waste, the round following the

last time the waste is reached — rouffth- 1 — is a clean round.

A Generalized Definition of Waste

The concept ofvastewas defined in the context of the crash model, and was aimed at
analyzing when facts about tinke= 0 can be agreed upohocal wastes an extension
to the definition of waste, which relates to any tikhe> 0. In addition, our analysis
in this subsection will be relevant to both the crash and the omission models. A key

difference between waste and local waste is that waste is a property of thé& fun,
whereas the local wastwi(m), is a value which is computed locally with respect to a

specific timem, and a process Moreover, two different nonfaulty processesnd j,

may compute different local wastes w.r.t. a timei.e.,V\/i(m) #Wj(m)_ We omit ther

from our definitions, as it is clear from context. We now present three definitions that
lead to the notion of local waste:

AC™ (k) 2 by (K) — by (m) (3.9)
d™ (k) 2 A (k) — (k—m) (3.10)
W™ £ maxd™ (k) (3.11)

Notice that form = 0, the definition omWi(m) bares a strong resemblance to the def-
inition of waste from the previous subsection, with the exception iH&) plays the
role of A'(r,k). This observation is not surprising, sinbgk) in the omission model

is analogous ta\((r,k) in the crash model. Once again, we define the last rod¥d,
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in which di(m)(k) reaches its maximal value as the round in whileé local waste is

reached or more formally/" = maxarg Igaxdi(m)(k)}. The following lemma captures
>m

the connection between local waste and common knowledge.

Lemma 3.16 Leti be a nonfaulty process, letbe a run ofrip. If (r,m) = Dn¢, then

(r , m+(t+1—bi(m—W™)) =Cnb.

Proof: Definek = m+ (t +1— bj(m) —V\li(m)). Sincer is a run of a full-information
protocol, let us assume without loss of generality fhatrunning @NCON.® Thus at
m process computeshorizon;(m). Define/™ as the round in whickthe local waste was
reached From Equations 3.9- 3.11 we have thdt™ = (b (/") — b (m)) — (¢ —m).
At the end of round™, process computes th@orizon according to ©NCON, and we

have that:

horizon; (/") = M 4+t 41— b ((™) = (3.12)
=M™ 4t 4+1—b (") +bi(m)—bi(m)+m—m=
= [m+t+1-bi(m)] — [(bi(") —bi(m)) — (€™ —m)] =

= m+t+1-b(m)] — W™ 2

Sincehorizon; (/™) = k, from Proposition 3.6(a) we have thait; (k) > ¢W. With-
out loss of generality, assuneeit; (k) = ¢ > /. ThusM;[K] = Vi ()(¢'). Now since
(r,m) |= Dn¢ by the assumption, and sinteC Gi(¢'), we necessarily hawee Vg, o (¢),
and thusp € M;[k]. From Proposition 3.9 we have thatk) = Cné, and we are done.

|

SWe require that will run CONCON is order to be able to defirterizon;(-), however running ON-

CoN is not a necessary condition for the correctness of the lemma
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Lemma 3.16 presents the strong connection betwsh wasteand common knowl-

edge, by showing that facts about timnéoecome common knowledde— b;(m)) +1—

V\/i(m) rounds aftem. For the special case af= 0, it is interesting to compare our anal-
ysis in this subsection regarding the local waste, to the analysis in [3]. We first present

the following lemma, which argues thatisteis indeed a special case lotal waste

Lemma 3.17 Leti be a nonfaulty process, IRbe a system in the crash failure model,
i.e.,fm= crash, and let € Rbe a run ofrip. Moreover, let™” and/™ be the rounds in

©)

which the wast&V(r) and the local wasté/"~ are reached, respectively. Then:

(I) MW — flw
(i) W' =w(r)

Proof: For (i), assume by way of contradiction th&t £ /. Notice that sincé" is
the round in which the waste is reached, rodfie-- 1 must be clean, which means that
no failure is discovered by the active processes. Notice@at') C A(r, /%), since
Gi(¢") does not include processes whose faulty behavior was discoverieid byund

/™ +1. Notice also tha®; (/") D A(r, V), since if there is a procegs A(r, /) \ G (V),
then j’s faulty behavior must be discovered by the nonfaulty procéssound /¥ + 1,
which not possible sinc&" + 1 is a clean round. Thus we have ti@&{/"V) = A(r, £V).
Notice that using a similar argume@ (/") = A(r,/™) also holds. Since\((r,/") is
computed according to the knowledge of theAgt ("), andb; (/" + 1) is based on the
knowledge ofG;(¢%), it follows thatb; (/") = A(r,¢V). We thus have thad(r, (V) =
d@(ew). Similarly, we also havds;((W) = A((r,e™), and thusd(r, ™) = d'© (eW).
Now assume™ > /™ and thusd(r, /) > d(r, /™). It follows thatd® (/) > o (),
which contradicts the fact that” is the round in which the local waste is reached.
Assume, on the other hand tht < /", and thusd® () < d” (/W), which means
thatd(r, /") > d(r,¢™), contradicting the fact that” is the round in which the waste is

reached. ThugV = /W,
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For (i), since?” = /™, and we have shown that alsigr, V) = di<0) (&Y), by the

definition ofV\/i(o) andW(r) it follows thatV\/,(O) =W(r), and we are done.
[

Lemma 3.17 shows that our analysis of the local waste is a direct enhancement of
Dwork and Moses’ analysis ofiastein the crash model. The result in Lemma 3.16
both extends the previous analysis to the omission failure model, and generalizes the
discussion from agreeing about the initial configuration to agreeing on facts about any
later timem. By using the results of GNCON from the previous sections, we were able
to prove Lemma 3.16, which is a direct generalization of Lemma 3.15.

Following the proof of Lemma 3.16, it is interesting to observe khathorizon; (m) —

\Ni(m), and thus an immediate corollary is:

Corollary 3.18 Let i be a nonfaulty process, letbe a run ofFip, and let¢ be a fact

about timem. If (r,m) = D¢, then(r , horizon;(m) —W.™)) |= C¢.

Our proof of Lemma 3.16 made use ob8CoN, however, Corollary 3.18 presents
an even stronger connection between local waste andGON. Indeed, we defined
horizonj(m) as process$’s upper bound on theestinationof m, and showed that in

facti’s estimation form's destination may bémprovedcompared tdorizon;(m). By

Corollary 3.18 we realize that thisiprovemenis precisely\/\/i(m).
The following lemma will complete the picture regarding the connection between
local waste and GNCON.

Lemma 3.19 Leti be a nonfaulty process, let> 0, and letr be a run ofrip. Further-

(m)

more, let!" be the round in which the local wasw,"" is reached. Then:

(a) /" = crit; (horizon; (m) —W(m))

(b) dest(m) = horizon;j(m) _wm
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Proof: Definek = horizon;j(m) —V\/i(m). The proof of Lemma 3.16 showed us that
critj (k) > m. In order to show that" = crit;(k), let us assume by way of contradiction
that /™ < critj(k), i.e., thatcritj(k) = ¢ > ¢, Thus by our analysis of GNCON, it

is easy to see thatorizon;j(¢') = k. By the proof of Lemma 3.16, we have that also

horizon; (/™) = k, and thus:

horizon; (™) = horizon; (¢') (3.13)
Mpt+1—b ()= ¢ +t+1—bi(¢)

by <€|W) _glw — by (f’) _£|W

Now also notice that:

o™ () = 2™ ()~ (¢ = m) = (Bi(¢) ~ bi(m)) — (¢ —m) (3.14)
=bi({)—¢ +m—b(m) =b(")—M™ +m—bi(m)

— (bi (™) — by (m)) — (™ —m) = o™ (™)

And thus we havel™ (/™) = d™ (¢'), which contradicts our definition of*, as

the latest round at which the waste is reached, and we are done with part (a).
Recall thatdest(m) = k exactly if critj(k) > m, andcritj(K — 1) < m. The proof of

Lemma 3.16 showed us thatitj(k) > m. In order to prove thatritj(k — 1) < m, let us

assume by way of contradiction thait; (k — 1) £ m' > m. Thushorizon; (M) =k — 1,

and recall that™ = crit; (k).
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K — 1 = horizon; () = horizon; (/") — 1 (3.15)
m+t+1—bi(m) =M +t4+1—b(M)—1

bi(m) — = b (") — W +1

And if we observed™ (n), we find that:

o™ (mf) = (bi(m') — by (m)) — (nf —m) (3.16)
=bi(m)—m + m—bi(m)
= b (M) =M™ 41 + m—bi(m)
— (b (™) —bi(m) — (™ —m)+1=d™ (M) 1

And we obtain that™ (m') = d™ (/W) + 1, which contradicts the assumption that

/W is the round in which the value mfm)(-) is maximal, and we are done with (b) as
well.
|

By Lemma 3.19(b) we have that tiie horizon and’s local waste atn uniquely de-
terminem’s destination, which is precisehporizon;(m) —V\/i(m). Moreover, Lemma 3.19(a)

shows that ahorizon;(m) —V\/i(m> all facts about the firsf™ rounds become common

knowledge.

3.4 Clean Rounds Revisited

In our description of clean rounds in Section 3.1, we said that up to this work clean
rounds were discussed in the context of the crash model. After having presemted C

CoN, we extend the definition of clean rounds to the omission model. We say that a
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roundk is clean ifbj(k — 1) = bj(k) for all nonfaulty processes Thus, it is not the
discovery of a failure in a round that makes it dirty; rather, a round is dirty if, for some
procesg, it is the first round in whiclz's failure is reported by a process that is trusted
by some nonfaulty process.

Intuitively, it is straightforward from the definition éibrizon that our computation of
horizon;(m) = m+ (t + 1) — bj(m) guarantees that there exists at least one rdysdch
thatm < k < horizon;(m), in whichb;(k— 1) = bj (k). This fact does not guarantee a clean
round, however, the following lemma implies that indeed a clean round is guaranteed to

occur in this interval.

Lemma 3.20 Leti be a nonfaulty process. Then for klP> O if critj(k) = m# —1 then

m+ 1 is a clean round.

Proof: Assume by way of contradiction that for some nonfatjltye haveb;(m) #
bj(m+1). By definition of Bj, we have thab; is a nondecreasing function of, and
thusbj(m) < bj(m+1). Since both andj are nonfaulty, we have by Theorem 3.8 that
critj(k) = critj(k) = m. It follows thathorizonj(m) = k. Sincebj(m) < bj(m+ 1), it
follows by the definition ofhorizon that horizonj(m) > horizon;(m+1). By Proposi-
tion 3.6(a)critj(k) > m+ 1, which contradicts the fact thatitj(k) = m, and we are
done.

|

Thus the round following a critical time must be a clean round. In fact, this ob-
servation is not surprising following Section 3.3, since by Lemma 3.19 and by the fact

(m)

that horizon; (m) = k we have thaWi*” = 0, and thusnis the round in which/\/i(m) IS

reached. Itis immediate from the definition\Nﬂ{m) that the next roundn+ 1, must be
clean.

Another interesting property of clean rounds in our context is presented below.

Lemma 3.21 Let m+ 1 be a clean round. Thd®(m) U G;(m) = IP for every nonfaulty

process.
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Proof: Assume by way of contradiction that for some nonfaulthere exists am
and a procesg such thatm+ 1 is a clean round angl ¢ G;(m) U B;j(m). Sincei is
nonfaulty, we have € Gj(m+ 1), and sinceé knows aboutj’s faulty behavior at time
m+ 1, we havej € Bj(m+ 1), while we assumed ¢ Bj(m). Thus it must be the case
thatb;(m+ 1) > bj(m), which is in contradiction to the assumption that- 1 is a clean
round.

[

Notice that Lemmas 3.20 and 3.21 imply thatrifis a critical time of somé, then
Bi(m) UG;(m). Intuitively, Moses and Tuttle’s fixed-point construction (Figure 3.6) pro-
posed a similar claim, however their definitions of the sets of faulty and nonfaulty pro-
cesses, the sefisandSare a bit different than our definitions of good and bad processes.

Finally, we conclude this section by presenting the following lemma:

Lemma 3.22 Let ¢ be a fact about the firét— 1 rounds, let be a nonfaulty process in
r and assume th&= Gj(k—1). If (r,k—1) = Ds(¢) and roundk of r is clean, then
(r,k) = Eno.
Proof: Assume that round is clean, and thafr,k — 1) = Ds(¢). We shall prove that
(r,k) = En¢ by showing that for all nonfaulty processgswe have thatr, k) = K;¢.

Assume thaf is nonfaulty. We claim thaij(k — 1) = Bj(k— 1). Assume by way of
contradiction thaBj(k — 1) # Bj(k—1). Without loss of generality, assume that there
exists a process € Bj(k— 1)\ Bj(k—1). Thus, at timek process knows aboutzs
failure. Sincei is nonfaulty, we have thate Gj(k), and thusz € Bj(k). It follows that
Bj(k—1) # Bj(k), which contradicts the assumption tlais a clean round. Thus we
have thatBj(k — 1) = Bj(k— 1). Since roundk is clean, Lemma 3.21 implies that we
also haveS= Gj(k— 1) = Gj(k—1). It follows that(r,k— 1) |= Ds(¢). Notice that by
the definition ofG;(k — 1), all messages from processedp(k — 1) are delivered tg
successfully in round, and since we assume-&, we must have that, k) = Kj¢, and
we are done.

|
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One of the key results by Dwork and Moses [3], which is presented in Theorem 3.1,
is that following a clean round every fact that was previously distributed knowledge,
becomes known to all the nonfaulty processes. By Lemma 3.22, we see that the same
result holds in the omission model, in the contextt#an roundsas presented in this
section. It follows that our new definition @lean roundsplays essentially the same
role in the omission model as the original definition of clean rounds played in the crash
model; after a clean round all nonfaulty processes share a consistent view of the system.

3.5 A Run of CoNCON

In this section we discuss some interesting properties of theGDON protocol, of the
horizon, and of the sets of good and bad processes. We discuss these properties by
presenting an example of a runpf CONCON. In our examplen = 16,t = 6, and we

assume that processesnd j are nonfaulty.

The horizon Revisited

Intuitively, we describedhorizon; (k) as processs estimation of when facts about time
k will join the core. Figure 3.7 gives further intuition about therizon, by showing
horizon; andhorizon; as a function ok for two nonfaulty processesandj inr. Let us
point out some observations aboutvhich are illustrated in Figure 3.7. These observa-

tions follow from the properties of th@rizon which were described in Section 3.1.

e No processes are initially known to be faulty, ilg(0) = 0, and thusorizon; (0) =
t+1=7.

e Thehorizon increases by at most one in every round.

e Horizons at different processes are not necessarily the samehaizgpn;(9) =
14, while horizon;(9) = 15 (however, recall that the correct processes’ horizons
are identical at a critical time).
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e The graph shows the function’k) = k as a reference, since in a way it can be
thought of as an “asymptote” of therizon. If the system reaches a poitk) at
which bj(k) =t, i.e., all faulty processes have been discovered, then férak
we will havehorizon;(¢) = ¢+ 1. Indeed, in our example we can see that at any
time ¢ > 16, we havehorizon;(¢) = ¢+ 1.

20

15

s horizoni(k)
horizonj(k)
—f(k)=k

horizon(k)
S

Figure 3.7: The Horizon vkin a runr.

Critical Times Revisited

In Figure 3.8 we can see a graph of the critical tiroet; (k) as a function ok for r.

Notice the following observations:

e There are times which are not critical times, e.g., 12 is not the critical time of

anyk.

e If horizon;j(Kk) # horizonj(k) thenk cannot be a critical time. This follows from
Theorem 3.6, since K = critj(¢) of some time/, then it must be so for all non-
faulty processes In our examplehorizon;(12) # horizonj(12), and indeed 12 is

not a critical time.
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e If critj(k) = m, then we can check in Figure 3.7 and see that indleedon; (m) =
k. For example, Figure 3.8 shows tleait; (10) = 4, and in Figure 3.7 we can see
thathorizon;(4) = 10.

e Much like the graph of theorizon, we showf (k) = k as a reference, and similarly,
it can be thought of as an “asymptote” fit; (k), with crit; (¢) = { — 1 whenb; =t.

20

+ crit(k)
— f(k)=k

15 -

10 -

crit(k)

10 15 20

Figure 3.8: Critical time vskin a runr.

Good and Bad Processes Revisited

Our subtle definitions of the good and bad process are the basistafrtben computa-
tion, and are thus a key notion inOBICON. As discussed in Section 3.1, our definition
of Gi(k) uses’s knowledge at tim&+ 1, enabling to receive information about rourkd
from all processes i (k), and thus’s computation oB;(k) is based on the knowledge
of all the good processés; (k). The following properties are straightforward from the
definitions ofG andB, and can be seen quite vividly in Figure 3.9:

¢ Notice thatG;(k) andB;(k) are distinct sets, i.eG;(k) N Bj(k) = 0 for all k.
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e B;j is a monotonously nondecreasing set, Bgk) C Bij(k+ 1), andG; is a

monotonously nonincreasing set, i8;(k) O Gj(k+1).

e Another interesting property @ and G, which is a corollary of Lemma 3.21,
is that if m is a critical time of somé, i.e., m = critj(k), then we haves;(m) U
Gi(m) = P. For example, recall from the previous subsection tnaf(10) = 4,
and indeed we can see in Figure 3.9 tBa#) UG;(4) = P.

e By Lemma 3.20 it follows that round 5 must be clean, and indeed we can see that
bi(4) = bi(5).

0 5 10 15 k

Figure 3.9:G;j(k) andB;(Kk) inr.

Local Waste and Destination

Figure 3.10 showdest(k) andhorizon; (k) as a function ok. The following observations

may be seen from the graph:

e It is possible for several points), M to have the same destination. For example,

dest(9) = dest(10) = 14. Recall that for this reason the destination is not defined

ascrit; .
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e Process’s horizon atmis an estimation oflest(m). As we can see in Figure 3.10,
indeeddest(m) andhorizon;(m) are equivalent most of the time. By Lemma 3.19
we have that the connection betweenithgzon and the destination idest(m) =

(m)

horizon;(m) —W"", and thus the destination is different than toeizon at times

min WhiChV\/i(m) > 0. In our particular example, the only such times m= 12.

20

15 -

® 4 horizoni(k)
10 = o desti(k)
* — f(k)=k

Figure 3.10:dest(k) andhorizon; (k) inr.

Figure 3.11 illustrates the computation of the local Wawgf‘). The first graph,
3.11(a), presemﬁ[i(o)(k), and the second, 3.11(b) shoW@i(lz)(k). Observe that:

o Sinceﬁ\[i(o)(k) = bi(k), 3.11(a) in fact shows the number of bad processes as a

function ofk.

©)

¢ Notice thatin our exampM/™ = 0, since no failures are discovered “fast enough”

after time 0. On the other hand, as we can see in 3.11(b) bjficeincreases by

(12) _

2 in round 13, we have thaty 1

e In both graphs we presekt-mas a reference. Recall taf™ (k) = A¢™ (k) —

(k—m), and that the waste is reached when the diﬁere«i‘@@(k), is maximal. In
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the graphsdi(m)(k) is positive precisely Wheﬂ[i(m) (k) is over thek—mline. Thus
Whenﬂ\[i(m)(k) reaches its highest point over tke- mline, the waste is reached.

In our example fom= 12, the only time at Whictﬂ\[i(lz)(k) is over the line is at

k = 13, which is when the waste is reached.
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Figure 3.11: Local Waste




Chapter 4

Uniform Continuous Consensus

4.1 The UCC Problem

The continuous consensus problem specifies constraints only on the cores of nonfaulty
processes, guaranteeing nothing about faulty ones. Observe, however, that failures in our
models are not considered malicious—there is no lying and faulty behavior is closely re-
lated to crashing or communication malfunction. It is thus natural to consider a stronger
version of the problem, which we calhiform continuous consens($CC). The spec-
ification of UCC is similar to that of CC (see Section 3.1), except that Accuracy and
Consistency are required to hold for arbitrary processes and not just for nonfaulty ones.
Completeness, however, is still restricted to events that are known to nonfaulty pro-
cesses: If an evemte ‘£ is known to anonfaultyprocessj at any point, there € M;[K]
must hold (forall processes, of course) at some timie One can expect a solution to
UCC to be similar in spirit to ©ONCON, because the failures we consideoth in the
crash and the (sending) omission models, only affect the ability of a processntb
messages, so that even faulty processes receive all incoming messages. In this chapter
we consider how the @NCON protocol can be modified to obtainNUCONCON, an
optimal protocol for UCC.

As shown in [2, 5], simultaneously consistent behavior by all participants is closely
related to (standard) common knowledge, that is, the traditional notion equivalent to an

infinite conjunction of “everyone knows” (while in the previous chapter our analysis
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referred to common knowledge among the nonfaulty processes).

Common knowledge amoragl processes (see Section 2.6) and UCC are related in
the same way a8y and continuous consensus are, and a result analogous to Proposi-
tion 3.9 holds. Neiger and Tuttle [10] show that in our settings (crash and omission

failure models) the two notions of common knowledge coincide:

Theorem 4.1 (Neiger and TuttleR |= (C$ = Cn¢) for every formulap and FIP sys-
tem R.

Intuitively, the claim of Theorem 4.1 can be explained by the fact that failures in
these models affect only the ability of a process to send messages; even faulty processes
receive all incoming messages.

A natural question in light of Theorem 4.1 is whetheoI@CoN itself solves the
UCC problem. Unfortunately, it does not. The problem with usim@NCON is that a
faulty process might know of failures at timé but not tell the nonfaulty processes. If
x € Gx(k), then these failures will be countedlig(k) and will therefore play a role in
determininghorizony(k), but if x is silent from rounck+ 1 on, for example, then these
failures will not affect the calculations of other processes. An inconsistency bekgeen

core and those of the nonfaulty processes will arise as a consequence.

A protocol for UCC

We now present a variant ofdNCoN, called INICONCON, that solves the UCC prob-
lem. The WNICONCON protocol is based on the following intuition. Whether or not a
procesis faulty, it is still guaranteed in our models to receive all messages that are sent
to it. Moreover, ifg € Gy(k), then no nonfaulty process has discovered ¢hiatfaulty

by timek— 1. The information available tg at timek — 2 has thus been transmitted to
the (truly) nonfaulty processes in roukd- 1, and they are guaranteed to relay itxto
(and to all other processes) in roukdHence, a possibly faulty proces€an simulate

in roundk what a nonfaulty proceggwould compute two rounds earlier. As a result, it

is possible to design a uniform protocol that mimics the behavior@fiCoN as long
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as the distance to the horizon is three rounds or more. Special care needs to be taken
when the distance to the horizon becomes two rounds or one.

In this section we use j,X,z g € IP to denote processes in our system, such ithat
and j are nonfaulty processesandz arepotentiallyfaulty processes, anglis agood
process-

The UNICONCON protocol is given in Figure 4.1. We distinguish the values of
Latest, crit; andM; computed in @NCON from the corresponding values computed in
UNICONCON by adding the superscript to instances of the latter. On line 2 of the
protocol, the processchooses an arbitrary membgof Gy(k — 1) whose computation
in roundk — 2 of CONCON proces will simulate in roundk.? Notice thathorizong(k —

3) is available tox in roundk becausexs local state has a copy ofg(k — 2) (since
otherwiseg ¢ Gyx(k—1)). Lines 4, 5 and 6 of ICONCON play the same role as

lines 3, 4 and 5 of ©ONCON respectively. On lines 3 and 4 of \UCONCON process
simulates what a nonfaulty process would have computed two rounds earlier. Line 5
computes the critical time, distinguishing three distinct cases: there are special tests for
whether the critical time is one or two rounds back; when neither is the case, the process
uses the critical time obtained by simulating the critical round that a seemingly nonfaulty
process would compute indNCON. Finally, line 6 computes the core in much the same
way as in @NCON.

The correctness claim fortdCoNCoN is summarized by the following theorem:

Theorem 4.2Fix arunrin aFip system R. Let i be a nonfaulty process inr, let x be an
arbitrary process, and let k 1. Then M/[k] = M;[K].

The proof of Theorem 4.2 as well as intermediate lemmas used in its proof are pre-

sented in Appendix A.2. An immediate corollary of Theorems 4.1 and 4.2 is

Corollary 4.3 UNICONCON is an optimum protocol for Uniform Continuous Consen-

Sus.

1Good here stands simply for the fact tigat G(k) for some processat a certain timéx of interest.
2A processx can choose itself agas long ax € Gx(k— 1), so thatx does not know that it is faulty.
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UNICONCON(X)

0 Lates[(|«— —1forall¢>1

for every rounck > 1 do

1 send local state and receive messages accordimg to
2 g < arbitrary member o6y(k — 1)
if k>3 then
3 computeGg(k — 3), Bg(k— 3) andhorizong(k — 3)
> Xsimulates Q's behavior in CONCON :
4 Latesy [horizong(k—3)] < k—3
endif
k—1 if horizony(k—1) =k
5 cte— (k-2 if horizong(k—2) =k A horizony(k—1) #k
Latest'[k] otherwise
E(N) if c'=-1
6 MK < § E(Vgu1)(k=1)) ifc'=k=1>0
E(Voy(e)(c')) otherwise

endfor

Figure 4.1: Processs computation in Wi CONCON.




Chapter 5

Conclusion

In the present study we have presented and analyzed the continuous consensus (CC)
problem, which generalizes simultaneously consistent action in fault-prone synchronous
systems. Using a knowledge-based approach, a solution to the CC problem called C
CoN was presented, as well as its uniform variantjlOONCON. These protocols are

both simpleandoptimal Continuous consensus is closely related to common knowl-
edge. Moreover, the optimal solution to the CC problem is equivalent to computing all
the facts that are common knowledge. The definition of the CC problem sheds a new
light on the study of simultaneously consistent actions, and allows for a simpler and

more intuitive analysis.

5.1 Summary of Results

Continuous Consensus and GNCON. A continuous consensus service requires each
procesds to maintain at every tim& an up-to-date cor®l;[k] of information about the

past, so that the cores at all correct processes are guaranteed to be identical. A solution
to the CC problem in the crash and omission failure models c@lledCoN was pre-
sented. A striking aspect of the solution is its simplicity: At every round, each process
updates a single value based on a straightforward computation. Moreover, while the
solution is stated in the context of the full-information protocol, it can be implemented

in a more efficient manner.
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Optimality and Connection to Common Knowledge. Continuous consensus is shown

to be closely related to the problem of computing what is common knowledge at any
given point. It is shown that the contents of the chtgk| of any CC protocol is com-

mon knowledge among the nonfaulty processes at kinhoreover, it is shown that the
core computed in GNCON contains precisely all the facts that are common knowledge
at timek, which the derivesptimality of CONCON: the core produced by @NCON is

the largest possible core at any given time. Moreover, the cores of all correct protocols

for continuous consensus are subsets ONCON'’s core.

Uniform Continuous Consensus. The uniform variant of the continuous consensus
(UCC) problem requires thail processes, both faulty and nonfaulty, will maintain the
same core at all times. Our solution to UCC in the crash and omission models, called
UNICONCON, enables a potentially faulty processo compute in every rountl the

same coreas a nonfaulty processwould produce in ©NCON, i.e., Mj[k] = MgK].
Process performs this computation bgimulatingwhat a nonfaulty processwould

have computed according tooBCoON. Interestingly, the solution to UC@oes not

incur any degradation in the information contained in the core of shared information.
UCC is related to common knowledge amagit processes in the same way that CC

is related to common knowledge among the nonfaulty processes. The optimality of
UNICoNCoON follows from M; k] = M k]|, and from the equivalence in [10].

Clean Rounds. This work bridges a gap between the analysis of common knowledge
with crash failures in [3] and that for omission failures in [4]. In the case of crash
failures, clean rounds are rounds in which no new failures are discovered. However,
prior to this work no analogous definition of clean rounds was found in the context
of the omission model. The @NCoN and WNICONCON protocols presented in this
work, do, however, suggest a natural generalization of clean rounds to the omission
model. We define roun#l to becleanin this case ifbj(k— 1) = bj(k—2) holds for

every nonfaulty process We show that ifcritj(m) £ —1 then the identity otrit;(m),
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as well as the fact thatritj(m) + 1 is a clean round, become common knowledge at
time m. Moreover, it is shown that a clean round enables all “good” processes to send
their messages successfully, allowing the nonfaulty processes to have a consistent view
of the system at the end of this round. This key property of clean rounds plays a very
similar role in [3] and in the analysis in the present work.

Waste and Local Waste. The termlocal wastes defined as a direct generalization of

the termwastewhich was defined in [3]. Waste was defined in [3] in the context of the
crash model, as a key tool in the analysis of the question when facts about the initial state
of the system became common knowledge. Local waste extends this work, and allows
for the analysis of the time at which faabout time m become common knowledge.
Furthermore, using the analysis 0b8CoN, we show that the properties of waste and

local waste in the crash model apply to the omission model as well.

“Good” and “Bad” Processes. Our algorithms shed an interesting light on the dis-
tinction between evidence supplied by processes that are known to be faulty and ones
that are not. Recall that failures in the models we considered are benign. No process
ever deviates from the protocol by sending incorrect messages. Thus, every piece of in-
formation obtained from a process can be trusted. Nevertheless, the computation of the
horizon by processin roundk, and thus ultimately the times at which common knowl-
edge is obtained, depends only on the sdtaafprocesses;(k— 1). Thus, despite the

fact that information from faulty processes is correct, this central computation considers
only failures reported by thgood processes, i.e., the potentially nonfaulty processes.
This distinction seems an essential aspect of the evolution of common knowledge over
time in these models.
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5.2 Future Work

Our analysis has hitherto been restricted to the crash and sending omission models.
However, the continuous consensus problem is amenable to study and analysis in harsher
failure models as well. An extension to the current work [11] (work in progress) consid-
ers the CC problem in the generalized omission and the authenticated Byzantine failure
models. In the generalized model a faulty process may either omit to send messages
or fail to receive them, and thus a message failure does not uniquely identify a faulty
process. In the authenticated Byzantine model processes may lie, possibly without ever
being discovered as liars. Thus, in both these models it is not possible to ge@ider

bad processes solely based on the message loss in the system, as we did in Chapter 3,

which makes the analysis more subtle.

Despite these challenges, it is possible to prove an analogous result to Proposition 3.9
for these more complex failure models, i.e., to show that the ddrk], is common
knowledge at timé&. However, finding a solution to the CC problem which coincides
with all the events that are common knowledge (as we did in Chapter 3 for the sim-
pler models) may prove problematic in these models. For example, testing for common
knowledge in the generalized omission model was shown in [4] to be an NP-hard compu-
tation. Thus, amptimumsolution for CC in this model is NP-hard as well. Furthermore,
in the Byzantine model we may expect an optimum solution to be even more compu-
tationally complex. When we go beyond sending omissions, it is worthwhile to seek

tractablesolutions to the CC problem that are not necessaplymal

The authenticated Byzantine model [12] assumes that although faulty processes may
be “liars”, they cannot alter any relayed information. This assumption is enforced by
using an authentication scheme: all messages sent in the system are authenticated by un-
forgeable signatures. In the full-information protocol in this model, in every round each
process sends signedmessage encoding all the information it knows. More specifi-
cally, a process signs and relays every piece of information it receives. The nature of
the model enables us to monitor eveats the form “process claims thatp” for some
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process and propositionp € ®x. Oncei creates a signed message contairengo
other process can forge it.

A protocol called Acc (short forauthenticated continuous consensaslves the
CC problem in the authenticated Byzantine model, under the assumption that.

The protocol is fairly simple: When proceseeceives a message containing an ewent
signed by a sequence bt 1 distinct processes, it insedsnto its core. Intuitively, the

fact thatt + 1 different processes have signed and relaybdfore it reached process
guarantees that at least one of the signing processes is nonfaulty. This nonfaulty process
will have forwarded the message to all nonfaulty processes, which, in turn, are able to
sign and forward it. This guarantees that all nonfaulty processes simultaneously receive
a message regardimgyvith t + 1 signatures.

A variant of the Acc protocol is AccD (short for Acc with d signatures), in which
we assume > t, rather tham > 2t. In AccD, if procesd receives at tim& a message
containingd signatures by distinct processes about an eedot somed <t+1, it
insertse into M;[¢]. The time/ = k+t+ 1—d bares some resemblance to the idea
of the horizon in Chapter 3. Roughly, it is the time at whiehwith t + 1 signatures
would be delivered to all processes if there were at least nonfaulty processes in
the system. It can be shown that if a nonfaulty process receives aktammessage
bearingd signatures regarding an eventhen at time = k4t + 1—d, the event will
simultaneously appear in the core of all nonfaulty processes. In a sense this protocol is
early stoppingcompared to &C, since it requires to process the eveetat timek, but
e does not require any further attentionian later rounds.

The generalized omission model, in which processes may fail by either omitting to
send messages, or failing to receive them, is more complex than the sending omission
model, and yet simpler than the authenticated Byzantine model. A solution to the CC
problem in this model may be reached by either of the solutions we have seen for the
authenticated Byzantine model. However, some measures may be taken to improve any
of these protocols, by estimating the number and the identity of the faulty processes in
the run according to the omitted messages. This task is, of course, not as simple as in
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the sending omission model, since for example, the fact that pradeded to send
a message to processnay imply that either of these processes is faulty. Information
about failures in this model can be extracted by keeping trackcohélict graphamong
processes based on the omitted messages. For example, if a prbassonflicts with
more thant others, then it must be faulty. (The minimal vertex covers of the conflict
graph yield more detailed information about failures — see, e.g., [4]). Clearly, different
information about conflicts is known to different processes at any given time. A key
observation is that if we monitor information about conflicts in the core, then it is pos-
sible to use information about failures simultaneously and consistently by the different
processes. Once the core contains information determining that a process is faulty, this
process can be ignored, and the rest can act as if the liamthe number of failures
is reduced by 1. This allows the nonfaulty processes to consistently "shift gears” as a
result of failures appearing in the core.

The continuous consensus problem in the harsher failure models has a rich mathe-

matical and promises to provide exciting challenges and insights.
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Appendix A

Detailed Proofs

A.1 Optimality of C oNCON Revisited

In Theorem 3.10 we showed the’ [m] € M&[m] holds for aFiP P. In Lemma A.2 we

shall show that the same argument holds for an arbitrary protocol. Intuitively, since a
full information protocol requires that all processes send all of the information available
to them in every round, one would expect this protocol to give each process as much
information about events in the system as any protocol could. Thus we expect that the
core of aFIP will include at least as much information as that of any other protocol given
the exact same environment. We start by quoting the following lemma from [4], which

serves us in our proof.

Lemma A.1 (Moses and Tuttle) Let$ € d, letr be a run of a full-information-protocol

P, and letr’ be a run of an arbitrary protocdl, with the exact same execution graph as

r,i.e.,G'=G". If (Rp,r’,m) =Cno then(Rp,r,m) |= Cno.

The following lemma is a corollary of Theorem 3.10, which refers to an arbitrary
protocol,?, rather than &iP protocol.

Lemma A.2 Letr’ be arun of an arbitrary protoc@ that solves continuous consensus.

ThenMZ[m] € ME[m] for all m.
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Proof: Define a runr of a FIP P such thatG" = G"'. We have to show that for any
primitive factd, if ¢ € M[m], thend € ME[m]. Assumed € M [m]. By Proposition 3.9
we have that the contents dZ[m] is common knowledge, and thus in particular we
have that(r’,m) = C¢. Then by Lemma A.1 we have that aléom) &= Cd, which
implies thatd appears irV; [r,m|. The proof of Theorem 3.10 showed us tﬁ(a{t, m] C
MS[m] for every full-information-protocoP, i.e., that all the primitive facts that are
common knowledge im appear in the core, and thus we hadve Mic[m], and we are

done.
[ |

A.2 Correctness proofs for INICONCON

In this section we prove Theorem 4.2. The first part of the proof is broken down into a
number of claims. In the technical development below, keep in mind that the value of
everyhorizonj(m) is a function of therip execution and the values gfandm, but not

of the consensus protocol being followed (whethemConN or UniConCon).

Lemma A.3 For allxe P, m> 0 andg,g' € Gx(m+2), if horizong(m) # horizong (M),
then

horizong(m+ 1) < ier{rfqivrg}}horizoni(m).

Proof. Sincehorizong(m) # horizony (M), we have that eithétorizong(m) < horizong (m)
or horizong(m) > horizony(m). We consider each case separately. First assume that
horizong(m) < horizony(m). From the definition othorizon we have thatbg(m) >

by (m). It follows from the definitions 0By(m) andBy (m) that there exists a process
z € Gg(m) such thaz ¢ Gy (m). Sinceg,g € Gx(m+2), procesg receives a message
from g’ in roundm-+ 2, since otherwisg would tellx in roundm+ 3 thatg’ has failed to
send a message, and we would hgvg Gx(m+2). It follows thatg learns ofz's failure
from ¢’ in roundm+ 2, soz € Bg(m+1). It follows that at the end of rounah+ 2 we
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have thatg(m+ 1) > bg(m) + 1, and we obtaitorizong(m+ 1) < horizong(m). Since
bg(m) > by (M), and sincebg(m) is a nondecreasing function af, we also have that
bg(m+1) > by (m) + 1, sohorizong(m+ 1) < horizong (m).

Now assume thatorizong(m) > horizony (m). Again, from the definition ohorizon,
we have thatg(m) < by(m). It follows from the definitions ofBg(m) and By (m)
that there exists a processs Gy(m) such thatz ¢ Gg(m). Once again, sincg, g’ €
Gx(Mm+2), in particularg receives a message fraghin all rounds up tan+ 2, and thus
g € Gg(m+1). SinceBg(m+ 1) is based on the distributed knowledge of processes in
Gg(m+ 1) at timem+ 1, in particularBg(m+ 1) includes all processes known byat
timem+1 to be bad. Thus we ha®gy (m) C Bg(m+1). Sinceg € Gx(m+-2), it must
be the case thate Gg(m+ 1), since otherwis& would learn ofg being faulty in round
m+ 3. It follows thatZs failure is distributed knowledge at time+ 1 among the pro-
cesses isg(m+ 1), and thus by the definition &y(m+1), we have that € By(m+1).
SinceBy (m) C Bg(m-1) andz € Bg(m+1), it follows thatbg(m+-1) > by (m) +1, and
thushorizong(m+ 1) < horizony (m). Sincehorizony (M) < horizong(m) by the assump-
tion, we havehorizong(m+ 1) < horizong(m), and we are done.

The next two lemmas provide the formal justification for the choice of critical time
in the first two cases of line 5 of theNCoONCON protocol, whererity is not chosen
according to the value dfatest'[k]. The first captures the fact that once the horizon is
one round away for at least one processt &llty processes are known to the nonfaulty
processes, and the identity of the faulty processes becomes common knowledge.

LemmaA.4 If risarunx,ze P, andk > 1, then:
(@) if horizony(k—1) =k then Gz(k—1) = Gx(k—1);

(b) horizong(k—1) =k iff horizon,(k—1) = k.
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Proof: By definition ofhorizon, we have thatorizony(k— 1) = k+t —bx(k—1). Hence,

if horizonk(k—1) = k thenby(k— 1) =t. Let G* = Gx(k—1) andB* = Bx(k—1). By
the definition ofBy(k — 1) and the fact that is an upper bound on the number of faulty
processes, it follows that

(R r,k—1) = Dex(the set of faulty processes is B)

and

(R,r,k—1) = Dgx(the set of nonfaulty processes is G¥).

Every seiG,(m) is guaranteed to contain all nonfaulty processes BinceG* = Gy(k—
1) is the set of nonfaulty processes, it follows tka{k — 1) O Gy(k—1) = G*. As a
result, the two facts above are distributed knowledge among the proces3g& inl)
as well. SinceG;(k— 1) NB;(k—1) = 0, we conclude thaB,(k— 1) = By(k— 1) and
Gz(k— 1) = Gy(k—1). The latter yields part (a) of the claim. By the former, we have
thatb,(k— 1) =t and schorizon,(k— 1) = k. This establishes the only-if direction of the
claim in part (b). Switching the roles afandzin the proof yields the other direction of
(b) and we are done.

|

LemmaA.5 If r is a run,i,x andg are processes such thais nonfaulty inr, and
g€ Gy(k—1), k> 1, andhorizonk(k— 1) # k, then:

(a) if horizong(k—2) =k then Gg(k—2)=Gj(k—2);
(b) horizong(k—2) =k iff horizonj(k—2) = k.

Proof of A.5(a): Sincei is nonfaulty, we have thatg € Gy(k— 1), and thus the rounk
messages of botg andi are received bx. Assume, by way of contradiction, that
Gy(k—2) # Gj(k—2). Thus, there are two distinct cases:

(1) Gg(k—2)\Gij(k—2)#0: Letze Gy(k—2)\Gij(k—2). By the definition of
Gy(k—2), sincez € Gg(k—2), we have that ¢ By(k—2). Recall thaBy(k—1) is
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computed according to the distributed knowledge of procesgeg l+ 1). Since
i,g € Gx(k— 1), we have thaBy(k— 1) includes all processes known to either

gattimek—1to be bad. ThuByg(k—2) C By(k—1) andze By(k—1). Now since
z¢ By(k—2), we have thaBy(k— 1) = Bg(k—2) U{z}. Sincehorizong(k—2) =k

by the assumption, we hawerizong(k—2) = (k—2) + t+1 — by(k—2) =Kk,

and thusbg(k—2) =t — 1. Hence we have tha(k—1) = bg(k—2) +1= (t —

1) +1=t. It now follows thathorizony(k— 1) = (k— 1) +t+1—by(k—1) =Kk,

contradicting the assumption thadrizony(k — 1) # k.

(2) Gi(k—2)\Gg(k—2) #0: Letze Gj(k—2)\Gg(k—2). In this case, too, we
distinguish two distinct cases. 2& Bg(k— 2), then this case is very similar to (1),
and thus by using essentially the same argument, again we reach a contradiction.
On the other hand, assume& By(k — 2). Thuszs faulty behavior is distributed
knowledge among the processe$5g(k — 2), and thus at tim&— 2 some process
Z € Gy(k—2) knows thatz is faulty. It is easy to see that fails to send its
messages toin roundk — 1, since had it successfully sentitgorocess would
have known that is faulty, causingz ¢ Gj(k — 2). SinceZ fails to send td in
roundk — 1, we haveZ ¢ Gj(k—2). SinceZ € Gg(k— 2), by the definition of
Gg(k—2) we have that' ¢ By(k—2). Again, as in (1), Sinceg € Gy(k—1), we
have thaBy(k— 1) includes all processes known to either g at timek — 1 to be
bad. ThusBy(k—1) = By(k—2) U{Z}, and again we havie,(k— 1) =t, which
implies thathorizony(k — 1) = (k—1) +t+ 1 —by(k— 1) = k, contradicting the
assumption thatorizony(k— 1) # k.

Proof of A.5(b): For part (b), our proof consists of two parts:

(1) We firstassume thabrizong(k—2) =k and show thaltorizon; (k— 2) = horizong(k —
2). Assume, by way of contradiction, thiadrizon; (k — 2) # horizong(k—2), i.e.,
eitherhorizon; (k— 2) < horizong(k— 2) or horizonj(k— 2) > horizong(k— 2). We
shall handle each of the two cases separately.
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(2)

horizon j(k—2) < horizon g(k—2): By our assumption for part (b) we have that
horizong(k — 2) = k, and thus ifhorizonj(k — 2) < horizong(k — 2), then it must
be the case thatorizonj(k — 2) < k— 1. By definition ofhorizon, and since the
number of bad processes is boundedt bwe havehorizonij(k—2) = (k—2) +
t+1-bi(k—2) > (k—2)+t+1—t=k—2. Since botthorizonj(k—2) < k—
1 andhorizonj(k — 2) > k— 1, we have thahorizonj(k—2) = k— 1. Since by
definitionhorizonj(k— 2) = (k—2) +t+1—bj(k— 2), we have thab;(k—2) =t.
From the definition ofB;(k — 2), we have thaB;(k —2) C Bj(k— 1), and thus
bi(k—2) < bj(k—1). It follows thatb;(k— 1) =t, and thushorizon;(k— 1) =
k. By Lemma A.4(b) we obtain thatorizonk(k — 1) = k, which contradicts the
assumption thatorizong(k — 1) # k.

horizon j(k—2) > horizon g(k—2): By the definition ofhorizon, it follows that
bi(k—2) < bg(k—2). It then follows thatB;(k — 2) # Bg(k— 2), and thus from
the definitions ofBj(k — 2) andBy(k — 2) we have thaG;j(k — 2) # Gg(k — 2),
althoughhorizong(k — 2) = k by the assumption, which contradicts part (a). We
have shown that ifiorizong(k — 2) = k thenhorizon;(k—2) = k.

For the second half of the proof, we assume tatzon;(k — 2) = k, and we
have to show thaitorizon;j(k — 2) = horizong(k — 2). Again, we assume by way
of contradiction thahorizon;(k — 2) # horizong(k — 2), and distinguish the two

possible cases.

horizon j(k—2) > horizon g(k—2):  The proof is similar to théirst half of (1).

horizon j(k—2) < horizon 4(k—2): By the assumption we have ttatrizon; (k—
2) =k, and thus it is easy to see from the definitiorhofizon we have thab;(k —
2) =t— 1. Sincehorizon;j(k—2) < horizong(k — 2), by the definition othorizon
we have thabj(k—2) > bg(k—2). Hence there exists a process Bj(k—2) \
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Bg(k—2). Thuszs faulty behavior is distributed knowledge among the processes
in Gj(k—2), and thus at tim& — 2 some process € Gj(k— 2) knows thatz is
faulty. Sincez ¢ By(k — 2), it follows thatZ ¢ Gy(k — 2), since otherwise the
faulty behavior ofz would be distributed knowledge amoi@y(k — 2), causing

ze By(k—2). SinceZ € Gj(k— 2), by the definition ofG;(k — 2) we have that

Z ¢ Bj(k—2). Sincei,g € Gx(k— 1), we have thaBy(k— 1) includes all processes
known to eitheri or g at timek — 1 to be bad. As we have seet¢ Bj(k— 2),

and thusBy(k— 1) = Bg(k—2) U{Z}. It follows thatby(k—1) =bj(k—2)+1=
(t—1)+1=t, which implies thahorizony(k— 1) = (k— 1) +t+1—by(k—1) =Kk,
contradicting the assumption thatrizony(k — 1) # k.

We are now ready to prove that the critical tieré; (k) chosen in WliiCoNCON by
an arbitrary processis the same as the corresponding tiong (k) that is chosen in the
samerIP execution by a nonfaulty process in the @CoN protocol.

Lemma A.6 Leti be a nonfaulty process mletx be an arbitrary process, let- 1, and
letg € Gx(k—1). If horizony(k— 1) # k andhorizong(k— 2) # k, thencrity (k) = crit; (k).

Proof: Letm= critj(k). By lines 3 and 4 of ©NCON, it follows thatk = horizon;(m).
By Lemma A.5(b),horizong (k — 2) = K iff horizonj(k—2) = k for all g’ € Gx(k—1).
Hence, sincénorizony(k — 1) # k andhorizong(k — 2) # k, we have thatrity (k) is as-
signedLatest/[k] in the third case of line 5 in NICONCON. By line 5 of the pro-
tocol, we thus have thatrity(k) < k— 3. Also notice thathorizon;(k — 1) # k and
horizonj (k— 2) # k by Lemmas A.4(b) and A.5(b) respectively, and thrtig (k) < k— 3.
We claim thatcrity (k) = critj(k). Assume, by way of contradiction, thetity (K) #

critj(k). We consider two distinct cases.

e First, suppose thatrity (k) < critj(k). We claim thathorizong(m) = horizon;(m)

for all g € Gx(m+2). Assume, again by way of contradiction thatizong(m) #
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horizonij(m). Then we have by Lemma A.3 thabrizon;j(m+ 1) < horizon;(m).
By assumptionm = critj(k), and in particulatorizon;(m) = k. It follows that
horizon;j(m+ 1) < k. By Proposition 3.6(a) we have thetitj(k) > m+ 1, which
contradicts the assumption that= criti (k). We have proved thaiorizong(m) = k
for all g € Gx(m+2), and thus in rounan+ 3 when process executes line 4 of
UNICONCON, it assignsLates}/ k] the valuem. Notice thatLatest'[k] may be
updated again on line 4 of the protocol at a later roirdn+ 3, but it can then be
assigned only values—3 > m. It follows thatLates§ k] > m. Recall that we have
shown thatritj(k) < k— 3, which implies thak > m+ 3. SinceLates}/[k] > m
holds at timem+- 3 and at any later time, it follows thatity (k) > m = crit;(k),

contradicting the assumption thaity (k) < crit; (k).

e Now suppose thatrity (k) > critj(k). Let crity(k) = m" > —1. Thus by lines 4
and 5 of INICONCON for someg € Gx(m" 4 2) we have thahorizong(m") = k.
We shall prove thatorizong(m") = horizon;(m"). Assume by way of contradiction
thathorizong(m") # horizon;(m") then by Lemma A.3 we hav@rizon;(m" + 1) <
horizong(m) = k. Thus by Proposition 3.6(a), we have thaity (k) > m" + 1,
which is in contradiction to the fact thafity(k) = m". We have shown that
horizong(m") = horizon;(m"), i.e., thathorizon;(m") = k. By Proposition 3.6(b)
we obtaincritj (k) > m" = crity(k), contradicting the assumption therty (k) >

critj(k), and we are done.

We can now finally prove the correctness afilCoONCON:

Proof of Theorem 4.2: We first argue that processhas access to all of the data
necessary to carry out the actions specified in every lineNafddNCON. Since knowl-
edge is defined with respect to the fixed system of runs oftheprocessx can de-
termine the identity of the members Gf(k — 1) at timek. Hence,x can perform the

choice ofg € Gx(k—1) on line 2. Moreover, observe that for evegyc Gx(k— 1), at
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time k proces has a copy oWy (k') for all k' < k— 1. It follows thatx can compute
horizong(k — 3) used on line 4, as well asorizong(k — 2) used in the middle case of
line 5. Finally, it can comput& (Vg k—1)(k—1)) andE(Vg, (e (c’)) whenc! < k—1,
and thus is able to perform the commands on line 6.

It remains to show thatrity (k) = critj (k) and thaiGi(c) = Ggy(c) for all g € Gy(k—
1). Fromline 6 in NICONCoON and line 5 in @NCON, it will then follow thatMg[k] =
Mi[k]. Notice that line 5 of WiICoNCON assigns one of three valuesdoty (k). Thus
in our proof we handle the three possible assignments on line 5 as three distinct cases.
Theses cases are indeed distinct since each of the first two cases in the assignment on
line 5 implies that the value afrity (k) is kK— 1 ork — 2 respectively, while the third case
on line 5 assign&atest' [k| to crity (k). Notice thatLatest'[k] is last updated in some
roundm < k on line 4 of INICONCON, and thus the value assignedltates} [k] was
m— 3. ThusLates}/ [k] = m—3 < k— 3, and thus in the third case of line 5 we necessarily
havecrity (k) < k-— 3.

crity(k) =k—1: By line 5 of UNICONCON we have thahorizonk(k— 1) = k. Thus,
by Lemma A.4(b) we also have thiadrizon; (k— 1) = k, and hencerit; (k) = crity (k) =
k—1. By Lemma A.4(a) we have tha&,;(k—1) = Gj(k—1) for all z€ P, and in
particularGy(k — 1) = Gj(k— 1). It follows thatMj [k] = M;[K].

crity(K) = k—2 :  Sincecritg(k) = k— 2, by line 5 of INICONCON we have that
horizong(k — 2) = k for someg € Gy(k— 1), and also thahorizony(k — 1) # k. By
Lemma A.5(b) we have thatorizon;(k— 2) = k, and by Lemma A.4(b) we have that
horizonj(k— 1) # k. Thus, in roundk — 1 on line 3 of @NCON process assignk — 2

to Latest[k|, andLatest[k] is not updated in rouni. It follows thatcritj(k) = k— 2. By
Lemma A.5(a) we have th&y(k — 2) = Gj(k—2), and we again obtain thad} k] =

M; [K].
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crity(K) < k—2: This case applies only ik > 2. By Line 5 of UNICONCON, in
this case we have thatity (k) = Latesf'[k]. Moreover, by Lemma A.6 we have that
crity (k) = crit; (k). Letc = crit! (k) = crit; (k). It remains to show thai (c) = Gy(c). Set
g € Gx(k—1). Assume by way of contradiction th&(c) # Ggy(c). First we claim that
bi(c+1) > bi(c). Notice that in rounat + 2 bothi andg receive each other's messages,
sinceg € Gx(c+ 2), andi is nonfaulty. If there exists @ € Gj(c) such thatp ¢ Ggy(c),
then processlearns ofp’s failure fromg in roundc+ 2, and moreoverp € Bj(c+ 1),
and thusbi(c+ 1) > bi(c). On the other hand, if there existspaZ Gi(c) such that
p € Gy(c), then it must be the case thdearns ofp’s faulty behavior in rouna¢+ 1, and
thus p ¢ Bj(c). However,p € Bij(c+ 1), and thus agaity(c+ 1) > bi(c). Thus, in all
casedi(c+ 1) > bi(c), and by the definition ofiorizon we have thahorizonj(c+ 1) <
horizon;(c). Thus, by the definition of, we have thahorizon;(c+ 1) < k. Now, from
Proposition 3.6(a) we obtain thettit;(k) > c+1, i.e., thatt > c+ 1, which contradicts
our assumption, and we are done with the third case.

|



