CHAPTER 10
- From conservation of energy
Kf + Uf
= Ki + Ui
1/2mvf2 +
mgyf = 1/2mvi2 + mgyi;
1/2vf2
+ 0 = 1/2(80 m/s)2 + (9.8 m/s2)(10 m), vf
= 81.2 m/s.
- In Figure P10.38a, use conservation of energy
Kf + Uf
= Ki + Ui;
1/2mvf2 +
1/2kxf2 = 1/2mvi2 +
1/2kxi2;
mv02 +
0 = 0 + k(Dx)2, k =
m(v0/Dx)2.
In
Figure P10.38b, use conservation of energy
Kf + Uf
= Ki + Ui;
1/2mvf2 + 2
x 1/2kxf2 = 1/2mvi2 +
2 x 1/2kxi2
mvf2 +
0 = 0 + 2k(Dx)2,
mvf2 +
0 = 0 + 2[m(v0/Dx)2](Dx)2,
vf = (Ö2)v0.
- Conservation of energy
Kf + Uf
= Ki + Ui
0 + mgyf + 1/2kxf2
= 0 + mgyf + 1/2kxf2;
(1000
kg)(9.8 m/s2)(2.0 m + 0.5 m) + 0 = 0 + 1/2k(0.5 m)2,
k = 1.96 x 105 N/m.

- In order for the ball to go over the top of the peg without the string going
slack, the ball must follow a circular path. At the lowest point
Fnet
= mg = mv2/r, v2 >
gr = g(L/3).
From
conservation of energy for the ball
Ui
= Kf,
mg(L - Lcosθ) = 1/2mv2;
gL(1
- cosθ) = 1/2v2 > 1/2gL/3
cosθ
< (1 - 1/6) = 5/6, θ > cos-1(5/6)
= 33.6°
- a. Use Galilean transformation of velocities, where V = -3.0 m/s.
(vix)1'
= (vix)1 - V = 4.0 m/s - (-3.0
m/s) = 7.0 m/s.
(vix)2'
= (vix)2 - V = -3.0 m/s - (-3.0
m/s) = 0 m/s.
In 200-g ball's frame we have
(vfx)1'
= [(m1 - m2)/(m1
+ m2)](vix)1'
= [(0.1 kg - 0.2 kg)/(0.1 kg + 0.2 kg)](7.0 m/s)
= -2.33 m/s
(vfx)2'
= [(2m1)/(m1
+ m2)](vix)1'
= [2(0.1 kg)/(0.1 kg + 0.2 kg)](7.0 m/s)
= 4.67 m/s
In lab frame we have
(vfx)1
= (vfx)1' + V = (-2.33 m/s) + (-3.0
m/s) = -5.33 m/s
(vfx)2
= (vfx)2' + V = (4.67 m/s) + (-3.0
m/s) = 1.67 m/s
So, 100-g ball moves to
the left at 5.33 m/s, and 200-g ball moves to
the right at 1.67 m/s.
b. If the
collision is perfectly inelastic.
m1(vix)1
+ m2(vix)2
= (m1
+ m2)vf
(0.1 kg)(4.0 m/s)
+ (0.2 kg)(-3.0 m/s) = (0.1 kg + 0.2 kg)vf,
vf
= - 0.67 m/s
Both balls move to
the left with a speed of 0.67 m/s
- a. When the spring is compressed at maximum the collision is perfectly
inelastic.
Conservation of momentum:
m1(vix)1
+ m2(vix)2
= (m1 + m2)(vfx)
(2.0
kg)(4.0 m/s) + 0 = (2.0 kg + 1.0 kg)(vfx)
vfx = 2.67 m/s
Conservation
of energy:
1/2m1(vix)12
= 1/2(m1+ m2)(vfx)2
+ 1/2k(Dx)2
(2.0
kg)(4.0 m/s) + 0 = (2.0 kg + 1.0 kg)(2.67 m/s)2 + (5000 N/m)(Dx)2
Dx
= 2.1 x 10-3 m = 2.1
mm.
b. When the spring relaxes the 2.0-kg cart still moves with the
same speed of 2.67 m/s.
The elastic potential energy of the spring converts to part of the kinetic
energy of the 1.0-kg cart
1/2k(Dx)2
+ 1/2m2(vfx)2 = 1/2(m2)(vfx)22
1/2(5000 N/m)(2.1 x 10-3 m)2 + 1/2(1.0 kg)(2.67 m/s)2
= 1/2(1.0 kg)(vfx)22
(vfx)2 = 2.674
m/s.