Solutions to Week 6 Assignment

 

  1. W = F Drcosq = Tvtcosq  = (240N)(1.5m/s)(10.0s)cos30.0° = 3.1kJ.
  2. W = DK  = 1/2m(v2 - v02) = 1/2(5.00kg)[(2.50m/s)2 - 0] = 15.6J.
  3. W = 1/2(2.0N)(1.0m ) + 1/2(1.0N)(1.0m) + 1/2(-1.0N)(1.0m) = 0.5J.
  4. (a) U = mgh = (100kg)(9.8m/s2)(12,000m) = 2.9J
    (b) U = mgDy = mg[(v2 - v02)/2>g] =1/2(100kg)(250m/s)2 = 3MJ.
  5. Find k. Use Newton's second law.
    SFy = kx1 - mg = 0, so
      k = mg/x1
    Find vmax
          Ki + Kf = Ui + Uf
    0 + 1/2mvmax2 = 1/2 kxmax2 + 0
        vmax = xmaxÖk/m
                = xmaxÖg/x1
                =(0.100m - 0.050m)Ö[(9.8m/s2)/(0.060m - 0.050m)]
                = 1.6m/s
  6.                 DK =  -DU
    1/2mvf2 - 1/2mvi2 == -mg Dy
          vf2 - vi2 = -2<mg Dy
                     vf  = Ö(vi2 -2mg Dy)
                          = Ö(4.0m/s) - 2(9.8m/s2)[0 - (2.0m)sin30.0°]
                          = 6.0m/s
  7. (a) Pav = DE/Dt = Dk/Dt =1/2m(vf2 - vi2 )/Dt = (1000.0kg)[(40.0m/s)2 - 0]/2(10.0s) = 80.0kW.
    (b) mechanical energy required/chemical energy provided = k (efficiency)/46MJ/L = 1/2(1000.0kg)(40.0m/s)2/(46 x10J/L)(0.22) = 0.079L
                                       per liter
  8. (a) Find the speed at the bottom of the incline.
                DK = WC + WNC
         1/2mv2 - 0 = mgh - fd
               v = Ö2gh -2fd/m
         Use Newton's second law with +y perpendicular to the incline and +x down the incline.
         SFy = N - mgcosq = 0, so N = mgcosq
         Now, d = 0.85m, h = dsinqf = mN = mmgcosq
         Substitute.
         v = Ö2gdsinq - 2 mmgdcosq = Ö2gd(sinq - mcosq)
         Find the maximum compression.
          Ki + Ui = Kf + Uf
         0 +1/2kx2 = 1/2mv2 + 0
                  x = Öm/k
                     = Ö2mgd/k(sinq - mcosq)
                     = Ö2[(0.50kg)(9.8m/s2)(0.85m)/35N/m](sin30.0° -0.25cos30.0°)
                     = 26cm.

    (b) When the block is accelerated by the spring, it attains its previous kinetic energy and speed. Find the distance along the incline, d'.
                   DK = WC + WNC
          0 - 1/2mv2 = -mgh - fd'
                        1/2mv2 = mgd'sinq  + mmgd'cosq
                                    = d'[mg(sinq  + mcosq)]
                                 d' = v2/2g(sinq  + mcosq)
                                     =2gd(sinq - mcosq)/2g(sinq  + mcosq)
                                     = (85cm)[(sin30.0° - 0.25cos30.0°)/(sin30.0° + 0.25cos30.0°)
                                     = 34cm.