
Continuous Consensus via Common Knowledge

Tal Mizrahi∗ Yoram Moses†

Continuous consensus is the problem of having each process i maintain at each time k an
up-to-date core Mi[k] of information about the past, so that the cores are guaranteed to be iden-
tical. A simple algorithm for continuous consensus in fault-prone systems called CONCON is
presented, based on a knowledge-based analysis. Continuous consensus is shown to be closely
related to common knowledge. Via this connection, the characterization of common knowledge
in systems with crash and omission failures by Moses and Tuttle is used to prove that CONCON

is optimal—it produces the largest possible core at any given time. Finally, we modify the
CONCON algorithm to obtain a uniform solution, in which all processes (faulty and nonfaulty)
obtain the same core information at any given time.

1. Introduction

Agents in a given setting, whether players in a game or processes executing a protocol in a distributed com-
puter system, typically have asymmetric information. Part of this information—the facts that are common
knowledge—is identical for all agents and, moreover, can in principle be identified by each agent. By act-
ing on information that is common knowledge agents are guaranteed to be acting on consistent information
available to all agents. This connection was perhaps first drawn by David Lewis in his work on conventions,
which led to the original definition of common knowledge [1]. The role of common knowledge for consis-
tent simultaneous actions has been firmly established in the literature [2, 3, 4, 5]. Dwork and Moses in [3]
presented an optimal solution to simultaneous Byzantine agreement in the presence of crash failures. They
proved that simultaneous agreement can be reached exactly when the value of at least one agent’s initial vote
becomes common knowledge. Moses and Tuttle in [4] extended this work to the more complex omission
failure model, and presented optimal solutions for a broader class of simultaneous choice problems. Implicit
in the latter work is the computation of a core of information that characterizes the common knowledge at
any given point in time. This computation is based on a subtle fixed-point construction. The current paper
extends both of these works by presenting a simple and intuitive algorithm for computing the information
about the past that is common knowledge. Two varieties of the continuous consensus task are defined, which
further generalize simultaneous choice problems. In both [3] and [4], as well as in the current paper, it is
assumed that the processes operate in synchronous rounds of communication and there is an a priori bound
on the overall number of potentially faulty processes. While some practical systems work in a synchronous
setting very close to this one [7, 8], many do not. Nevertheless, it is often practical to maintain a core that is
updated relative to a given time period on a daily, hourly, or per-minute basis.

Maintaining consistency of the information held by different nodes in an unreliable distributed system
is a challenging problem. Moreover, providing an up-to-date consistent picture at different sites of the

∗dew@tx.technion.ac.il, Department of Electrical Engineering, Technion, Haifa, 32000 Israel.
†moses@ee.technion.ac.il, Department of Electrical Engineering, Technion, Haifa, 32000 Israel. Work on this paper was

performed in part during a sabbatical at the School of Computer Science and Engineering, The University of New South Wales,
Sydney, NSW 2052, Australia, where it was partially supported by ARC Discovery Grant RM02036.

system can sometimes aleviate the need to explicitly activate voting or agreement protocols to handle indi-
vidual transactions [6]. Weaker guarantees than simultaneous consistency are popular, where consistency is
guaranteed over time: If one process can determine that an event has occurred, the others will eventually
know this as well [9]. These weaker consistency conditions are essential in some systems since simulta-
neous coordination requires nontrivial common knowledge, and this is not attainable in truly asynchronous
systems [2].

We now specify our problem more formally. With respect to a set E of monitored events, we would like
each process i to hold a copy of a shared list of events of E . This list may include the events that took
place and, depending on the application, possibly additional information such as the times and locations at
which they occurred. We define a continuous consensus (CC) service to be a distributed protocol that at all
times k ≥ 0 provides each process i with a core Mi[k] of annotated events of E . In every run of this protocol
the following is required to hold for all nonfaulty processes i and j.

Accuracy: All events in Mi[k] occurred.

Consistency: Mi[k] = Mj[k] at all times k.

Completeness: If an event e ∈ E takes place at a process j at any point, then at some later time k a record
of e’s occurrence will appear in Mi[k].

The consistency property guarantees that the information in the local lists is in fact shared among the non-
faulty processes at any given time. Since an event can enter Mi[k] for some nonfaulty process i, only if it
also enters the lists Mj[k] for all other nonfaulty processes j, it follows that a process i may know of the
occurrence of a monitored event e ∈ E long before i can add e to its list Mi[k]. In many cases it is, of
course, desirable to have the shared list in a continuous consensus application be as up-to-date as possible.
A variant of this problem, which we call uniform continuous consensus (UCC) is defined similarly, except
that the processes i and j are arbitrary, and may be faulty in the run.

We shall use standard techniques from [2] to show that in any implementation of CC the information
in the lists Mi is guaranteed to be common knowledge. Our solutions for CC and UCC, called CONCON

and UNICONCON, will be optimal in providing at any given time the largest and most informative core
possible by any protocol. This is proven using the characterization of common knowledge in the crash and
omission failure models given in [4]. Interestingly, the solution to UCC does not incur any degradation in
the information contained in the core of shared information.

The structure of CONCON and UNICONCON provides insight into how common knowledge comes about
in synchronous systems with failures. The analysis in the crash failure model showed that clean rounds are
central to common knowledge in that model [3]. In the crash failure model, a round of communication is
clean if no new failure is discovered in the round. Following a clean round, all processes can have the same
information about the past. Once it is common knowledge that a round was clean, the information available
to nonfaulty processes before this round becomes common knowledge. In the omissions model, no natural
notion analogous to a clean round was found. Indeed, a process failure can be discovered by a faulty process
in one round, and then passed on to nonfaulty ones in a much later round. As a result, the round in which
a failure is discovered is no longer a very useful measure. The CONCON protocol suggests a more subtle
definition in the omission model that serves an analogous role. The failures we consider are benign, in the
sense that faulty processes never send incorrect messages (“lies”). Nevertheless, information obtained from
a process that is known to be faulty has a qualitatively different value compared to information received
from a process that appears to be nonfaulty.

This paper is organized as follows. The next section provides definitions of the formal notions used in
the paper. Section 3 presents the CONCON protocol for continuous consensus and proves its correctness.
Section 4 relates continuous consensus to common knowledge. Results from [4] are used to prove that the

CONCON protocol yields a maximally up-to-date solution for continuous consensus. Section 5 presents
the UNICONCON protocol, which provides an optimal uniform solution to continuous consensus in which
all processes (including the faulty ones) are guaranteed to have the same core at all times. Finally, a few
concluding remarks are presented in Section 6. Proofs that do not appear in the body of the paper appear in
the appendix.

2. Preliminaries

Our treatment of the continuous consensus problem will be driven by a knowledge-based analysis. A general
approach to modelling knowledge in distributed systems was initiated in [2] and given a detailed foundation
in a book on the subject [5] (most relevant to the current paper are Chapters 4 and 6). The lion’s share of
technical analysis in this paper will be performed with respect to a single protocol, which gives rise to a
specific class of systems. For ease of exposition, our definitions will be tailored for this particular setting.

The Communication Network

We consider a synchronous network with n ≥ 2 possibly unreliable processes, denoted by P = {1,2, . . . ,n}.
Each pair of processes is connected by a two-way communication link. Processes correctly identify the
sender of every message they receive. They share a discrete global clock that starts out at time 0 and advances
by increments of one. Communication in the system proceeds in a sequence of rounds, with round k + 1
taking place between time k and time k+1. Each process starts in some initial state at time 0. Then, in every
following round, the process first sends a set of messages to other processes, and then receives messages
sent to it by other processes during the same round. In addition, a process may also receive requests for
service from clients external to the system (think, for example, of deposits and withdrawals at branches of a
bank), or input from sensors with information about the world outside of the system (e.g., smoke detectors).
Finally, the process may perform local computations based on the messages it has received. The history of
an infinite execution of such a network will be called a run.

Nature’s Role: Inputs and Failures

We think of a solution to the continuous consensus problem as a protocol operating (or playing) against an
adversary called nature. Nature determines two central aspects of any given run: Inputs and failures.

Inputs. We have the set of monitored events E and for every process i a set of initial local states Σi.
Nature determines the initial states of the processes and the external inputs they receive in every round. We
represent the external inputs in an infinite execution as follows. Define a set V = P×N of process-time
nodes (or nodes, for short). An (external) input assignment is a function ζ associating with every (initial)
node 〈i,0〉 at time 0 an initial state from Σi and with each node 〈i,k + 1〉 an input from E . The structure of
the elements of E will not concern our analysis.

Failures. The second aspect of a run that is determined by nature is the identity of the faulty processes,
and the details of their faulty behavior. These depend on the particular failure model being assumed. In
this paper we consider two closely-related failure models, called crash and omission. For simplicity, a
process will be considered faulty in a run if it displays faulty behavior at any point during the run. In the
crash failure model, a faulty process crashes in some round k ≥ 1. In this case, it behaves correctly in the
first k − 1 rounds and sends no messages from round k + 1 on. During its crashing round k, the process
may succeed in sending messages on an arbitrary subset of its channels. In the omission model, a faulty

process may omit to send messages in any given round. It sends messages only according to its protocol
(it cannot misrepresent or lie), and nature determines for every round what subset of its messages will
successfully be delivered. We remark that even faulty processes receive all messages sent to them over non-
blocked channels. If a message is not delivered, its sender is necessarily faulty. We formally represent the
failure pattern in a given run via an edge-labelled graph (V,E,β), where V is the set of process-time nodes
defined above, and E = {(〈i,k〉,〈 j,k + 1〉) : i �= j,k ≥ 0}. An edge e = (〈i,k〉,〈 j,k + 1〉) ∈ E stands for the
round k +1 communication in the channel from i to j. The labelling function β : E →{Y,N} captures when
such channels are blocked and when they operate correctly. Intuitively, β(e) = N means that e is blocked for
communication, while β(e) = Y means that it is not blocked. In the latter case, a message on e, if sent, will
be delivered.

Nature’s combined contribution to a run r is captured by an execution graph. This is a labelled graph
Gr = (V,E,ζ,β) with labels ζ to the vertices giving the input assignment and labels β to the edges defining
the failure pattern.1 Notice that all execution graphs over n processes have the same edge and vertex sets
(V,E)—a complete grid of n×N nodes, with edges from each node u∈V at level k to all nodes of level k+1
with a process name different from u’s. Different execution graphs G differ only in the labelling functions
ζ and β. Figure 1(a) contains an illustration of the nodes of an execution graph, with some of the edges
describing round k + 1. Observe that all edges from one time point to the next are in the graph—some
crossed, depicting their being blocked by β, while the others are available for communication.

We now consider particular subgraphs of G = (V,E,ζ,β) that will be useful later on. Define the β-closure
of a node u ∈ V with respect to G, denoted Vu, to be the smallest set containing u that satisfies for all
v,v′ ∈ V both (i) if β(v,v′) = Y and v′ ∈ Vu then v ∈ Vu and (ii) for all j ∈ P and k ≥ 0, if 〈 j,k + 1〉 ∈ Vu

then 〈 j,k〉 ∈ Vu. Intuitively, the β-closure will contain all nodes about which u can receive information
either directly or via a sequence of messages. We define the maximal potential view (or view for short) at
node u = 〈i,k〉 in G, denoted by Vi(k), to be a subgraph generated by the β-closure of u. More formally,
Vi(k) = (Vu,Eu,ζ � Vu,β � Eu) where Eu = E � Vu is the restriction of E to the nodes of Vu, and similarly for
the ζ and β functions. See Figure 1(a) for an illustration of a view Vi(k). Later on we will use the extension
of a view to sets of processes S ⊆ P, where VS(k) is defined to be the union of the graphs Vj(k), over all
j ∈ S.

Full-Information Protocols

A full-information protocol (FIP) is one in which processes have perfect recall and observe all incoming
messages and external inputs that they receive. Moreover, in every round, every process sends a message
encoding all of its information to all other processes. It is not hard to show that in any such protocol a process
is able to reconstruct Vi(k) from its information at time k. Without loss of generality, we will assume for
the sake of concreteness that the local state of a process is maintained in the form of a view Vi(k), and the
message sent by i in round k + 1 is Vi(k).

Since in a FIP a message is sent on every channel in every round, the execution graph describes all aspects
of a run: What inputs are received by the processes, which processes are faulty, and, for every message,
whether it is delivered or not. Moreover, the contents of delivered messages can also be derived from the
graph G. From now on we shall identify a run r of a FIP with its execution graph Gr. It is a folk theorem,
perhaps first shown by Coan [10], that any deterministic protocol can be simulated by a FIP.

1The run r appears in the superscript of Gr. Throughout the paper, we omit explicit reference to the run whenever it is clear from
context.

Systems and Knowledge

Generally speaking, we identify a system with a set R of runs. For a general protocol, a run r is an infinite
sequence of states, and there is a well defined local state ri(m) for every process i and time m. For the
FIP we identify runs with execution graphs, while in general every execution graph will determine a run
of a protocol P (cf. [4, 5]). The systems that we study in this paper are thus parameterized by a five-tuple
(n, t, fm,Σ,E), where n ≥ 2 and 0≤ t ≤ n−2 and fm∈ {crash,omission} is a failure model. Σ = (Σ1, . . . ,Σn)
assigns a nonempty set of initial states Σi for every process, and E determines monitored inputs. The exact
identity and internal structure of Σ and E is application-dependent, although to avoid degeneracies we
assume that |E | > 1 and |Σi| ≥ 1 for every i ∈ P. A FIP system R = R(n, t, fm,Σ,E) is defined to be the set
of all runs of the FIP with n processes, at most t of which fail according to the failure model fm, and where
the input assignment assigns local states and external inputs from Σ and E , respectively.

Our analysis makes use of the knowledge that processes achieve at different times in various runs. As is
standard in the literature, formulas will be considered true or false at a point, which is a pair (r,m) consisting
of a run r ∈ R and a time m ∈ N. Moreover, since notions of knowledge typically depend on truths at points
in runs other than the current one, we shall define truth with respect to a system R. Let Φ = {p,q, p′, . . .} be
a set of propositions. Intuitively, a proposition is a basic primitive fact. An example of a relevant proposition
in the context of continuous consensus is “ζ(i,k) = e”, stating the occurrence of the event (or input) e ∈E at
a given process i at time k. We will also consider propositions that state what the contents of the core Mi[m]
are. Given a system R, each proposition p ∈ Φ is identified with a set [[p]] of points of r. A proposition
p ∈ Φ holds at (r,m), which we denote by (R,r,m) |= p, if (r,m) ∈ [[p]].

We construct a logical language L by closing Φ under Boolean connectives ∧ and ¬, and under modal
knowledge operators Ki, DS, C and CN where i ∈ P and S ⊆ P is a set of processes. Here Ki stands for
process i’s knowledge, DS corresponds to the distributed knowledge that is implicit in the set of processes S,
C stand for common knowledge, and CN stands for common knowledge among the nonfaulty processes. The
semantics of the Boolean operators is standard, and we now review the definitions for Ki and DS. Common
knowledge will be considered in Section 4. The formal definitions (cf. [5]) of satisfaction for knowledge
and distributed knowledge formulas are briefly stated as follows:

(R,r,m) |= Kiϕ iff (R,r′,m′) |= ϕ for all points (r′,m′) with r′ ∈ R such that ri(m) = r′i(m
′).

(R,r,m) |= DSϕ iff (R,r′,m′) |= ϕ for all points (r′,m′) with r′ ∈ R such that rj(m) = r′j(m
′) holds for

all j ∈ S.

A process knows ϕ by this definition if its local state (which captures the information it has access to)
implies that ϕ holds. Distributed knowledge is defined similarly, but is based on the combined information
available to the members of a set S of processes. In a full-information protocol, the distributed knowledge
of S is equivalent to the knowledge of a process that would have as its local state at every point (r,m) of R
the view Vr

S(m).
Knowledge in the FIP has a number of unique properties. For example, suppose that process i receives

messages in round k + 1 from the processes in the set S. Then by construction, VS(k) is contained (as a
subgraph) in i’s view Vi(k+1) at the end of the round. This immediately implies that all facts about the past
that are distributed knowledge to S at time k are known by i at time k + 1. This observation plays a role in
the solution to the continuous consensus problem described in the next section.

3. The CONCON Protocol

The existence of communication failures in a system may hinder processes to obtain a consistent view of the
world. Information that one process receives in a given round might not reach another process in that round

…
…

…

… … …

|

|

|

1

i

n

10 k k + 1

…

…

…

…

…

…

Vi (k + 1)
〈i, k +1〉

(a) An execution graph and i’s view Vi(k +1).

…

|

1

i

n

0 k k + 1

…

…

…

…

…

…

〈i, k +1〉

Bi (k)

Gi (k)

|

|

(b) Sets Gi(k) & Bi(k) are based on Vi(k +1).

Figure 1: An execution graph and its use in CONCON.

if the sender fails to deliver it to the second process. A vast literature shows that agreeing on even the value
of a single bit is a nontrivial task in such a setting. The continuous consensus task aims to achieve more
than this. It strives to make all interesting events part of a shared core of information, while continuously
maintaining the consistency of this core across all nonfaulty processes. The early work on simultaneous
agreement [3] allow a solution in which every monitored event triggers an agreement process that results in
its inclusion into the shared core. The analysis of common knowledge carried out in [3, 4, 11] demonstrated
that it is possible to compute the core without need for separate treatment of every input item. In fact, a
core can be obtained using the subtle fixed-point construction of [4]. What we shall show is that ideas in the
spirit of the simpler analysis of simultaneous agreement in crash failures can be simplified even more and
extended to the more general problem of continuous consensus both in the crash and in the omission failure
models.

The analysis of simultaneous agreement in the crash failure model in [3] showed that the problem reduces
to computing when initial values become common knowledge. For the FIP with crash failures, this ques-
tion has a particularly nice structure. Very roughly speaking, a clean round is one in which no process is
discovered as faulty for the first time. In a precise sense, initial values become common knowledge once
the existence of a clean round is common knowledge. A faulty process can keep at most one round from
being clean by crashing. Hence, if process i that knows of f failures at time k, then it knows that a clean
round will happen no later than time hi(k) = k + t +1− f rounds. We think of hi(k) as i’s horizon at time k.
Based on the properties of the crash-failure model it is possible to show that there will be a critical round c
which is clean, and after which all nonfaulty processes can predict the same horizon. Moreover, once time
� = hi(c) is reached, every nonfaulty process can detect that c was the critical round (for �). This makes it
common knowledge that round c was clean, allowing an efficient solution to simultaneous agreement. The
analysis and proofs make strong use of the fact that for crash failures, if a process crashes in round k then all
processes know of this in FIP by time k +1 at the latest. The omission model is significantly more complex,
since information about failures can be kept for a while by faulty processes, and then delivered to nonfaulty
processes much later on. Thus, in the omission model the information about failures behaves in a much
more erratic fashion.

We shall now present a protocol that solves continuous consensus and operates in a fashion that resembles
the intuition provided above. In every round k+1, each process will compute a value it considers its horizon
for time k, which will be a time at which a particular part of its current view of the first k can be added to

the shared core. (As we shall show later, this view will indeed become common knowledge.) The horizons
predicted by different processes at the end of round k + 1 need not be the same. When time � is reached,
however, the latest k whose horizon is � will in fact be identical for all nonfaulty processes. This, in turn,
will uniquely determine a shared core that can be used by the consensus task.

The crux of our construction depends on finding a replacement for the role played in the crash model for
the number of failures known to i. This is suitably generalized by the following two definitions of sets of
good and bad processes for i with respect to time k. The first set, which we denote by Gi(k), consists of the
processes that i does not know at time k + 1 to be faulty:

Gr
i (k) � { j : (R,r,k + 1) |= ¬Ki(j is faulty) } (1)

As usual, we drop the superscript r from terms when it is clear from context. Notice that Gi(k) is defined
based on i’s knowledge at the end of the following round k + 1. In the crash failure model, Gi(k) is the set
of processes that i receives messages from in round k+1, while in the omissions model it is a possibly strict
subset of these processes. The G stands for good. Based on Gi(k), we define a second set, denoted by Bi(k)
(for bad), consisting of processes whose faultiness is distributed knowledge at time k among the members
of the first set Gi(k):

Br
i (k) � { j : (R,r,k) |= DGi(k)(j is faulty) } (2)

We denote by bi(k) the cardinality |Bi(k)| in the current run. Since Bi(k) consists of faulty processes, we
will always have bi(k) ≤ t. Figure 1(b) illustrates the sets Bi(k) and Gi(k) in the FIP based on a particular
execution graph.

The CONCON protocol, shown in Figure 2, is run by each process i individually in order to compute a
shared view of the run at any given time �. The exact same protocol can be used in either the crash or the
omission protocol (although knowledge will be determined with respect to a different system R in either
case). In every round k + 1 of this protocol, every process performs two tasks: One is to update a current
estimate (upper bound) for when the view VGi(k)(k) of Gi(k) will be part of the shared core view. The other
is to determine the shared core at time k + 1, which is at the end of the round. This consists of reading the
critical round c for time k+1 which is found in Estimatedi[k+1]. The shared core is then defined to consist
of the input events in VGi(c)(c).

CONCON(i)

Estimated[m] ←−1 for all m ≥ 1
for k ≥ 0 in round k + 1

1 do send local state and receive messages according to FIP

2 horizon ← k + 1+ t −bi(k) � denoted horizoni(k)
3 Estimated[horizon] ← k
4 c ← Estimated[k + 1] � critical round denoted criti(k + 1)

5 Mi[k + 1] ←
{

λ if c = −1

VGi(c)(c) � E otherwise.

Figure 2: The CONCON protocol for process i.

In the protocol, each process performs the same set of actions in every round. Round k+1 starts at time k
and ends at k + 1. The first part of each round’s computation consists of communicating according to the
full-information protocol on line 1. In the next part, consisting of lines 2 and 3, process i computes an

upper bound on the time at which a view of time k will be common knowledge. Finally, on lines 4 and 5
it records in Mi[k + 1] the view that is common knowledge at time k + 1. Recall that the value of bi(k) is
easily computable by i from its view (or local state) after the communication phase of round k+1. Process i
can therefore perform the assignment of the value of horizoni(k) on line 2. We denote by horizoni(k) the
value of horizon that process i sets in round k + 1 on line 2, and by criti(k + 1) the value of crit that it sets
on line 4.

By definition (see line 2), horizoni(m) = m + 1 + t − bi(m). Since no failures are known initially, we
have that bi(0) = 0 and horizoni(0) = t + 1. The fact that the protocol communicates according to the full-
information protocol, and that the number of failures is bounded from above by t, implies that bi(m) ≤
bi(m+ 1) ≤ t for all m. This immediately implies for all m that both

(i) horizoni(m) ≥ m+ 1, and

(ii) horizoni(m+ 1)≤ horizoni(m)+ 1.

Notice from (ii) that the horizon cannot move forward at a fast pace. Observe, however, that it is possible
for horizoni(m + 1) < horizoni(m) to hold if bi(m + 1) > bi(m)+ 1, which can result from several failures
being discovered by processes trusted by i in round m+ 1.

We now state very two useful properties of CONCON. The first says that the horizon is an upper bound
on the time at which current round information is contained in the shared core. Indeed, given point (i) above
this will imply that every round’s information will become common knowledge within a fixed bound of
roughly t − f rounds, where f is the number of failures discovered. The second part proves that once the
core is not empty, it grows by at least one round in every time step. Moreover, every round is assigned a
critical round. This last fact is not immediate from the structure of CONCON.

Proposition 1 For all nonfaulty processes i and times m and �:

(a) if horizoni(m) ≤ � then criti(�) ≥ m, and

(b) if criti(�) �= −1 then criti(�) < criti(�+ 1).

Proofs of Proposition 1 and of the upcoming Theorem 2 appear in the appendix. So far we have looked
at the properties of the protocol as executed by a single nonfaulty process in isolation. The correctness of
the algorithm depends on the relationship between executions of different processes in the same run. The
following theorem shows the main correctness claim for CONCON, namely that all cores agree at all times.

Theorem 2 The CONCON protocol solves the continuous consensus problem.

More efficient implementations. The CONCON protocol sends messages according to FIP, which grow
monotonically with time. We can, however, derive a more space- and communication-efficient implemen-
tation of CONCON. In order to compute Gi(k) in round k + 1, process i must know who is faulty according
to Vi(k + 1). Similarly, to compute bi(k) it needs to know the sets Gj(k− 1) for all j ∈ Gi(k). All of the
relevant information is accessible provided that in every round k, each process i sends Gi(k−1) to all others.
This can be a string of n bits. Process i would then know that z is faulty exactly if either z failed to deliver
a message to i or some process j informed i that z is faulty. We can show that the sets Gi(k) are the same
under such a scheme as they are using FIP. In addition, it is needed that all information about monitored
events from E be passed to everyone. If there are typically only few interesting events (e.g., fire alarms) then
representing the relevant data regarding them may be succinct. Finally, we can see from CONCON that the
protocol never requires historical data from more than t + 1 rounds back. Indeed, as failures are discovered

fewer rounds of history need to be kept track of. The result is that a solution to continuous consensus that
is equivalent to CONCON exists that sends small messages and maintains bounded amount of state beyond
the shared core Mi[k].

4. Continuous Consensus and Common Knowledge

We have developed the CONCON protocol using intuitions obtained from the analysis of common knowledge
in fault-prone systems. The continuous consensus application is in a precise sense very close to the problem
of computing common knowledge. We now formalize this connection, and make use of it in order to prove
an optimality result for CONCON.

The continuous consensus problem is specified in terms of the behavior of the nonfaulty processes, and
does not require correct action from faulty ones. It was shown in [4] (see also [11, 5]) that the appropriate
variant of common knowledge corresponding to such a situation is common knowledge among the nonfaulty
processes, for which our language has the operator CN . A semantic definition of satisfaction for CN is given
as follows.2 We say that two points (r,m) and (r′,m) are N-neighbors, and write (r′,m)∼N (r,m), if there is
some process j that is nonfaulty in both r and r′ for which r′j(m) = r j(m). The point (r′,m) is N-reachable
from (r,m) in R, if there is a finite sequence of points (r,m) = (r0,m),(r1,m), . . . ,(rk,m) = (r′,m) such
that (r�,m) ∼N (r�+1,m) holds for every 0 ≤ � < k. Thus, N-reachability is the transitive closure of the
∼N relation. Moreover, it is an equivalence relation that defines a partition over the points of a system R.
Common knowledge to the nonfaulty processes is then formalized by:

(R,r,m) |= CNϕ iff (R,r′,m) |= ϕ for all points (r′,m) that are N-reachable from (r,m) in R .

This variant of common knowledge among the nonfaulty processes turns out to be the appropriate notion
of knowledge to consider in applications such as continuous consensus, which are defined only in terms of
the actions of nonfaulty processes. We say that a formula ϕ is valid in R, and write R |= ϕ, if (R,r,m) |= ϕ
for all points (r,m) with r ∈ R. We can now show a strong connection between common knowledge and
continuous consensus:

Proposition 3 Let P be a protocol for continuous consensus and let RP be the set of all runs of P with
execution graphs in R = R(n, t, fm,Σ,E). Fix a possible state X of the core Mi[k] under P and let “Core = X”
be a proposition that is true at a point (r,m) of RP exactly if Mr

i [m] = X for all nonfaulty processes i in r.
Then

RP |= (Core = X)≡CN(Core = X) .

Proof: Assume that Mr
i [m] = X , where i is nonfaulty in the execution graph of r. Define the proposition q as

“Core = X”. It suffices to show that, for all r,r′ ∈ R, if (R,r,m) |= q and (r,m)∼N (r′,m) then (R,r′,m) |= q,
and the claim will follow by induction. Assume that (R,r,m) |= q and (r,m)∼N (r′,m). Thus, r j(m) = r′j(m)
holds for some nonfaulty process j in both runs. Since (R,r,m) |= q we have that Core = X holds at (r,m)
and since j is nonfaulty there it follows that, in particular, Mr

j[m] = X . From r j(m) = r′j(m) we have that

Mr′
j [m] = X as well. Finally, since P solves continuous consensus, we have by Consistency that Mr′

i [m] = X
for all nonfaulty i in r′, and hence (R,r′,m) |= q. �

Proposition 3 implies that the contents of the core in any protocol P for continuous consensus (e.g., CON-
CON) is common knowledge at any given instant. Hence, an event can be entered into the local copies of

2The fact that in our systems a process can always distinguish between points (r,m) and (r′,m′) with m �= m′ simplifies the
definitions here slightly.

�

�

�

�

�

�

�

�

�

�

�

k̂=k3

Ŝ=S3

F̂=F3

�

�

�

�

�

�

�

�

�

�

�

k2

S2

F2

�

�

�

�

�

�

�

�

�

�

�

k1

S1

F1

�

�

�

�

�

�

�

�

�

�

�

k0 = m

p S0

F0

Figure 3: An instance of Moses and Tuttle’s fixed-point construction by p at (r,m).

the core only once its occurrence has become common knowledge. We shall now argue that the CONCON

protocol places events in the cores Mi[m] as early as possible. More formally, we are setting out to prove the
following

Theorem 4 Let R be a FIP system, let r ∈ R and assume that i is nonfaulty in r. Let P be a correct protocol
for continuous consensus. Finally, denote i’s core at (r,m) under CONCON by MC

i [m] and its core under P
by MP

i [m]. Then MP
i [m] ⊆ MC

i [m] holds for all times m.

Theorem 4 shows that CONCON is optimal in terms of recording events as early as possible in the core. We
will prove the theorem by showing that the core MC

i [m] produced by CONCON is precisely the view of the
run that is common knowledge at (r,m). In [4] Moses and Tuttle completely characterized the connected
components of the N-reachability relation systems for FIP in crash and omission models, thereby charac-
terizing common knowledge as well. To set up the necessary background for the proof, we now briefly
review their fixed-point construction and related characterization of common knowledge. The construction
is performed individually by every process p based on its view Vr

p(m) at a given point (r,m). It defines a
sequence of pairs (ki,Si) consisting of a time and set of processes, for i ≥ 0. In the construction, Fi denotes
the set { j : (R,r,ki) |= DSi(j is faulty) } of processes known at time ki to be faulty by processes in Si. The
construction proceeds inductively as follows.

Base: Set k0 = m and S0 = {p}.

Step: Set ki+1 = m− (t + 1−|Fi|) and Si+1 = P\Fi.
For nonfaulty processes p it can be shown that the Fi’s are a descending chain. As a result, the Si’s are an

ascending chain and the ki’s form a descending sequence. Since |Fi| ≤ t, for some index h we must have that
Fh = Fh−1. When this happens for the first time, the construction reaches a fixed-point because Sh+1 = Sh

and kh+1 = kh. We denote the first such values kh and Sh at which a fixed-point is reached by k̂ = k̂(r,m)
and Ŝ = Ŝ(r,m), respectively. Finally, the outcome of the construction at (r,m) is given by

Output: is the view Vr
Ŝ
(k̂).

Figure 3 illustrates an example computation of the fixed-point construction.

The fixed-point construction is shown to characterize N-reachability relation (and hence also the common
knowledge) in the crash and omission models:

Proposition 5 (Moses and Tuttle) Let r and r′ be runs of a FIP system R. Let the view V = VŜ(k̂) at (r,m)
be the output of the fixed-point construction performed by a nonfaulty process at (r,m), while V′ = VS′(k′)
is the output for some nonfaulty process at (r′,m). Then (r′,m) is N-reachable from (r,m) iff V′ = V.

Based on this characterization, we can now present the proof of our optimality claim:

Proof of Theorem 4: Fix r ∈ R and m ≥ 0, and let V = Vr
Ŝ
(k̂) be the view produced by the construction

at (r,m). By proposition 5 this view is clearly common knowledge. We claim that only input events of E
that appear in this view are common knowledge. This follows from the fact that the values of k̂ and Ŝ
produced by the construction depend only on the pattern of failures. Since |E | > 1, the inputs outside
of V can be altered without changing the failure pattern. Hence, there is an N-reachable point instantiating
any possible input assignment outside of V, and hence no input event outside V is common knowledge.
By Proposition 3 it follows that MP

i ⊆ V � E holds for all continuous consensus protocols P, including
CONCON. We will complete the argument by showing that VG(c)(c) = V for c = critrp(m), which implies
that MC

i [m] = V � E . We do this by considering p’s execution in CONCON during the same run r. It suffices
to show that horizonp(kh) ≤ m because by Proposition 1(a) we then have that critrp(m) ≥ kh and hence
VG(c)(c) ⊇ V and we are done.

Assume that k̂ = kh and Ŝ = Sh are the limit values at the fixed-point of p’s construction at (r,m). Notice
that since t ≤ n− 2, necessarily h > 0. Observe that the sets Fi in the fixed-point construction only ever
contain faulty processes. Since p ∈ S0 and p is nonfaulty, it follows that p ∈ Si for every i ≤ ĥ. In particular,
p ∈ Sh−1. Since by definition, every proces known to be faulty by members of Sh−1 at time kh−1 > kh is
included in Fh−1, and since by construction Sh = P \Fh−1, it follows that Sh ⊆ Gp(kh−1 − 1), where Gp is
the set of good processes according to p in CONCON. From kh < kh−1 we have that kh ≤ kh−1 − 1. The
perfect recall property of the FIP implies that the sets Gp(k) are monotonically decreasing in the weak sense.
Thus, Sh ⊆ Gp(kh−1 −1) ⊆ Gp(kh). It follows that Bp(kh) ⊇ Fh and hence clearly also bp(kh) ≥ |Fh|. Since
kh = k̂ is the fixed, we have that kh = m− (t + 1−|Fh|) and hence m = kh + t + 1−|Fh|. By definition of
CONCON, horizonp(kh) = kh + t +1−bp(kh). Since bp(kh) ≥ |Fh| we obtain that horizonp(kh) ≤ m and we
are done. �

5. Uniform Continuous Consensus

The continuous consensus problem specifies constraints only on the cores of nonfaulty processes, guarantee-
ing nothing about faulty ones. Observe, however, that failures in our models are not considered malicious—
there is no lying and faulty behavior is closely related to crashing or communication malfunction. It is thus
natural to consider a stronger version of the problem, which could be called uniform continuous consensus
(UCC), in which we require the Accuracy, Consistency, and Completeness properties of continuous consen-
sus to hold for all processes i and j, whether faulty or nonfaulty. One can expect a solution to UCC to be
similar in style and quality to CONCON, because the failures we consider only affect the ability of a process
to send messages, while even faulty processes receive all incoming messages. In this section we consider
how the CONCON protocol can be modified to obtain UNICONCON, an optimal protocol for UCC.

As shown in [2, 5], simultaneously consistent behavior by all participants is closely related to (stan-
dard) common knowledge, that is, the traditional notion equivalent to an infinite conjunction of “everybody
knows”. Using the operator C for common knowledge among all processes, we briefly review the semantic
definition of Cϕ. We say that the point (r′,m) is reachable from (r,m) in R if there is a finite sequence of

UNICONCON(z)

Estimated[m] ←−1 for all m ≥ 1
for k ≥ 0 in round k + 1

1 do send local state and receive messages according to FIP

if bz(k) = t
2 then Estimated[k + 1] ← k
3 else chosen[k] ← j for an arbitrary j ∈ Gz(k)

if bj(k−1) = t −1
4 then Estimated[k + 1] ← k−1
5 else horizon ← (k−2)+ 1+ t −bj(k−2)
6 Estimated[horizon] ← k−2
7 c ← Estimated[k + 1] � critical round denoted critz(k + 1)

8 Mz[k + 1] ←

⎧⎪⎨
⎪⎩

λ if c = −1

VGz(k)(k) � E if c = k

VGchosen[k](c)(c) � E otherwise

� t failures discovered

Figure 4: Process z’s computation in UNICONCON.

points of R (r,m) = (r0,m),(r1,m), . . . ,(rk,m) = (r′,m) such that for every 0 ≤ � < k there is some j = j�
for which r�

j(m) = r�+1
j (m). Then

(R,r,m) |= Cϕ iff (R,r′,m′) |= ϕ for all points (r′,m′) that are reachable from (r,m) in R .

Common knowledge and UCC are related in the same way as CN and continuous consensus are, and a
completely analogous result to Proposition 3 holds. An interesting result by Neiger and Tuttle in [11] shows
that in our settings the two notions of common knowledge coincide:

Theorem 6 (Neiger and Tuttle) R |= (Cϕ ≡CNϕ) holds for every formula ϕ and FIP system R.

Intuitively, this can be explained by the fact that the failures considered in these models only affect the ability
of a process to send messages, while even faulty processes receive all incoming messages. Consequently,
one can expect a solution to UCC to be similar in style and quality to CONCON. A natural question in light
of Theorem 6 is whether CONCON itself solves the UCC problem. Unfortunately, it does not. The problem
in using CONCON by a faulty process z is that z might know of failures at time k that it does not pass on to
nonfaulty processes. If z ∈ Gz(k), then these failures will be counted in bz(k) and will therefore play a role
in determining horizonz(k). If z is silent from round k + 1 on, for example, then these failures might never
figure in the calculations of other processes. An inconsistency between z’s core and those of the nonfaulty
processes will arise as a result.

The intuition behind the UNICONCON protocol is based on the following. Whether or not a process z
is faulty, it is still guaranteed in our models to receive all messages that are sent to it. In addition, for any
pair of processes j and z, if j ∈ Gz(k) then no nonfaulty process has discovered that j is faulty by time k.
The information available to j at time k−1 is thus transmitted to the (truly) nonfaulty processes in round k,
and they are guaranteed to relay it to z in round k + 1. Roughly speaking, in order to obtain an algorithm
for UCC we have a process z choose an arbitrary member j of Gz(k) in round k + 1 (which we denote by

chosen[k]) and simulate what j would have done two rounds earlier in CONCON.3 This works, except if the
nonfaulty processes detect all t of the faulty processes, and so the horizon becomes one round ahead of the
current time (i.e., horizonz(k) = k + 1), then such simulation would be too late to be timely. This is easily
detectable even by a faulty process, however, and is therefore treated as a separate case. The algorithm is
given in Figure 4. The underlying lemmas used in the proof of correctness of UNICONCON are given in
Section B. Using them, the following theorem summarizes the correctness claim. We use superscripts u and
c to denote cores computed in the in UNICONCON and CONCON protocols, respectively.

Theorem 7 Fix a run r in a FIP system R. Then

1. Mu
y [m] = Mu

z [m] holds for all m ≥ 1 and every pair y,z of processes, and

2. Mu
i [m] = Mc

i [m] holds for all m ≥ 1 and every nonfaulty process i in r.

An immediate corollary of Theorems 6 and 7(2) is that UNICONCON is an optimal solution of UCC.

6. Conclusions

This paper considered the continuous consensus problem, which generalizes simultaneously consistent ac-
tion in fault-prone systems. Two variants were considered and solved, one in which consistency is required
only among nonfaulty processes and the other being the uniform variant ensuring consistency among arbi-
trary pairs of processes. A striking aspect of the solutions is their simplicity: At every round, each process
updates a single value based on a straightforward computation. Moreover, while the solutions are stated in
the context of the full-information protocol, they can be implemented in a more efficient manner. The prob-
lems are closely related to that of computing what is common knowledge at any given point. The optimality
of the solutions is shown using the characterization of common knowledge given in [4] and the equivalence
shown in [11].

This paper bridges a gap between the analysis of common knowledge with crash failures in [3] and that
for omission failures in [4]. In the case of crash failures, clean rounds are rounds in which no new failures
are discovered. As shown in [3], clean rounds play an important role in the analysis of common knowledge
there. The situation in the omission model seemed less transparent. The fixed-point construction of [4] did
not suggest a similar notion. Indeed, as we discussed in Section 3, there can be an arbitrary delay between
the time a failure is first discovered in this model and the point at which this information may affect the
set of facts that are common knowledge. The connection between fault discovery and common knowledge
seemed much less clear. The CONCON and UNICONCON protocols presented in this paper, do, however,
suggest a natural generalization of clean rounds to the omission model. We can define round k + 1 to be
clean in this case if no nonfaulty process i discovers that bi(k) > bi(k− 1). Thus, it is not the discovery of
a failure in a round that makes it dirty; rather, a round is dirty if, for some process z, it is the first round in
which z’s failure is reported by a process that is trusted by some nonfaulty process. It can be shown that if
criti(m) �= −1 then the identity of criti(m) and the fact that it is a clean round, become common knowledge
at time m.

Finally, our algorithms shed an interesting light on the distinction between evidence supplied by processes
that are known to be faulty and ones that are not. Recall that failures in the models we considered are
benign. No process ever deviates from the protocol by sending incorrect messages. Thus, every piece
of information obtained from a process can be trusted. Nevertheless, the computation of the horizon by
process i in round k + 1, and thus ultimately the times at which common knowledge is obtained, depends
only the set Bi(k). Thus, despite the fact that information from faulty processes is correct, this central

3It would be ok to have a process choose itself for as long as it does not know of its own faultiness.

computation considers only failures reported by potentially nonfaulty processes. This distinction seems an
essential aspect of the evolution of common knowledge over time in these models.

Acknowledgement We wish to thank Mark Tuttle for discussions on the topic of this paper, and Kai
Engelhardt for useful comments that improved its presentation.

References

[1] D. Lewis, Convention: A Philosophical Study. Cambridge, Mass.: Harvard University Press, 1969.

[2] J. Y. Halpern and Y. Moses, “Knowledge and common knowledge in a distributed environment,” Jour-
nal of the ACM, vol. 37, no. 3, pp. 549–587, 1990.

[3] C. Dwork and Y. Moses, “Knowledge and common knowledge in a Byzantine environment: crash
failures,” Information and Computation, vol. 88, no. 2, pp. 156–186, 1990.

[4] Y. Moses and M. R. Tuttle, “Programming simultaneous actions using common knowledge,” Algorith-
mica, vol. 3, pp. 121–169, 1988.

[5] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning about Knowledge. Cambridge, Mass.:
MIT Press, 1995.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[7] G. Berry and G. Gonthier, “The esterel synchronous programming language: Design, semantics, im-
plementation,” Science of Computer Programming, no. 19, pp. 87–152, 1992.

[8] N. Halbwachs, Synchronous Programming of Reactive Systems. Kluwer Academic Publisher, 1993.

[9] L. Lamport, “The part-time parliament,” vol. 16, no. 2, pp. 133–169, 1998.

[10] B. Coan, “A communication-efficient canonical form for fault-tolerant distributed protocols,” in
Proc. 5th ACM Symp. on Principles of Distributed Computing, pp. 63–72, 1986.

[11] G. Neiger and M. R. Tuttle, “Common knowledge and consistent simultaneous coordination,” in Pro-
ceedings of the 4th international workshop on Distributed algorithms, pp. 334–352, Springer-Verlag
New York, Inc., 1991.

A. Proofs for CONCON

This appendix consists of the proofs of correctness of the CONCON algorithm. We start with the following
technical lemma based on observations (i) and (ii) that appear after the CONCON protocol. This lemma
serves to simplify later proofs.

Lemma 8 Let k < k′, and assume that horizoni(k) ≤ � < horizoni(k′). Then some time k̂ where k ≤ k̂ < k′

satisfies both (a) horizoni(k̂) = � and (b) horizoni(k̂ + 1) = �+ 1.

Proof: Assume that k < k′ and horizoni(k) ≤ � < horizoni(k′). By observation (ii) the function horizoni

can advance only in steps of one. Hence, horizoni(k′′) = � for some intermediate time k ≤ k′′ < k′, establish-
ing part (a) of the claim. Let k̂ = max{k′′ : k′′ < k′ and horizoni(k′′) = �}. We claim that horizoni(k̂ +
1) > horizoni(k̂). Assume otherwise, by way of contradiction. If horizoni(k̂ + 1) ≤ horizoni(k̂) then
horizoni(k̂ + 1) ≤ � < horizoni(k′). From k̂ < k′ we have that k̂ + 1 ≤ k′ and since in addition we have
that horizoni(k̂ + 1) �= horizoni(k′) it follows that k̂ + 1 < k′. We can now apply part (a) to k̂ + 1 < k′ we
obtain that horizoni(h) = � for some h satisfying k̂ + 1 ≤ h < �, contradicting the maximality of k̂. Since
horizoni(k̂ + 1) > horizoni(k̂), we have by property (ii) that horizoni(k̂ + 1) = horizoni(k̂)+ 1 and we are
done. �

Proof of Proposition 1: For part (a), assume that horizoni(m) ≤ �. Since horizoni(�) > � we have by
Lemma 8 (a) that horizoni(k̂) = � for some k̂ that satisfies m ≤ k̂ < �. In particular, Estimatedi[�] = k̂ ≥ m
after line 3 is executed in round k̂ + 1. The fact that k̂ < � implies that k̂ + 1 ≤ �. Moreover, since the value
of Estimatedi[�] is monotonic nondecreasing in time, it follows that Estimatedi[�] ≥ k̂ holds when line 4 is
reached in round �. It now follows by line 4 that criti(�) ≥ k̂ ≥ m and we are done with (a). For part (b),
assume that criti(�) = m �= −1. Then from line 2 we have that horizoni(m) = �. Since horizoni(�) > � we
have by Lemma 8(b) that there exists k̂ satisfying m≤ k̂ < � such that horizoni(k̂+1) = �+1. Applying part
(a) we obtain that criti(�+1)≥ k̂+1. Since m≤ k̂ we have that k̂+1 > m and thus criti(�+1) > m = criti(�),
which completes the proof. �

Proof of Theorem 2: Since Mi[�] is a view of the run, all events in Mi[�] have occurred, and thus the
Accuracy property holds. Completeness requires every event e ∈ E occurring at a nonfaulty j to eventually
appear in Mi[�]. Suppose that e occurs no later than time k. Notice that necessarily j ∈ Gi(k) for every
nonfaulty i, since j is nonfaulty. By definition, horizoni(k) ≤ k + t + 1, and Proposition 1(a) implies that
criti(k+t +1)≥ k. It follows that the occurrence of e will appear in Mi[k+t +1] and we have Completeness.

Finally, for Consistency, we need to show that Mi[�] = Mj[�] holds for all times � ≥ 0 and nonfaulty
processes i and j. The variable criti(�) is assigned the value of Estimatedi[�] in round � by line 4. Lines 0
and 3 guarantee that Estimatedi[m] ≥ −1 and Estimatedj[m] ≥ −1 holds for all indices m at all times. It
follows that criti(�) ≥ −1. We distinguish two cases. First consider the case in which criti(�) = crit j(�) =
−1. In this case we have by line 5 and criti(�) = crit j(�) = −1 that Mi[�] = Mj[�] = λ as desired. Second,
suppose without loss of generality that m = criti(�) �= −1. We claim that Gj(m) ⊇ Gi(m) and crit j(�) ≥
criti(�). If Gj(m) �⊇ Gi(m), then j knows at time m + 1 of some z ∈ Gi that is faulty. Since j is nonfaulty,
j ∈ Gi(m + 1), and hence z ∈ Bi(m + 1) so that bi(m + 1) > bi(m) and horizoni(m + 1) ≤ horizoni(m) = �.
Proposition 1(a) implies criti(�) ≥ m + 1, contradicting the assumption that criti(�) = m. From the fact
that Gj(m) ⊇ Gi(m) it follows that VGi(m)(m) is contained in VGj(m)(m) and hence Bj(m) ⊇ Bi(m). This
implies that bj(m)≥ bi(m) and thus horizonj(m)≥ horizoni(m). Again by Proposition 1(a) we can conclude
that crit j(�) ≥ m = criti(�) and the claim is established. Moreover, since criti(�) > −1, it follows that
crit j(�) �= −1. Applying the above claim with respect to j instead of i, we obtain also that Gj(m) ⊆ Gi(m)
and crit j(�) ≤ criti(�). We thus have that criti(�) = crit j(�) and that Gi(m) = Gj(m). Finally, from the fact
that Gi(m) = Gj(m) we have by line 5 that Mi[�] = VGi(m)(m) = VGj(m)(m) = Mj[�] and we are done. �

B. Correctness of UNICONCON

In this section we provide the technical lemmas used in the proof of Theorem 7.

Lemma 9 Fix a run of the FIP, and let z be an arbitrary process in this run. Then (i) Vz(k + 1) contains
VGz(k)(k) for every k ≥ 0, and (ii) Vz(k + 1) contains VGj(m)(m) for every m ≤ k−1 and j = chosen[m].

Proof: By definition, the view of a process grows monotonically with time, so whatever is contained in
such a view at a given time will be contained in it at all later times. According to the FIP, every process is
required to send a message to all processes in every round. Moreover, the crash and omission failure models
are such that if a message from y to z does not arrive then y must be faulty. Hence, in particular, y will no
longer be in Gz following such an event. It follows that Vz(k + 1) contains Vy(k) for every y ∈ Gz(k). This
immediately implies part (i). For part (ii), let m ≤ k−1 and assume that j = chosen[m]. By part (i) we have
that V j(m + 1) contains VGj(m)(m). Since j ∈ Gz(k + 1) we have that Vz(k + 1) contains V j(k). Finally,
since m ≤ k−1 we have that m+1≤ k and by monotonicity of Vj(·) we have that V j(k) contains V j(m+1)
which, by part (i), contains VGj(m)(m). Part (ii) now follows. �

Lemma 10 Fix a run of FIP and let y,z be arbitrary processes. If bz(k) = t then Gy(k) = Gz(k) and by(k) = t.

Proof: Assume that bz(k) = t. This means that the processes in Gz(k) have distributed knowledge that
all faulty processes are already recorded in Bz(k), and everyone in Gz(k) is correct. Being correct, they all
succeed in sending messages to y. Finally, since their joint view implies that they are (precisely) the set of
nonfaulty processes, it follows that Gy(k) = Gz(k). Since bz(k) and by(k) are a function of Gy(k) and Gz(k),
we also have that bz(k) = by(k). �

Lemma 11 Fix a run of FIP and let y,z be arbitrary processes. Moreover, let k+1 ≥ 2 and let j ∈ Gz(k) and
h ∈ Gy(k). If bz(k) �= t and bj(k−1) = t −1 then Gj(k−1) = Gh(k−1).

Proof: Observe that if x ∈ Bx(k−1) then Vx(k) contains proof that x is faulty. Any process z that receives
a message from x in round k + 1 obtains proof that x is faulty. Moreover, if z does not receive a message
from x in round k + 1 it, too, knows that x is faulty. Hence, if x ∈ Bx(k− 1) then necessarily x /∈ Gz(k) for
all processes z. Let j ∈ Gz(k) and h ∈ Gy(k) and assume that bj(k−1) = t −1 while bz(k) �= t. Assume by
way of contradiction that Gj(k−1) �= Gh(k−1). We consider two cases.

• Assume that there is a process x ∈ Gj(k−1)\Gh(k−1). Thus, x is a faulty process not in Bj(k−1).
Since bj(k−1) = t−1 it follows that the set of faulty processes is precisely Bj(k−1)∪{x}. Consider
following possibilities regarding the correctness of j and h:

– j is nonfaulty: in this case j ∈Gy(k) and hence By(k)⊇Bj(k−1) and by assumption h∈Gy(k),
which implies that x ∈ By(k) as well. It follows that by(k) = t. By Lemma 10 this implies
bz(k) = t, contradicting the assumption.

– j is faulty: By the above observation, j ∈ Gz(k) implies that j ∈ Gj(k − 1) (and thus j /∈
Bj(k − 1)). The fact that bj(k − 1) = t − 1 implies that there is at most one faulty process
not in Bj(k − 1) thus necessarily j = x for the assumed x ∈ Gj(k− 1) \Gh(k − 1). It follows
that h knows at time k that j is faulty. If h is nonfaulty, then h ∈ Gz(k) and we obtain that
Bz(k) ⊇ Bj(k− 1)∪{x} and thus bz(k) = t again contradicting the assumption. The remaining
possibility is that both j and h are faulty. Clearly j �= h since Gj(k − 1) �= Gh(k − 1). Since
Bj(k−1) contains all faulty processes except for j, it follows that h ∈ Bj(k−1). Moreover, all
members of Gj(k− 1) except for j must be nonfaulty. Let i be a nonfaulty process. We claim
that Vi(k) must contain Vx(k−1) for every x ∈ Gj(k−1). Clearly j ∈ Gi(k−1) since otherwise
i’s round k + 1 message to z, which is guaranteed to dbe delivered because i is nonfaulty, would
prove that j is faulty, contradicting the fact that j ∈ Gz(k). Moreover, i must receive messages
from all other members of Gz(k − 1), since they are all nonfaulty. It follows Vi(k) contains
VGj(k−1)(k − 1). From h ∈ Bj(k − 1) it thus follows that i knows at time k, based on Vi(k),
that h is faulty. But then process y would know this after receiving i’s message in round k + 1,
contradicting the assumption that h ∈ Gy(k).

• Assume that Gj(k−1)⊆Gh(k−1) and there is a process m∈Gh(k−1)\Gj(k−1). Since Gj(k−1)⊆
Gh(k− 1) we have that Bj(k− 1) ⊆ Bh(k− 1) so that bh(k− 1) ≥ t − 1. If bh(k− 1) = t then since
h ∈ Gy(k) we have that by(k) = t which is a contradiction as before. Otherwise the claim follows by
the previous case with the roles of x and y reversed, since we now have h ∈ Gy(k), bh(k− 1) = t − 1
and x ∈ Gh(k−1)\Gj(k−1). �

Lemma 12 Fix a run of FIP, let y,z be arbitrary processes, and let j ∈Gz(m) and h∈Gy(m). Finally, assume
that bj(m−2) < t −1. If Gj(m−2) �= Gh(m−2) then bi(m−1) > bj(m−2) will hold for some nonfaulty
process i.

Proof: Fix a run, let j ∈ Gz(m) and h ∈ Gy(m), and fix a nonfaulty process i. Observe that from j ∈
Gz(m) we obtain that j ∈ Gi(m− 1) and, similarly, h ∈ Gy(m) implies that h ∈ Gi(m− 1). Assume that
bj(m− 2) < t − 1. Moreover, assume that Gj(m− 2) �= Gh(m− 2). We consider two cases. First assume
that there is a process x ∈ Gj(m− 2) \Gh(m− 2). Thus, h knows that x is faulty at time m− 1. Since
j,h ∈ Gi(m − 1), we have that Bi(m − 1) ⊇ Bj(m− 2)∪ {x} and thus bi(m− 1) > bj(m − 2). For the
second case, assume that Gj(m− 2) ⊆ Gh(m− 2) and there is a process x ∈ Gh(m− 2)\Gj(m− 2). Since
Gj(m−2) ⊆ Gh(m−2) we have that Bj(m−2) ⊆ Bh(m−2), and hence bh(m−2) ≥ bj(m−2). As in the
first case, since j,h ∈ Gi(m− 1), we have that Bi(m− 1) ⊇ Bh(m− 2)∪{x}. It follows that bi(m− 1) ≥
bh(m−2)+ 1 ≥ bj(m−2)+ 1 > bj(m−2) and we are done. �

We can now finally prove the correctness of UNICONCON:

Proof of Theorem 7: For part 1 we need to show that Mu
y [m] = Mu

z [m] holds for all y,z ∈ P and m ≥
1. Observe that Lemma 9 establishes that the views used in the assignments on Line 8 of UNICONCON

are avaliable to the process running the protocol at that stage. Moreover, recall that it is an invariant of
UNICONCON that of Estimatedz[�] = k only if it was assigned this value in round k + 1. Hence, critz(m) ≤
m−1 is guaranteed for all m. Let m ≥ 1. We consider four cases:

• Assume that critz(m) = m− 1. By Line 7, Estimatedz[m] = m− 1 at the end of round m. Since
Estimatedz[m] was assigned in round m, this could only happen on Line 2 of UNICONCON. Thus,
bz(m− 1) = t and by Lemma 10 we have that by(m− 1) = t and Gy(m− 1) = Gz(m− 1). Line 2
of UNICONCON when executed by y in round m will thus set Estimatedy[m] = m−1, and by Line 8
(middle case) Mz[m] = VGz(m−1)(m−1) while My[m] = VGy(m−1)(m−1). Since Gy(m−1)= Gz(m−1)
these are the same, and the claim now follows.

• Assume that m > 1 and critz(m) = m−2. The argument in this case is completely analogous to the first
case. It is obtained as before by substituting (i) bz(m−1) = t and by(m−1) = t by bz(m−1) = t −1
and by(m−1) = t −1, (ii) Line 4 for Line 2 and (iii) Lemma 11 for Lemma 10.

• Assume that m > 2 and −1 < critz(m) < t − 1. By induction on (t − 1)− critz(m) we can use
Lemma 12 to show that critz(m) = crity(m). Denote this value by c. Then for j = chosenz[c] and
h = choseny[c], Lemma 12 also shows that Gj(c) �= Gh(c). It follows from Line 8 (bottom case) that
that Mz[m] and My[m] are assigned to equal values and the claim holds.

• Assume that critz(m) = −1. By the previous case we have that crity(m) = −1 as well, so by the top
case of Line 8 we have that Mz[m] = My[m] = λ and we are done. can be used to shw

Part 2 of Theorem 7 follows from the fact that if process i is nonfaulty in r then i∈Gi(m) for all m≥ 0. Thus,
setting choseni[k] ← i whenever i ∈ Gi(k) is compatible with UNICONCON, and would yield by part 1 that
Mu

i [m] = Mu
z [m] for all processes z in r. It is easy to check, however, that when choseni[k] = i for nonfaulty i,

then Mu
i [m] is set to the same view as Mc

i [m] at all times m, and hence Mu
i [m] = Mc

i [m] is guaranteed. �

