AP Biology Notes: Cell structure

## **Observations of cells:**

Resolving power- The measure of clarity of an image

Light microscope: Use optics to magnify an image. Resolving power is no finer than 0.2 micrometers.

**Electron Microscope:** Electron microscope focuses a beam electrons through a specimen Small wavelength allows resolution of 2 nanometers.

**Transmission electron microscope:** Bean passed through a thin slice of specimen. sample exposed

to heavy metals to enhance contrast. Scanning electron microscope: Electron beams scan surface of cells that have been coated with

a heavy metal. resulting image appears three

dimensional.



**Isolation of organelles:** 

Cell fractionation: Techniques used to separate organelles from cell.

homogenized using ultrasound or grinding. Osmotic shock

- Ultracentrifuge used to deposit fractions into pellets using various speeds and time
- Density gradients: using a column of various densities a sample can be centrifuged and collected from

the appropriate density window of the sample desired

# Eukaryotic / Prokaryotic:

Types differ in size and complexity.

# Prokaryotic (archaea and bacteria)

- No nucleus. DNA concentrated in region called nucleoid
- Range in size from 1 to 10 micrometers
- replicate by binary fission.

# Eukaryotic (fungi, protist, animalia)

- True nucleus
- membrane bound organelles in semi fluid medium called cytosol.
- 10-100 micrometers

# Cell Size restriction:

- Faster passage and more efficient communication with environment.
- Large volume would allow only communication around plasma membrane.

# Nucleus

# Structure:

- Surrounded by a nuclear envelope- double membrane, perforated by pores that regulate the movement of large molecules between the nucleus and cytoplasm
- nuclear lamina- a layer of protein filaments which line the inner membrane
- chromatin- uncondensed DNA that make up chromosomes
- nucleolus- synthesizes and assembles ribosomal components that pass through the nuclear pores

# Function:

- Isolates and regulates DNA function
- helps organize and regulate protein synthesis

#### Ribosomes

#### Structure:

- two major sub-units, constructed of RNA and protein
- differ between cell types

## **Function:**

used in the production of proteins
 \*free ribosomes produce proteins to be used in the cytosol
 \*bound ribosomes attach to the ER, make proteins to be exported from the cell

#### **Endomembrane System**

- consists of the nuclear envelope, endoplasmic reticulum, Golgi apparatus, lysosomes, vacuoles, and the plasma membrane
- these membranes are all related either through direct contact or by the transfer of membrane segments

by membrane-bound sacs called vesicles

#### **Smooth ER**

## Structure:

- large membrane structure, continuous with rough ER and nuclear membrane
- does not contain ribosomes

#### Function:

- enzymes are involved in phospholipid and sex hormone synthesis
- detoxification of drugs and poisons
- storage and release of ions during muscle contraction

#### **Rough ER**

## Structure:

- large membrane structure, continuous with smooth ER and nuclear membrane
- ribosomes imbedded in membrane

#### Function:

- manufactures proteins intended for secretion
- may modify proteins with attachment of carbohydrates

- transported from ER in transport vescicles
- manufacture membranes by inserting proteins

# **Golgi Apparatus**

#### Structure:

- consists of stacks of flattened membraneous sacs
- vesicles from ER join cis face of Golgi
- Golgi products pinch off trans face of Golgi

## **Function:**

- finish, sort, and ship cell products
- products are modified as they pass from one cisterna (sac) to the next
- vesicles have surface molecules that direct them to plasma membrane or other destinations within the cell

## Lysosomes

## Structure:

• membrane enclosed sacs of enzymes

## Function:

- protect cell from unwanted digestion
- recycle cells macromolecules
- fuse with food vacuoles to digest food particles

Storage Diseases: inherited defect in which lysosomal enzyme is missing

## Vacuoles

## Structure:

- membrane enclosed sacs
- larger than vesicles

#### Function:

- food vacuoles- formed as a result of phagocytosis
- contractile vacuoles- pump excess water out of protist
- central vacuole found in plants and stores organic compounds, poisonous compounds, and dangerous by-products

## Peroxisomes

# Structure:

• membrane enclosed compartment filled with enzymes

## Function:

- break down fatty acids
- detoxify alcohol
- convert hydrogen peroxide

## Mitochondria/ Chloroplast

- Major metabolic organelles
- Contain small amounts of DNA that direct protein synthesis

## Mitochondria

## Structure:

- Smooth outer membrane; folded inner membrane (increase surface area)
- Intermembrane space very important in ATP synthesis
- Cristae- folds of innermembrane
- Matrix- inner space which contains many of the proteins and enzymes used for ATP synthesis

## Function:

• Production of ATP for cell energy

# Chloroplast

# Structure:

- Double membrane bound organelle
- Contain sacs (disk) called thylakoids
- Sacs may be stacked forming granum-multiple stacks form grana
- Thylakoids in viscous fluid called stroma
- belongs to a group of structures known as plastids Amyloplast- store starch Chromoplast-house other (accessory) pigments

# Funtion:

• Contain main pigment for photosynthesis

# Cytoskeleton: (Microtubules, Microfilaments, Intermediate filaments)

- network of fibers
- give mechanical support

- maintain or change cell shape
- anchor or direct the movement of organelles and cytoplasm
- control movement of cilia, pseudopods, and even contraction of muscle cells
- mechanically transmit signals from the cell's surface to its interior

# **Microtubles:**

# **Structure/function:**

- hollow rods constructed of columns of a globular protein called tubulin.
- providing the major supporting framework
- serve as tracks along which organelles move
- centrosme-region in which microtubules radiate out from
- centrioles- composed of microtubules assist in cell division
- cilia and flagella- extensions of eukaryotic cells have universal 9-2 arrangement
- basal body- structurally identical to a centriole
- dynein- protein which drives basal body

## Microfilaments

- sold rods consisting of a twisted double Chains molecules of the globular protein acitn
- function in support
- form a network inside the plasma membrane
- core of cytoplasmic extensions called microvilli
- myosin-thick filaments made of protein
- actin and myosin also interact in:
  - \*Cleavage furrows in cell division
  - \*Ameboid movement in protozoans
  - \* Cytoplasmic streaming in plant cells

# Intermediate filaments

Structure of intermediate filaments:

- filaments that are intermediate in diameter (8-12 nm) between microtubules and microfilaments
- diverse class of cytoskeletal elements that differ in diameter and composition depending upon cell type
- constructed from *keratin* subunits
- more permanent than microfilaments and microtubules **Fucntion of intermediate filaments**
- Specialized for bearing tension; may function as the framework for the cytoskeleton
- reinforce cell shape (e.g. nerve axons)
- Probably fix organelle position (e.g. nucleus)
- compose the nuclear lamina, lining the nuclear envelope's interior

# Cell surfaces and junctions

# Cell walls

- Plant cells can be distinguished from animal cells by the presence of a cell wall
- Thicker than the plasma membrane  $(0.1-2 \mu m)$
- chemical composition varies from cell to cell and species to species
- Basic design includes strong cellulose fibers embedded in a matrix of other polysaccharides and proteins
- Functions to protect plant cells, maintain their shape, and prevent excess water uptake
- Has membrane -lined channels, plasmodesmata, that connect the cytoplasma of neighboring cells

## Plant cells develop as follows:

- Young plant cell secretes a thin, flexible primary cell wall. Between primary cell walls of adjacent cells is a middle lamella made of pectin, a sticky polysaccharide that cements cells together
- Cell stops growing and strengthens its wall.
- some cells:
  - 1. Secrete hardening substances into primary wall.
  - 2. Add a secondary cell wall between plasma membrane and primary wall. secondary cell wall is often deposited in layers with a durable matrix that supports and protects the cell.

# The extracellular matrix (ECM)

Animal cells lack walls, but they do have an elaborate extracellular matrix = meshwork of macromolecules outside the plasma membrane of animal cells. this ECM is:

- composed mostly of glycoproteins, the most abundant of which is collagen that
- accounts for about half of the total protein in the vertebrate body
- forms strong extracellular fibers embedded in a meshwork of carbohydrate-rich glycoproteisn called proteoglycans

# Functions of the extracellular matrix:

# Cell attachement:

May be attached directly to the collagen and proteoglycan of their extracellular matrix

Or to the ECM by another class of glycoprotiens-fibronectins fibronectins bind to transmembrane receptor proteins called integrins that bond on their cytoplasmic side to microfilaments of the cytoskeleton

#### Provides support and anchorage for cells

**Helps control gene activity in the cell's nucleus.** The transcription of specific genes is a response to chemical signals triggered by communication of mechanical stimuli across the plasma membrane from the ECM through integrins to the cytoskeleton

# **Intercellular junctions**

Neighboring cells often adhere and interact through special patches of direct physical contact

**Plasmodesmata** (singular, plasmodesma) = channels that perforate plant cell walls, through which cytoplasmic strands communicate between adjacent cells

- lined by plasma membrane. plasma membranes of adjacent cells are continuous through a plasmodesma
- allows free passage of water and small solutes. This transport is enhanced by cytoplasmic streaming

Intercellular junctions in animals

**Tight junctions** = intercellular junctions that hold cells together tightly enough to block transport of substance through the intercellular space

- specialized membrane proteins in adjacent cells bond directly to each other allowing no space between membranes
- usually occur as belts all the way around each cell, that block intercellular transport
- frequently found in epitheilial layers that separate two kinds of solutions

**Demosomes** = Intercellular junction that rivet cells together into strong sheets, but still permit substances to pass feely through intracellular spaces. the desmosome is made of

- intracellular glycoprotien filaments that penetrate and attach the plasma membrane of both cells
- a dense disk inside the plasma membrane that is reinforced by intermediate gap functions = intreacllular junctions specialized for material transport between the cytoplasm of adjacent cells
- formed by two connecting protein rings (connexon), each embedded in the plasma membrane of adjacent cells. the proteins protrude form the membranes enough to leave an intracellular gape of 2-4 nm
- have pores with diameter (1.5 nm) large enough to allow cells to share smaller molecules (e.g. inorganic ions, sugars, amino acids, vitamins) but not macromolecules such as proteins.
- common in animal embryos and cardiac muscle where chemical communication between cells is essential