CHAPTER 12
- (a) The gravitational force due to 5.0-kg mass on the 20.0-kg mass is
F1 = (6.67 x 10-11 N·m2/kg2)(5.0
kg)(20.0 kg)/(0.1 m)2i = (6.67 x 10-7 N)i
The gravitational force due to 10.0-kg mass on the 20.0-kg mass is
F2 = (6.67 x 10-11 N·m2/kg2)(10.0
kg)(20.0 kg)/(0.2 m)2j = (3.335 x 10-7 N)j
The net force is
F = F1
+ F2 = [(6.67 x 10-7)i + (3.335 x 10-7)j]
N.
F = [(6.67 x 10-7)2
+ ((3.335 x 10-7))2]1/2 N = 7.46 x 10-7
N
θ = tan-1[(3.335
x 10-7) N/(6.67 x 10-7) N] = 26.6°, or 90° - 26.6°
= 63.4° cw to y-axis.
(b) The gravitational force due to 20.0-kg mass on the
5.0-kg mass is
F1 =
-(6.67 x 10-11 N·m2/kg2)(5.0
kg)(20.0 kg)/(0.1 m)2i = -(6.67 x 10-7 N)i
The magnitude of the gravitational force due to 10.0kg mass on the 5.0-kg
mass is
F2 = (6.67 x 10-11 N·m2/kg2)(5.0
kg)(10.0 kg)/[(0.1 m)2 + (0.2 m)2]= 6.67 x 10-8
N
F2 = F2
(-cosθ i + sinθj), where cosθ
= (10 cm)/[(10 cm)2 + 20 cm)2]1/2 = 0.4472,
θ = 63.4°, and sinθ = 0.8944
F2 = -(2.98 x 10-8 N)i + (5.97 x
10-8 N)j
F = F1
+ F2 = -(6.67 x 10-7 N + 2.98 x 10-8
N)i + (5.97 x 10-8 N)j = [-(9.65 x 10-8)i
+ (5.97 x 10-8)j] N.
F
= [(-9.65 x 10-8)2
+ (5.97 x 10-8)2]1/2 N = 1.13 x 10-7
N
φ = tan-1[(5.97 x 10-8
N)/(-9.65 x 10-8 N) = 58.2°, or 90° -58.2° = 31.8°
ccw to y-axis
- a. DU = -(6.67 x 10-11 N·m2/kg2)(1.0
kg)(5.98 x 1024 kg)/x|6870 km6370 km
= -4.557 x 106
J.
DU = -DK = -
1/2mv2
v
= [2(-DU)/m]1/2 = [2(-4.557 x 109
J)/(1.0 kg)]1/2 = 3.02 x
103 m/s.
b. 1/2mv2 = mgy;
v = Ö2gy = Ö2(9.8
m/s2)(500000 m) = 3.1 x
103 m/s.
c. error = (3.1 x 103 m/s -3.02 x
103 m/s)/(3.02 x
103 m/s) x100% = 2.7%
d.
No, because the hammer is moving around the circular orbit.
- Conservation of energy:
1/2Mv12 + 1/2(2M)v22
- GM(2M)/(2R)= 0 - GM(2M)/(10R)
Conservation
of momentum:
Mv1 + (2M)v2
= 0
Sole the two equations
v1 = 2[(2/15)(GM/R)]1/2
v2
= -[(2/15)(GM/R)]1/2
- Use Kepler's third law.
T2 = (4π2/GM)r3
r
= (GMT2/4π2)1/3 = {(6.67 x 10-11 N·m2/kg2)(5.98
x 1024 kg)[(2)(24 h)(3600 s/h)]2/4π2}1/3
= 3.12 x 107 m
- The two satellites have the same speed before the collision but in
opposite direction.
From conservation of momentum we find the speed of the debris after the
collision
m1v1 + m2v2
= (m1 + m2)V
(400 kg)v
+ (100 kg)(-v) = (400 kg + 100 kg)V;
V = (3/5)v,
As V < v, Fc = mV2/r <
GMm/r2
the debris will not be held on the orbit and crashes to
the earth.