CHAPTER 11
- Path ABD:
W = ò03m(6i + 8j)
N·idx + ò04m(6i + 8j) N·jdy
= (6 N)(x)|03m + (8 N)(y)|04m
= 50 J.
Path ACD:
W = ò04m(6i +
8j) N·jdy + ò03m(6i + 8j) N·idx
= (8 N)(y)|04m + (6 N)(6 N)(x)|03m
= 50 J.
Path AD: dW = F·dr
= [(62 + 82)1/2 N]dr N= (10 N)dr
W =
ò05m(10 N)dr m
= 50 J.
As
WABD= WACD = WAD,
i.e., the work done is independent of the paths, the force is conservative.
- (a) The work done by the external force is
Wext = FLcosθ
DE
= (Kf - Ki ) + (Uf
- Ui ) = (1/2mvf2 - 0) +
(0 - mglsinθ)
Wext =
DE
vf = Ö2[-(200 N)(50
m)cos20° + (75 kg)(9.8 m/s2)(50 m)sin20°]/(75 kg) = 9.21
m/s.
(b) Use
Newton's laws, the force
From free-body diagram
SFx = mgsinθ - Fcosθ,
ax = SFx/m =
(mgsinθ - F)/m = [(75 kg)(9.8 m/s2)sin20°
- (200 N)cos20°)]/(75 kg) = 0.85 m/s2.
vf2 = v02 + 2axL;
vf = Ö0 + 2(0.85 m/s2)(50
m) = 9.22 m/s.
The two
results are same.
- (a) By conservation of energy DE = 0.
Kf + Uf = Ki
+ Ui;
1/2(m1
+ m2)vf2 + 0 = 0
+ m2gy;
vf
= Ö2m2gy/(m1
+ m2)
= Ö2(2.0 kg)(9.8 m/s2)(1.5 m)/(1.0
kg + 2.0 kg)
=
4.43 m/s.
(b) Wext
= DE
-
fL = Kf - Ki + Uf
- Ui = 1/2(m1 + m2)vf2
- 0 + 0 - m2gy
-μkm1gL
= 1/2(m1 + m2)vf2
- m2gy;
vf
= Ö2[(2.0 kg)(9.8 m/s2)(1.5 m) -
(0.15)(1.0 kg)(9.8 m/s2)(1.5 m)]/(1.0 kg + 2.0 kg)
= 4.26 m/s.
- The force the gardener exerts on the lawnmower is F. In order to push
the lawnmower at constant speed Fcosθ = f (frictionn)

f = μk(mg + Fsinθ) = Fcosθ,
F = μkmg/(cosθ - μksinθ)
= (0.15)(12 kg)(9.8 m/s2)/(cos37° - 0.15sin37°) = 24.9 N.
The
power supplied by the gardener is
P = Fv = (24.9 N)(1.2 m/s)
= 29.9 W = 0.04 hp.
- Find the speed at the top of the incline using conservation of energy.
1/2mvf2
= 1/2kx2 - mgy - μkmgsinθy/sinθ
vf2 = 2[1/2(1000 N/m)(0.15 m)2 - (0.2
kg)(9.8 m/s2)(2.0 m) - (0.2)(0.2 kg)(9.8 m/s2)(2.0
m)]/(0.2 kg)
= 65.46 (m/s)2
Find d from the equation of range of
projectile
d = vf2sin2θ/g
= (65.46 m2/s2)sin(2 x 45°)/(9.8 m/s2)
= 6.68 m.