Santa Monica College
Programming Project #3
CS 84 - Fall, 2002

Project 3: Order-Spitter
The goal of this assignment is to practice using the DOM API. If you do the assignment the way I expect, you will once again layer the DOM API underneath your application’s operations.

The following document instance and schema are provided to explain the xml structure of a customer Order for the purposes of this assignment. Please read it over carefully before starting to program anything.
	Order XML Document Reference

	Order Document Instance

Order Document Schema

<?xml version=”1.0”?>

<order>
 <shipTo>
 <name>Mary Smith</name>

 <address>1900 Pico Boulevard</address>
 <city>Santa Monica</city>
 <state>CA</state>
 <zip>90405</zip>
 </shipTo>
 <orderlines>
 <line>

 <product sku=”1213”>Hershey Bar</product>

 <qty>12</qty>
 </line>

 <line>

 <product sku=”1121”>M&Ms</product>
 <qty>3</qty>
 </line>

 </orderlines>

</order>

<?xml version="1.0" ?>

<schema xmlns="http://www.w3.org/2001/XMLSchema">

<element name="order">

 <complexType>
 <element name=”shipTo” type=”addrType” />
 <element name=”orderlines”>

 <complexType>
 <element name=”line” type=”oLine”
 maxOccurs=”unbounded” />
 </complexType>
 </element>
 </complexType>
</element>
<complexType name=”addrType”>

 <element name=”name” type=”xsd:string”/>

 <element name=”address” type=”xsd:string”/>

 <element name=”city” type=”xsd:string”/>

 <element name=”state” type=”xsd:string”/>

 <element name=”zip” type=”xsd:string”/>

</complexType>

<complexType name=”oLine”>

 <element name=”product”>
 <complexType>

 <extension base=”xsd:string” />

 <attribute name=”sku” type=”xsd:string”
 use=”required” />

 </complexType>

 </element>

 <element name=”qty”
 type=”xsd:positive-Integer” />

</complexType>

</schema>

Application Description:Your application should respond to user selections. The user should be able to define an order (comprised of a number of selected products and a ship-To address). Once the order is complete and verified, print the order in XML format using the document and schema shown above. These documents have also been made available for downloading from Titan\data\stahl_howard\cs84. You are free to support whatever method you like for allowing the user to describe the products they wish to purchase. You are free to support whatever method you like for allowing the user to describe the ShipTo location. The goal is to practice turn an Order instance into a DOM; everything else is just window dressing…
Application Recommendations: You are free to complete this project however you feel it is appropriate. The following suggestions are my recommendations (it’s how I did it (…) which you may choose to ignore as you see fit. (My apologies to the Java fans… I based the diagrams below on my C++ implementation. You’ll need to translate some of the classes into Java-land…)
· First, model the classes Order, Product and ShipTo. I’d recommend forgetting about the xml issue until after you have a menu going and can do stuff in object-land.

· Finally, all of the DOM API will be sneaked under the toDocument() and toElement() methods. As I explained once before in class, you need to forward the document as a parameter because it is the node factory for nodes inside that document instance. I recommend passing an element as well, which tells down-stream classes just where to nestle themselves under. Throw the InvalidStateException whenever your order instance is not fully fleshed out enough to support your DOM (for example, when it’s ShipTo pointer is NULL or it lacks any OrderLines…)

· To be honest, you should expect alot of things to go wrong at first. Please be small steps to goal. Try reaching stable intermediate steps which you can compile and run to ensure you are making good progress.

Product

public:

 Product();

 Product(std::string name, std::string sku);

 std::string getName() const;

 std::string getSKU() const;

 void toElement(DOMDocument * pDoc, DOMElement pElement);

private:

 std::string myName, mySKU;

ShipTo

public:

 ShipTo();

 ShipTo(std::string name, std::string address, std::string city, std::string state, std::string zip);

 std::string getName() const;

 std::string getAddress() const;

 std::string getCity() const;

 std::string getState() const;

 std::string getZip() const;

 void toElement(DOMDocument * pDoc, DOMElement pElement);

private:

 std::string myName, myAddress, � myCity, myState, � myZip;

Order

public:

 Order();

� void addProduct(Product * p);� void setShipTo(ShipTo * s);

 DOMDocument * toDocument() throw� (InvalidStateException);

private:

 std::list< Product * > myProducts;� ShipTo * myShipTo;�

 void toDocument(DOMDocument* pDoc);� void toElement(DOMDocument * pDoc,� DOMElement * pElement);

