Solutions to Week 7 Assignment
-
Use the impulse-moment theorem.
Dp = FavDt
pf - pi = mvf -
m(0)
vf = FavDt/m
= (24N)(0.028s)/0.16kg = 4.2m/s. -
(a) Use the impulse-momentum theorem.
Dpnorth
= 0
Dpeast
= FavDt = mDveast
= mveast
Find the magnitude and
direction of vf
vf
= Övnorth2 + veast2
= Övnorth2 +
(FavDt/m)2 = Ö(15m/s)2
+ [(15N)(4.0s)/(3.0kg)]2 = 25m/s.
q = tan-1(vnorth/veast)
= tan-1(15m/s)/[(15N)(4.0s)/3.0kg] = 37º(north of east
So, vf = 25m/s at 37º
north of east.
(b) Let +y be north and +x be east.
Dp = m(vf - vi)
|Dp| = mÖ(vfx
- vix)2 + (vfy
- viy)2
= mÖ(FavDt/m
- 0)2 + (vfy
- viy)2
= FavDt =
(15N)(4.0s) = 60kg·m/s. -
Use conservation of momentum.
psf + ptf =
psi + pti
psf = 0 + 0 - ptf
msvsf = - mtvtf
|vsf| = mt/ms|-vtf|
= 250kg/2.5 x 106kg(100.0m/s) = 0.010m/s. -
Find xCM
xCM = (mAxA+
mBxB)/(mA + mB)
= (0 + mBxB)/(mA + mB)
mBxB = (mA + mB)xCM
xCM = (mA + mB)/mB
= [(30.0g + 10.0g)/(10.0g)](2.0cm)
= 8.0cm
Similarly
yCM =
[(30.0g + 10.0g)/(10.0g)](5.0cm) = 20cm
So, the coordinates of particle B
are (xB, yB) = (8.0cm,
20cm) -
p = MvCM = mAvA + mBvB
= since p = pA + pB. Thus
vCM = (mAvA + mBvB
)/(mA + mB).
Let east be in the
positive direction.
vCM = [(5.0kg)(10m/s) +
(15kg)(-10m/s)]/(5.0kg + 15kg) = -5m/s
So, vCM = 5m/s
west. -
Use momentum conservation. The collision is perfectly inelastic, so v1f
= v2f = vf. Also, the block is initially at
rest, so v2i = 0.
m1v1f
+ m2v2f = m1v1i
+ m2v2i
(m1 + m2)vf
= m1v1i
+ m2(0)
vf
= [ m1/(m1 + m2)]v1i
= [(0.050kg)/(0.050kg + 0.95kg)\(100.0m/s) = 5.0m/s. -
Let right be +x and +y be in the initial direction of the puck.
Use conservation of momentum.
Find v2fx
m1v1fx
+ m2v2fx = m1v1ix
+ m2v2ix
v1fx
+ v2fx = 0 + 0
v2fx = -v1fx
Find
v2fx
m1v1fy
+ m2v2fy = m1v1iy
+ m2v2iy
v1fy
+ v2fy = v1iy
+ 0
v2fy = v1iy
- v1fy
Calculate v2f.
v2f
= Öv2fx2
+ v2fy2 = Ö(-v1fx)2
+ (v1iy - v1fy)2
= Ö(v1fsinq1)2
+ (v1i - v1fcosq1)2
= Ö[(0.36m/s)sin37°]2 + [0.45m/s -
(0.36m/s)cos37°]2 = 0.27m/s
Calculate the direction of the second
puck.
q = tan-1(v2fx/v2fy)
= tan-1[(-v1fx)/(v1iy
- v1fy)] = tan-1[-(0.36m/s)sin37º(0.45m/s
- 0.36m/scos37º] = 53ºto the left
So, v2f = 0.27m/s
at 53ºto the left.