CHAPTER 11

  1. Path ABD:
    W = ò03m(6i + 8j) N·idx + ò04m(6i + 8j) N·jdy
        = (6 N)(x)|03m + (8 N)(y)|04m
        = 50 J.
    Path ACD:
    W = ò04m(6i + 8j) N·jdy + ò03m(6i + 8j) N·idx
        = (8 N)(y)|04m +  (6 N)(6 N)(x)|03m
        = 50 J.
    Path AD: dW = F·dr = [(62 + 82)1/2 N]dr N= (10 N)dr
    W = ò05m(10 N)dr m = 50 J.   
    As WABD= WACD = WAD, i.e., the work done is independent of the paths, the force is conservative.
  2. (a) The work  done by the external force is 
         Wext = FLcosθ
        DE = (K - Ki ) + (Uf - Ui ) = (1/2mvf2 - 0) + (0 - mglsinθ
        Wext = D
          vf = Ö2[-(200 N)(50 m)cos20° + (75 kg)(9.8 m/s2)(50 m)sin20°]/(75 kg) = 9.21 m/s.
    (b) Use Newton's laws, the force

         From free-body diagram
         SFx = mgsinθ - Fcosθ, ax = SFx/m = (mgsinθ - F)/m = [(75 kg)(9.8 m/s2)sin20° - (200 N)cos20°)]/(75 kg) = 0.85 m/s2.
         vf2 = v02 + 2axL;
         vf = Ö0 + 2(0.85 m/s2)(50 m) = 9.22 m/s.
    The two results are same.
  3. (a) By conservation of energy DE = 0.
          K + UKi  + Ui;
         1/2(m1 + m2)vf2 + 0 =  0 + m2gy;
          vf = Ö2m2gy/(m1 + m2)
              = Ö2(2.0 kg)(9.8 m/s2)(1.5 m)/(1.0 kg + 2.0 kg) 
              = 4.43 m/s.
    (b) Wext = DE
          - fL = K- Ki  + Uf  - Ui = 1/2(m1 + m2)vf2 - 0 + 0 - m2gy
          -μkm1gL = 1/2(m1 + m2)vf2 - m2gy;
           vf = Ö2[(2.0 kg)(9.8 m/s2)(1.5 m) - (0.15)(1.0 kg)(9.8 m/s2)(1.5 m)]/(1.0 kg + 2.0 kg)
               = 4.26 m/s.
  4. The force the gardener exerts on the lawnmower is F. In order to push the lawnmower at constant speed Fcosθ = f (frictionn)


       f = μk(mg + Fsinθ) = Fcosθ,
      F = μkmg/(cosθ - μksinθ) = (0.15)(12 kg)(9.8 m/s2)/(cos37° - 0.15sin37°) = 24.9 N.
    The power supplied by the gardener is
      P = Fv = (24.9 N)(1.2 m/s) = 29.9 W = 0.04 hp.
  5. Find the speed at the top of the incline using conservation of energy.
    1/2mvf2 = 1/2kx2 - mgy - μkmgsinθy/sinθ
                vf2 = 2[1/2(1000 N/m)(0.15 m)2 - (0.2 kg)(9.8 m/s2)(2.0 m) - (0.2)(0.2 kg)(9.8 m/s2)(2.0 m)]/(0.2 kg)
                     = 65.46 (m/s)2
    Find d from the equation of range of projectile 
                d = vf2sin2θ/g
                   = (65.46 m2/s2)sin(2 x 45°)/(9.8 m/s2)
                   = 6.68 m.