ANSWER TO CHAPTER 30 HOMEWORK

1.  The magnetic field inside the outer solenoid is

                    M =moN1N2A/l.

                        = (2000)(4p x 10-7T.m/A)(300turns)p(0.0200m)2/(2.44m)

                        = 3.88 x 10-2H = 38.8mH.

2.  We use the reulg for the inductance from Ex.30-4:

                    L/l = (mol/2p)ln(r2/r1)

                         = (2 x 10-7T.m/A)ln(3.0mm/r1) < 40 x 10-9H/m, which gives  r1 > 2.5mm.

3.  The magnetic field at the center of the loop is

                   B = moI/2R.

         The energy density of the magnetic field is

                   uB = 1/2B2/mo = moI2/8R2 = (4p x 10-7T.m/A)(30A)2/8(0.280m)21.8 x10-3J/m3.

4.   (a)  For an LR circuit, we have

                   I = Imax(1- e-t/t);

                   1/2 = 1 -e-t/t,     or -t/t = -(-2.56ms)/t = ln1/2, which gives t3.69ms.

          (b) We find the resistance from

                    t = L/R;

                   3.69 x 10-3s = (310H)/R, which gives R = 8.39 x 104W = 83.9kW.

5.  (a)  The resonant frequency is

                    fo = (1/2p)(1/LC)1/2 = (1/2p)[1/(175 x10-3H)(760 x10-12F)]1/2 = 1.38 x104Hz =  13.8kHz.

         (b)  The maximum charge on the capacitor is

                    Qo = CV.

               so the peak value of the current is

                     Io = Qow = CVw = (760 x 10-12F)(135V)2p(1.38 x 104Hz) = 8.90 x 10-3A = 8.90mA.

          (c)  The maximum energy stored in the inductor is 

                     ULmax =1/2LIo2 = 1/2(175 x10-3H)(8.90 x10-3A)26.93 x 10-6J.  

6.  We assume underdamping, with

                      w' = wo = 1/(LC)1/2, and T = 2p/wo = 2p(LC)1/2

         The charge on the capacitor is

                       Q= Qoe-Rt/2Lcos (w't + f).

         The energy stored in the capacitor and inductor can be expressed in terms of the amplitude of the cosine function:

                       U = Q2/2C = Qo2e-Rt/L/2C = Uoe-RT/L.

          In one period the energy is reduced by 5.5 percent, so we have

                       0.945Uo = Uoe-Rt/L, which gives ln(1/0.945) = RT/L = 2pR(C/L)1/2;

                       ln(1/0.945) = 2pR[(1.00 x10-6F)/(65 x 10-3H)]1/2, which gives  R = 2.30W

           We can check to see if we have underdamping:

                       R2 = (2.30W)2 = 5.3W2;

                       4L/C = 4(65 x 10-3H)/(1.00 x 10-6F) = 2.6 x 105W2.

            Thus R << 4L/C.

 

HOME  SEND QUESTIONS