$$N_2 = 3H_2 \rightarrow 2NH_3$$

Use ratios of coefficients in the above balanced equation to answer the following:

- 1. 1 mole N₂ will form ____moles NH₃.
- 2. 8 moles N₂ will form ____moles NH₃.
- 3. 1/2 mole N₂ will form ____mole NH₃.
- 4. .2 mole N₂ will form ____moles NH₃.
- 5. 1 mole N₂ will react totally with _____moles H₂.
- 6. 4 moles N₂ will react totally with _____moles H₂.
- 7. 1/3 mole N₂ will react totally with _____moles H₂.
- 8. .2 mole N₂ will react totally with _____moles H₂.
- 9. 3 moles of H₂ will form _____ moles NH₃.
- 10. 6 moles of H₂ will form _____ moles NH₃.
- 11. ____ moles H_2 will form 1 mole NH_3 .
- 12. ____ moles H₂ will form 8 moles NH₃.
- 13. 4.2 moles N₂ will form _____ moles NH₃.
- 14. ____ moles N_2 will form 92 moles NH_3 .
- 15. .4 moles N₂ will totally react with _____ moles H₂
- 16. 15 moles will totally react with ____ moles H₂
- 17. ____moles N₂ will totally react with 1 mole H₂
- 18. ____moles N_2 will totally react with 24 moles H_2
- 19. ____moles H₂ will form 12 moles NH₃
- 20. ____moles H₂ will form .2 moles NH₃