Study Guide Answers

Matter

p 31

- 3. b, c, d
- 4. a) mercury
 - b) melting point and density
 - c) all are colorless

p 35

- 9. a) substance
 - b) mixture
 - c) mixture
 - d) substance

p 40

- 14. Compounds can be separated by chemical means into elements. Elements cannot be separated into simpler substances by chemical techniques.
- 15. a) Cu b) O c) P
 - d) Ag
- f) He
- 16. a) tin
- b) calcium
- c) sulfur
- d) cadmium
- e) phosphorus f) chlorine
- 17. a) mix. b) mix. c) comp.
 - d) mix.
- 18. Carbon, hydrogen, oxygen and nitrogen; Hydrogen is present in the greater proportion by number of atoms

p 43

- 19 b) In any physical change or chemical reaction, mass is neither created nor destroyed; it is conserved. The mass of the products equals the mass of the reactants in a chemical reaction.
- 20. a) chemical
 - b) physical
 - c) physical
- 21. 18g
- 22. a) color, odor, reaction upon heating, boiling point
- b) color, melting point, reactions with other substances, hardness, brittleness, strength
- c) boiling point, freezing point, density
- d) density, melting, point, magnetism

Measurement

p 53

- 1. a) Qualitative measurements are expressed in descriptive, nonnumerical form. Quantitative measurements are expressed in a definite form, usually numerical.
- b) It is written as the product of a coefficient greater than or equal to one and less than ten and 10 raised to a power.
- 2. a) qualitative
 - b) quantitative
 - c) quantitative
 - d) qualitative
- 3. a) 9.14×10^1 meters
 - b) 1.54×10^{-10} meters
 - c) 6.378×10^6 meters
 - d) 1.496×10^{11} meters
- 4. a) 8×10^4
 - b) 3.0×10^{-6}
 - c) 2.8×10^3
 - d) 7.6 x 10⁻²

p 56 fig. 3.6

1. a) 0.6 m b) 0.61 m, c) 0.607 Yes; the greater the number of divisions on the meter stick the more precision with which it can be read and the greater then number of significant figures in the measurement.

p 62

- 14. a) unlimited
- b) 2
- c) unlimited
- d) 5
- e) 3
- f) 3
- 15. a) 6.6 x 10⁻⁷
 - b) 4.0 x 10⁻⁷
 - c) 10^7
 - d) 8.65 x 10⁻¹
 - e) 1.9 x 10 ¹⁴
 - f) 1.1×10^5
- 16. error 1.6 degrees C; present error 1.3%

p 67

17. a) amount of substance, mol

23. 43.2 g

p 47-49

- 24. solid, metallic luster, gray color, high melting point, malleable,
- 25. a) solid b) liquid c) gas d) solid e) liquid f) liquid
- 27. a vapor, the term "vapor" is used to refer to the gaseous state of a substance which normally exists as a liquid or solid at room temperature.
- 28. water, gasoline, acetone (fingernail polish remover), aromatic salves such as those used in vaporizers, butter.
- 30. a) heterogeneous
 - b) heterogeneous
 - c) homogeneous
 - d) homogeneous
 - e) homogeneous
- 31. one; A solution is a system with uniform composition and properties. Solutions are homogeneous mixtures, consisting of a single phase
- 32. a) element b) mixture
 - c) mixture
- d) element
- e) mixture f) mixture
- 33. a) nitrogen, hydrogen, chlorine
 - b) potassium, manganese, oxygen
 - c) carbon, hydrogen, oxygen
 - d) calcium, iodine
- 34.color change; energy absorbed or released; gas produced; odor change
- 35. a) physical b) chemical
 - c) chemical d) physical
- 36. The iron combines with oxygen in the air, and oxygen has mass
- 37. As the wax burns, the chemical composition of the wax changes, producing the products water, and carbon dioxide, which are released into the surrounding air.
- 40. a) color b) 6
 - c) sodium chloride
 - d) sulfur
- 42. a) physical b) physical
 - c) physical
- d) physical

- b) density, kg/m³
- c) time, s
- d) pressure, Pa
- e) length, m
- f) mass, kg

gravity on an object

- 18. Mass is a measure of the amount of matter in an object.
 Weight is a measure of the force of
- 19 a) m, 10⁻³
- b) n, 10⁻⁹
- c) d, 10⁻¹
- d) c, 10^{-2}
- 20. Your weight would decrease; your mass would remain constant
- 21. $8.8 \times 10^2 \text{ cm}^3$
- 22. a and d, f, e, c, 2b.

p.72

- 25. Mass is divided by volume
- 26. 1.7 x 10⁻² g/L
- 27. checking urine to diagnose patients, measuring acid concentration in a car battery, checking antifreeze solution.
- 28. 0.802 g/cm³; it would sink 29. highest: a gold; lowest b gasoline

p 75

- $32. \, ^{\circ}C = K 273$
- 33. 463 K
- 34. 443 K
- 35. -186°C

p 78-81

- 36. a) qualitative
- b) quantitative
- c) qualitative
- d) quantitative
- 37. a) precision
- b) accuracy
- c) precision
- d) precision
- e) accuracy
- f) accuracy
- 39. Lissa: inaccurate and imprecise Lamont: accurate and precise Leigh Anne: inaccurate but precise
- 42. a) 98.5 L
 - b) 0.000763 cg
 - c) 57.0 m
- d)12.2°C
- e) $0.00750 \times 10^4 \text{ mm}$
- f) 1760 mL
- 43. a) 9.85 x 10⁻¹ L
 - b)7.63 x 10⁻⁴ cg
 - c) $5.70 \times 10^1 \text{ m}$
 - d)1.22 x 10^1 °C
 - e) $7.50 \times 10^1 \text{ mm}$

	f) 1.76 x 10 ³ mL	
	44. a) 43 g b) 7.3 cm ²	
	c) 225.8 L d) 92.0 kg	
	e) 32.4 m^3 f) 104 m^3	
	48. 4%	
	57.a) 0.01 g b) 0.000001 g	
a) alcomical	c) 1000g d) 0.001 g	
e) chemical	59. a) 1 b) 4 c) 2 d) 3	
44. a) 1, product	61. No; the density of the metal bar	
b) 3, compound	is 12 g/cm ³ , but the density of gold	
47. a) yes, because the graph is a	is 19 g/cm^3 .	
straight line, the proportion of iron	65. germanium	
to oxygen is a constant, which is	66. improper, calibration or	
true for a compound b) No, plotting these values on	improper use of the measuring	
, , , , ,		
the graph would not give a point on the line indicating that the mass	67. e, d, c, f, a, b	
ratio of iron to oxygen is different	68. sig. figs in the answer of an	
from the other four samples.	addition problem depend on the	
48. a) oxygen and calcium	measurement with the least number	
b) silicon, aluminum, and iron	of decimal places.	
c) Different; the 2nd most	70. a) cg b) L c) kcal	
abundant element in Earth's crust,	d) cs e) mL f) 1dm^3	
silicon, is not present in the human	71. The digit to the right of the last	
body, and the second most	significant figure is dropped if it is	
abundant element in the human	less than five	
body, carbon, is not among the	74. The egg is floating at the	
most abundant element of the	juncture of 2 liquids of different	
Earth's crust. If the elements are	densities	
different then the compounds must	75. a) 2 b) 1	
also be different.	84. Answers will vary. Lakes	
51. a) physical b) chemical	would freeze from the bottom up;	
c) chemical d) physical	aquatic life would be killed;	
53. a) mixture; compound	possible climate changes.	
b) mixture; elements	91.Measurements of mass and	
c) substance; element	volume are needed. Students	
d) substance; compound	should propose determining mass	
	with a displacement of water. The	
	order of the operations matters.	
	Suppose the volume is measured	
	first. Unless the stone were	
	thoroughly dried, it would appear	
	more massive and thus more	
	dense.	