Solutions to Week 7 Assignment

 

  1. Use the impulse-moment theorem.
                Dp = FavDt
           pf - pi = mvf - m(0)
                 vf = FavDt/m
                     = (24N)(0.028s)/0.16kg = 4.2m/s.
  2. (a) Use the impulse-momentum theorem.
           Dpnorth = 0
             Dpeast = FavDt = mDveast = mveast
          Find the magnitude and direction of vf
          vf = Övnorth2 + veast2 = Övnorth2 + (FavDt/m)2 = Ö(15m/s)2 + [(15N)(4.0s)/(3.0kg)]2 = 25m/s.
          q = tan-1(vnorth/veast) = tan-1(15m/s)/[(15N)(4.0s)/3.0kg] = 37º(north of east
         So, vf = 25m/s at 37º north of east.
    (b) Let +y be north and +x be east.
            Dp = m(vf - vi)
           |Dp| = mÖ(vfx - vix)2 + (vfy - viy)2
                  = mÖ(FavDt/m - 0)2 + (vfy - viy)2
                  = FavDt = (15N)(4.0s) = 60kg·m/s.
  3. Use conservation of momentum.
    psf + ptf = psi + pti
             psf = 0 + 0 - ptf
            msvsf = -  mtvtf
           |vsf| = mt/ms|-vtf|
                  = 250kg/2.5 x 106kg(100.0m/s) = 0.010m/s.
  4. Find xCM
          xCM = (mAxA+ mBxB)/(mA + mB)
                  = (0 + mBxB)/(mA + mB)
        mBxB = (mA + mB)xCM
          xCM = (mA + mB)/mB
                  = [(30.0g + 10.0g)/(10.0g)](2.0cm)
                  = 8.0cm
    Similarly
         yCM = [(30.0g + 10.0g)/(10.0g)](5.0cm) = 20cm
    So, the coordinates of particle B are (xB, yB) = (8.0cm, 20cm)
  5. p = MvCM = mAvA + mBvB =  since p = pA + pB. Thus vCM = (mAvA + mBvB )/(mA + mB).
    Let east be in the positive direction.
    vCM = [(5.0kg)(10m/s) + (15kg)(-10m/s)]/(5.0kg + 15kg) = -5m/s
    So,  vCM = 5m/s west.
  6. Use momentum conservation. The collision is perfectly inelastic, so v1f = v2f = vf. Also, the block is initially at rest, so v2i = 0.
    m1v1f + m2v2f = m1v1i + m2v2i
     (m1 + m2)vf = m1v1i + m2(0)
             vf = [ m1/(m1 + m2)]v1i
                 = [(0.050kg)/(0.050kg + 0.95kg)\(100.0m/s) = 5.0m/s.
  7. Let right be +x and +y be in the initial direction of the puck. Use conservation of momentum.
    Find v2fx
    m1v1fx + m2v2fx = m1v1ix + m2v2ix
      v1fx + v2fx = 0 + 0
                 v2fx = -v1fx
    Find v2fx
    m1v1fy + m2v2fy = m1v1iy + m2v2iy
    v1fy + v2fy = v1iy + 0
               v2fy = v1iy - v1fy
    Calculate v2f.
     v2f  = Öv2fx2 + v2fy2 = Ö(-v1fx)2 + (v1iy - v1fy)2 = Ö(v1fsinq1)2 + (v1i - v1fcosq1)2
           = Ö[(0.36m/s)sin37°]2 + [0.45m/s - (0.36m/s)cos37°]2 = 0.27m/s
    Calculate the direction of the second puck.
    = tan-1(v2fx/v2fy) = tan-1[(-v1fx)/(v1iy - v1fy)] = tan-1[-(0.36m/s)sin37º(0.45m/s - 0.36m/scos37º] = 53ºto the left
    So, v2f = 0.27m/s at 53ºto the left.