Answer to chapter 7

1. During the throwing we use momentum conservation for the one-dimensional motion:

               0 = (mboat + mchild)vboat + mpackagevpackage;

               0 = (55.0kg + 26.0kg)vboat + (5.40kg)(10.0m/s), which gives

               vboat-0.720m/a (opposite to the direction of the package).

2. (a) We find the impulse on the ball from

                Impulse = Dp =mDv = (0.045kg)(45m/s - 0) =  2.0N.s

 

        (b) the average force is

                F =Impulse/Dt = (2.0N.s)/(5.0 x 10-3s) =  4.0 x 102N.

3. For the elastic collision of the two billiard balls, we use momentum conservation:

                m1v1 + m2v2 = m1v1' + m2v2';

               m(2.00m/s) + m(-3.00m/s) = mv1' + mv2'.

         Because the collision is elastic, the  relative speed does not change:

                v1 - v2 = -(v1' - v2'), or 2.00m//s - (-3.00m/s) = v2' - v1'.

         Combining these two equations, we get

                v1' = - 3.00m/s (rebound),  and  v2' = 2.00m/s.

          Note that the two billiard balls exchange velocities.

4. Momentum conservation gives

                 0 = m1v1 + m2v2';

                 0 = mv1' + 1.5mv2', or v1' = -1.5v2'.

         The kinetic energy of each piece is

                 KE2 = 1/2m2v2'2;

                 KE1 = 1/2m1v1'2 = 1/2(m2/1.5)(-1.5v2') = (1.5)1/2m2v2'2 = 1.5KE2.

         The energy supplied by the explosion produces the kinetic energy:

                 E = KE1 + KE2 = 2.5KE2;

                 7500J = 2.5KE2, which give KE2 = 3000J.

         For the other piece we have

                 KE1 = E - KE2 = 7500J - 3000J = 4500J.

         Thus

           KE (heavier) = 3000J;  KE (lighter) = 4500J.

5. Because the cubes are made of the same material, their masses will be proportional to the volumes:

                m1, m2 = 23m1 = 8m1, m3 = 33m1 = 27m1.

     From symmetry we see that yCM = 0.

     We choose the x-origin at the outside edge of the small cube:

                xCM = (m1x1 + m2x2 +m3x3)/(m1 + m2 + m3)

                        = {m1(1/2l0) + 8m1[l0 + 1/2(2l0)] +

                              27m[l0 + 2l0 + 1/2(3l0)]}/(m1 + 8m1 + 27m1)

                        = 138l0/36

                        = 3.83l0 from the outer edge of the small cube.

SEND QUESTIONS BACK TO PROBLEMS