Chemistry Lab: Titration

Introduction:

Neutralization Reaction: a reaction where an **acid** and a **base** react to form **water** and a **salt**; can be used to create a pure sample of a salt or to determine the concentration of an acid or a base in a solution.

Examples: HCl + NaOH \rightarrow NaCl + H₂O H₂SO₄ + 2 NaOH \rightarrow 2 H₂O + Na₂SO₄

Equivalence point (The point of neutralization in a titration): The amount of acid (or base) that will give one mole of hydrogen (or hydroxide) ions;

 $HCl + NaOH \rightarrow NaCl + H_2O$

In this example: one mole of HCl is one equivalent of HCl

Because moles of H+ from the acid are equal to moles of OH- from base, in the balanced equation, we can use the dilution equation to solve for unknown molarities. $M_1V_1=M_2V_2$

Balnced equation:	HCl	+	NaOH	→	NaCl	+	H ₂ O
Dilution equation:	M _{HCl}	x V _{HCl} =	M _{NaOH} x V	NaOH	at		equivalnce point
Calculation:	? 2	x 35.3mL	.102M x 32	.8mL =	.102 x 32.	8 / 35	.5 = .0948 (3 sigfigs!)

Objectives: 1. Determine the M_{HCl} for each titration

- 2. Average three molarities
- 3. Have me sign

Data:

Titration	HCl	NaOH	Molarity

1	Vol _F HCl = Vol _I HCl = Vol HCl used =	Vol NaOH _F = Vol NaOH _I = Vol NaOH used=	M_1 HCl =		
2	Vol _F HCl = Vol _I HCl = Vol HCl used =	Vol NaOH _F = Vol NaOH _I = Vol NaOH used=	M ₂ HCl =		
3	Vol _F HCl = Vol _I HCl = Vol HCl used =	Vol NaOH _F = Vol NaOH _I = Vol NaOH used=	M ₃ HCl =		
Average Molarity of HCl =					