CHAPTER 7

  1. The static friction between the car and the road serves as the centripetal force.
     f = Fr = mv2/r = (1500 kg)(15 m/s)2/(50 m) = 6.75 x 103 N.
  2. Draw the free-body diagram for the ball as shown.
         
    ΣFy = nsinθ - mg = 0, n = mg/sinθ
    fr = ncosθ = mgcosθ/sinθ.
    In the cone, we have sinθ = (a2 + h2)1/2, and cosθ = h/(a2 + h2)1/2.
    Find the radius r of the ball's circular motion from r = ysinθ = ay/(a2 + h2)1/2 .
    fr = mv2/r.
    v = (frr/m)1/2 = {(mgcosθ/sinθ)(ysinθ)/m]1/2 = [ghy/(a2 + h2)1/2]1/2.
  3. a. We find the acceleration.
        a = v2/r = (2πr/T)2/r = 2r/T2 = 2(15 m)/(25 s)2 = 0.95m/s2
    b. wapp/w = (mg - ma)/mg = (g - a)/g = (9.8 - 0.95)/9.8 = 0.9
    c. wapp/w = (mg + ma)/mg = (g + a)/g = (9.8 + 0.95)/9.8 = 1.1.
  4. a. The tangential force is Ft = Fsinθ = (3.5 N)sin70° = 3.29 N.
         at = Ft/m = (3.29 N)/(0.5 kg) = 6.58 m/s2
         ar = at/r = (6.58 m/s2)/(2.0 m) = 3.29 rad/s2
        Find time Δt.
         θf= θ0 + ω0Δt + ar/2(Δt)2;
        (10 rev)(2π rad/rev) = 0 + 0 + (3.29rad/s2)/2(Δt)2, Δt = 6.2 s.
        ω = ω0 + arΔt = 0 + (3.29rad/s2)(6.2 s) = 20.3 rad/s
    b. At Δt = 6.2 s, vt = ωr = (20.3 rad/s)(2.0 m) = 40.6 m/s.
        Find tension.
        Ft = mvt2/r + Fcosθ = (0.5 kg)(40.6 m/s)2/(2.0 m) + (3.5N)cos70° = 413 N.
  5. At the top of the swing the tension in the string is zero. Find the speed at the top of the swing.
        mg = mvt2/r, vt = Ögr = (9.8 m/s2)(0.5 m) = 2.21 m/s.
    When the string is released at the top of the swing the ball moves as a projectile motion with vx0 = v0 = 2.21 m/s and vy0 = 0.
    Find the time of projectile motion from vertical motion.
       y = y0 + vy0 t + 1/2gt2;
      (.5 m + 1.5 m) = 0 + 0 + 1/2(9.8m/s2)t2, t = 0.64 s.
    Find the horizontal distance.
      x = vxt = (2.21 m/s)(0.64 s) =1.41 m.