Toerper, Matthew

vlab #1

Mtoerper

Section # .81

1. Type show databases; (Don't forget that ';'!) JYA (Copy and Paste the command and the output of the command into your vLab Journal.)

We will use the vlab01 database for these assignments.

mysql> show databases;

+----------+

| Database |

+----------+

| mysql |

| test |

| vlab01 |

+----------+

3 rows in set (0.00 sec)
2. Type use vlab01; JYA

It tells you that it has 'changed' to the new database.

mysql> use vlab01;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

3. Type show tables; JYA

We are using what is called a 'relational database management systems'. Relational databases store their data in 'tables'. The 'show tables;' command shows us the tables that we can use in the vlab01 database.

mysql> show tables;

+------------------+

| Tables_in_vlab01 |

+------------------+

| affiliations |

| counties |

| households |

| members |

| providers |

| rates |

| sites |

| specializations |

| specialties |

| zipcodes |

+------------------+

10 rows in set (0.01 sec)

4. Type show columns from counties; JYA

These are the 'columns' or fields in the 'counties' table.

mysql> show columns from counties;

+----------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+-------------+------+-----+---------+-------+

| countyID | char(2) | | PRI | | |

| name | varchar(15) | YES | | NULL | |

+----------+-------------+------+-----+---------+-------+

2 rows in set (0.00 sec)

5. Use the show columns command to see the columns of the remaining tables. JYA What do you suppose this database is all about? Health Insurance
mysql> show columns from affiliations;

+------------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+---------------+------+-----+---------+-------+

| siteID | varchar(5) | | PRI | | |

| providerID | varchar(6) | | PRI | | |

| primry | enum('N','Y') | YES | | NULL | |

| emergency | varchar(25) | YES | | NULL | |

| phoneemer | varchar(13) | YES | | NULL | |

| fax | varchar(13) | YES | | NULL | |

| hours | varchar(45) | YES | | NULL | |

+------------+---------------+------+-----+---------+-------+

7 rows in set (0.00 sec)

mysql> show columns from households

 -> ;

+-------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+-------------+------+-----+---------+-------+

| hhID | varchar(6) | | PRI | | |

| street | varchar(40) | YES | | NULL | |

| zip | varchar(5) | YES | | NULL | |

| phone | varchar(13) | YES | | NULL | |

| coveragegrp | char(3) | YES | | NULL | |

| effdate | date | YES | | NULL | |

| enddate | date | YES | | NULL | |

| cre8dt | date | YES | | NULL | |

| lastchgdt | date | YES | | NULL | |

| lastchgby | varchar(10) | YES | | NULL | |

+-------------+-------------+------+-----+---------+-------+

10 rows in set (0.01 sec)

mysql> show columns from members;

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| hhID | varchar(6) | | PRI | | |

| memID | char(2) | | PRI | | |

| ssn | varchar(9) | YES | | NULL | |

| medicaidID | varchar(9) | YES | | NULL | |

| fname | varchar(12) | | | | |

| lname | varchar(19) | | MUL | | |

| dob | date | YES | | NULL | |

| gender | char(1) | YES | | NULL | |

| relationcd | char(2) | YES | | NULL | |

| primlang | char(1) | YES | | NULL | |

| phone | varchar(13) | YES | | NULL | |

| pcp | varchar(6) | YES | | NULL | |

| pcpsite | varchar(5) | YES | | NULL | |

| pcscarrier | varchar(4) | YES | | NULL | |

| pcscode | varchar(4) | YES | | NULL | |

| mailcarddt | date | YES | | NULL | |

| status | char(1) | YES | | NULL | |

| cre8dt | date | YES | | NULL | |

| lastchgdt | date | YES | | NULL | |

| lastchgby | varchar(10) | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

20 rows in set (0.01 sec)

mysql> show columns from providers;

+-------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+-------------+------+-----+---------+-------+

| providerID | varchar(6) | | PRI | | |

| salutation | varchar(5) | YES | | NULL | |

| fname | varchar(15) | | | | |

| lname | varchar(20) | | MUL | | |

| suffix | varchar(5) | YES | | NULL | |

| degrees | varchar(10) | YES | | NULL | |

| oncallphone | varchar(13) | YES | | NULL | |

| languages | varchar(8) | YES | | NULL | |

| gender | char(1) | YES | | NULL | |

| pcp | char(1) | YES | | NULL | |

| medicaidID | varchar(7) | YES | | NULL | |

| cre8dt | date | YES | | NULL | |

| lastchgdt | date | YES | | NULL | |

| lastchgby | varchar(10) | YES | | NULL | |

+-------------+-------------+------+-----+---------+-------+

14 rows in set (0.00 sec)

mysql> show columns from rates;

+-------------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+--------------+------+-----+---------+-------+

| countyID | char(2) | | PRI | | |

| agebracket | char(1) | | PRI | | |

| description | varchar(10) | YES | | NULL | |

| rate | decimal(6,2) | YES | | NULL | |

+-------------+--------------+------+-----+---------+-------+

4 rows in set (0.01 sec)

mysql> show columns from sites;

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| siteID | varchar(5) | | PRI | | |

| name | varchar(50) | YES | | NULL | |

| street | varchar(40) | YES | | NULL | |

| zip | varchar(5) | YES | | NULL | |

| phone | varchar(13) | YES | | NULL | |

| emergency | varchar(25) | YES | | NULL | |

| emer_phone | varchar(13) | YES | | NULL | |

| hours | varchar(45) | YES | | NULL | |

| cre8dt | date | YES | | NULL | |

| lastchgdt | date | YES | | NULL | |

| lastchgby | varchar(10) | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

11 rows in set (0.01 sec)

mysql> show columns from specializations;

+-------------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+---------------+------+-----+---------+-------+

| providerID | char(6) | | PRI | | |

| specialtyID | char(3) | | PRI | | |

| primry | enum('N','Y') | YES | | NULL | |

+-------------+---------------+------+-----+---------+-------+

3 rows in set (0.00 sec)

mysql> show columns from specialties;

+-------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+-------------+------+-----+---------+-------+

| specialtyID | char(3) | | PRI | | |

| description | varchar(50) | YES | | NULL | |

+-------------+-------------+------+-----+---------+-------+

2 rows in set (0.01 sec)

mysql> show columns from zipcodes;

+----------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+-------------+------+-----+---------+-------+

| zip | varchar(5) | | PRI | | |

| city | varchar(25) | YES | | NULL | |

| countyID | char(2) | YES | | NULL | |

| state | char(2) | YES | | NULL | |

+----------+-------------+------+-----+---------+-------+

4 rows in set (0.00 sec)

6. Make a guess as to what the field 'types' mean--'char', 'varchar', 'enum', 'date' and 'decimal'. JYA

char – Comprised of characters, has to be a certain number of characters in length.

varchar – Can be any number of characters in length up to the max

enum – Boolean value

date – date

decimal – a number

The most important part of database management is getting information from the database. We do not store data for the sake of something to do. We store data because we want to get those values, later, for some decision making activities. We will start our journey in learning DBMS by learning how to 'query' the database.

We are using what is called 'SQL', or Structured Query Language. SQL is really a very simple languge with only (sort'a) four commands: insert, update, delete, and select. The most used command in SQL is the command that retrieves data from the database, the select statement.

7. Type select * from counties; JYA

mysql> select * from counties;

+----------+------------+

| countyID | name |

+----------+------------+

| AP | Apache |

| CH | Cochise |

| CC | Coconino |

| GL | Gila |

| GR | Graham |

| GN | Greenlee |

| LP | La Paz |

| MA | Maricopa |

| MO | Mohave |

| NA | Navajo |

| PM | Pima |

| PN | Pinal |

| SC | Santa Cruz |

| YP | Yavapai |

| YM | Yuma |

+----------+------------+

15 rows in set (0.01 sec)

Notice the 'shape' of the data. It is in the form of a 'table'--two dimensional, with rows that store each record, and columns that store each field. In this case we have the countyID and name columns. And one row for each county.

This is the most simple select command. The '*' says "give me all columns", much like '*' is used as a wild card in other computer applications.

8. Type select * from members; DO NOT JYA

Apparently, sometimes we need a little less information!

There are two important operations on relational data: 'projection' and 'selection' (not to be confused with the select statement). The projection operation chooses a subset of columns to display. We 'project' by listing the columns to be displayed, in the order we want them displayed, instead of the '*'.

9. Type show columns from zipcodes;

Note that the zipcodes table should have 4 columns: zip, city, countyID and state.

10. Type select * from zipcodes; JYA

This, as we saw, gives you all fields, or columns. You should see all four: zip, city, countyID and state.

mysql> select * from zipcodes

 -> ;

+-------+------------------+----------+-------+

| zip | city | countyID | state |

+-------+------------------+----------+-------+

| 85001 | Phoenix | MA | AZ |

| 85002 | Phoenix | MA | AZ |

| 85003 | Phoenix | MA | AZ |

| 85004 | Phoenix | MA | AZ |

| 86440 | Mohave Valley | MO | AZ |

| 86503 | Chinle | AP | AZ |

+-------+------------------+----------+-------+

97 rows in set (0.01 sec)

11. Type select zip from zipcodes; JYA

mysql> select * from zipcodes

 -> ;

+-------+------------------+----------+-------+

| zip | city | countyID | state |

+-------+------------------+----------+-------+

| 85001 | Phoenix | MA | AZ |

+-------+------------------+----------+-------+

97 rows in set (0.01 sec)

mysql> select zip from zipcodes;

+-------+

| zip |

+-------+

| 85001 |

| 85002 |

| 86430 |

| 86440 |

| 86503 |

+-------+

97 rows in set (0.01 sec)

12. Type select city from zipcodes; JYA

mysql> select city from zipcodes;

+------------------+

| city |

+------------------+

| Phoenix |

+------------------+

97 rows in set (0.01 sec)

13. Type select zip, city from zipcodes; JYA

mysql> select zip, city from zipcodes;

+-------+------------------+

| zip | city |

+-------+------------------+

| 85001 | Phoenix |

| 86430 | Bullhead City |

| 86440 | Mohave Valley |

| 86503 | Chinle |

+-------+------------------+

97 rows in set (0.01 sec)

14. Type select zip, countyID from zipcodes; JYA

mysql> select zip, countyID from zipcodes;

+-------+----------+

| zip | countyID |

+-------+----------+

| 85001 | MA |

| 85002 | MA |

| 85003 | MA |

86440 | MO |

| 86503 | AP |

+-------+----------+

97 rows in set (0.01 sec)

15. Type select zip, city, countyID, state from zipcodes; JYA

mysql> select zip, city, countyID, state from zipcodes

86403 | Lake Havasu City | MO | AZ |

| 86430 | Bullhead City | MO | AZ |

| 86440 | Mohave Valley | MO | AZ |

| 86503 | Chinle | AP | AZ |

+-------+------------------+----------+-------+

97 rows in set (0.01 sec)

16. We can do other things with projection. We can change the order of the columns.

Type select state, countyID, city from zipcodes; JYA

| AZ | MO | Lake Havasu City |

| AZ | MO | Bullhead City |

| AZ | MO | Mohave Valley |

| AZ | AP | Chinle |

+-------+----------+------------------+

97 rows in set (0.01 sec)

17. Type select state, zip from zipcodes; JYA

| AZ | 86440 |

| AZ | 86503 |

+-------+-------+

97 rows in set (0.01 sec)

We can add literals to the output.

18. Type select city, ' is in ', state from zipcodes; JYA

| Lake Havasu City | is in | AZ |

| Bullhead City | is in | AZ |

| Mohave Valley | is in | AZ |

| Chinle | is in | AZ |

+------------------+-------+-------+

97 rows in set (0.01 sec)

Sometimes, when we do a select, we can get redundant data.

19. Type select city, state from zipcodes; JYA

Notice that you get many rows that are the same. This is because large cities have many zip codes, and so this query prints the cities out repeatedly for each zipcode.

| Bullhead City | AZ |

| Mohave Valley | AZ |

| Chinle | AZ |

+------------------+-------+

97 rows in set (0.01 sec)

20. Type select distinct city, state from zipcodes; JYA

| Kingman | AZ |

| Lake Havasu City | AZ |

| Bullhead City | AZ |

| Mohave Valley | AZ |

| Chinle | AZ |

+------------------+-------+

52 rows in set (0.01 sec)

Notice that now you only see one entry for each city.

21. Type select * from rates; JYA

+----------+------------+-------------+--------+

| countyID | agebracket | description | rate |

+----------+------------+-------------+--------+

| AP | 1 | < 1 year | 428.65 |

| AP | 2 | 1-14 years | 77.75 |

| AP | 3 | 15-39 F | 182.27 |

| YM | 3 | 15-39 F | 228.14 |

| YM | 4 | 15-39 M | 138.11 |

| YM | 5 | 40+ F | 255.27 |

| YM | 6 | 40+ M | 219.70 |

+----------+------------+-------------+--------+

90 rows in set (0.01 sec)

You notice that there are really just a few kinds of rates but that they are different for each county. What are the basic kinds of rates?

<1 year

1-14 years

15-39 F

15-39 M

22. Type select distinct description from rates; JYA

mysql> select distinct description from rates;

+-------------+

| description |

+-------------+

| < 1 year |

| 1-14 years |

| 15-39 F |

| 15-39 M |

| 40+ F |

| 40+ M |

+-------------+

6 rows in set (0.00 sec)

To summaize, thus far, the official syntax of the select statement is:

select [distinct] columns-list from table-name;

Now that you are a 'projection' expert, let's try 'selection'. Remember that tables are two dimensional data structures. So if projection picks just some of the columns, then, it makes sense that 'selection' picks just some of the rows. And that it does. However, in projection, we know the names of the columns, but in selection, we do not necessarily know the names of the rows. (In fact, rows do not have names!) So how do we 'select'?

23. TYPE select * from rates where countyID = 'YM'; JYA

mysql> select * from rates where countyID='YM';

+----------+------------+-------------+--------+

| countyID | agebracket | description | rate |

+----------+------------+-------------+--------+

| YM | 1 | < 1 year | 536.55 |

| YM | 2 | 1-14 years | 97.32 |

| YM | 3 | 15-39 F | 228.14 |

| YM | 4 | 15-39 M | 138.11 |

| YM | 5 | 40+ F | 255.27 |

| YM | 6 | 40+ M | 219.70 |

+----------+------------+-------------+--------+

6 rows in set (0.01 sec)
Now you see only the rows that meet the 'where' criteria, in this case countyID = 'YM'

Try some other selections...

24. Display all of the countyIDs and rates of the 40+ males. JYA

mysql> select countyID, rate from rates where description='40+ M';

+----------+--------+

| countyID | rate |

+----------+--------+

| AP | 175.52 |

+----------+--------+

15 rows in set (0.00 sec)

25. Display all of the counties, descriptions and rates that haves rates greater than $225. JYA

mysql> select countyID, description, rate from rates where rate>'225';

+----------+-------------+--------+

| countyID | description | rate |

+----------+-------------+--------+

| AP | < 1 year | 428.65 |

| CH | < 1 year | 486.04 |

| CH | 40+ F | 231.24 |

| CC | < 1 year | 503.92 |

| CC | 40+ F | 239.75 |

| GL | < 1 year | 525.69 |

| GL | 40+ F | 250.10 |

| GR | < 1 year | 516.27 |

| GR | 40+ F | 245.62 |

| GN | < 1 year | 479.05 |

| GN | 40+ F | 227.92 |

| LP | < 1 year | 536.55 |

| LP | 15-39 F | 228.14 |

| LP | 40+ F | 255.27 |

| MA | < 1 year | 451.46 |

| MO | < 1 year | 428.65 |

| NA | < 1 year | 486.04 |

| NA | 40+ F | 231.24 |

| PM | < 1 year | 503.92 |

| PM | 40+ F | 239.75 |

| PN | < 1 year | 525.69 |

| PN | 40+ F | 250.10 |

| SC | < 1 year | 516.27 |

| SC | 40+ F | 245.62 |

| YP | < 1 year | 479.05 |

| YP | 40+ F | 227.92 |

| YM | < 1 year | 536.55 |

| YM | 15-39 F | 228.14 |

| YM | 40+ F | 255.27 |

+----------+-------------+--------+

29 rows in set (0.01 sec)

26. Get a list of all the provider IDs who specialize in podiatry and whether it is there primary specialty. JYA

mysql> select providerID from specializations where specialtyID='580';

+------------+

| providerID |

+------------+

| 600578 |

| 600937 |

| 601232 |

| 601346 |

| 601390 |

| 601520 |

| 601647 |

+------------+

7 rows in set (0.00 sec)

27. Get a list of all the provider IDs who specialize in podiatry but only if it is there primary specialty. (Hint: you can use AND in the where clause.)JYA

mysql> select providerID from specializations where specialtyID='580' AND primry

='Y';

+------------+

| providerID |

+------------+

| 600578 |

| 601390 |

| 601647 |

+------------+

3 rows in set (0.00 sec)

28. You met a doctor (provider) once whose first name is 'Bruce' but you can't remember his last name. Find all of the Bruce's. JYA

mysql> select fname, lname from providers where fname='Bruce';

Empty set (0.02 sec)

29. You need to find the names of all of the doctors that speak English and Arabic ('EA'). JYA

mysql> select fname, lname, languages from providers where languages='EA';

+---------+----------+-----------+

| fname | lname | languages |

+---------+----------+-----------+

| Eli | Kozak | EA |

| Rex | Boyer | EA |

| Percida | Milewski | EA |

| Desiree | Kuraitis | EA |

| Shemira | Parker | EA |

+---------+----------+-----------+

5 rows in set (0.02 sec)

30. No wait, you need to find the names of all of the doctors that speak English and Arabic and are female. JYA

mysql> select fname, lname, languages from providers where languages='EA' AND gender='F';

+---------+----------+-----------+

| fname | lname | languages |

+---------+----------+-----------+

| Percida | Milewski | EA |

| Desiree | Kuraitis | EA |

| Shemira | Parker | EA |

+---------+----------+-----------+

3 rows in set (0.02 sec)

31. Use the Zipcodes table to find all of the zipcodes for Yuma. JYA

mysql> select zip from zipcodes where countyID='YM';

+-------+

| zip |

+-------+

| 85350 |

| 85364 |

| 85365 |

| 85366 |

| 85367 |

+-------+

5 rows in set (0.01 sec)

32. Using the zipcodes you just found, find all of the medical facilities in Yuma. Hint: Try using either where zip in ('85364', '85365', '85366', '85367') or where zip between '85364' AND '85367' or both. Do they get the same answer?JYA

mysql> select name from sites where zip between '85364' AND '85367';

+--------------------------------+

| name |

+--------------------------------+

| Offices of Georgina Tamborlane |

| Yuma Medical Center |

+--------------------------------+

2 rows in set (0.00 sec)

Again, to summaize, thus far, the official syntax of the select statement is:

select [distinct] columns-list

 from table-name

 where conditional-expression;

Unlike earlier data managment systems, Relational DBMS implies no particular order to either the rows or columns of the data. Instead, it allows you to use your projection to order the columns, and the order by clause to order the rows.

33. Find the first and last names of all of the dentists (degrees = 'DDS'). JYA

mysql> select fname, lname from providers where degrees='DDS';

+-----------+---------------+

| fname | lname |

+-----------+---------------+

| Antoine | Jonas |

+-----------+---------------+

15 rows in set (0.02 sec)

34. Do the same, but add order by lname after the where clause. (select fname, lname from providers where degrees = 'DDS' order by lname;) JYA

mysql> select fname, lname from providers where degrees = 'DDS' order by lname;

+-----------+---------------+

| fname | lname |

+-----------+---------------+

| Rajendran | Bockenstadt |

| Josiane | Farrell |

| Linda | Frankel |

| Katheleen | Herring |

| Guadalupe | Irizarry |

| Antoine | Jonas |

| Jeffrey | Lawson-Torres |

| Roxann | Lee |

| Yamile | Levanthal |

| Sharlene | Pikes |

| Eric | Reik Jr |

| Francisca | Santini |

| Zajaayra | Silvernale |

| Silvio | Snyder |

| Kevin | Uribe Jr |

+-----------+---------------+

15 rows in set (0.02 sec)

35. Do the same, but add order by lname desc JYA

mysql> select fname, lname from providers where degrees = 'DDS' order by lname desc;

+-----------+---------------+

| fname | lname |

+-----------+---------------+

| Kevin | Uribe Jr |

+-----------+---------------+

15 rows in set (0.02 sec)

36. The SQL Select statement also has functions that work on groups of data. The most used of these fundtions are AVG, COUNT, MAX, MIN, and SUM.

Type select count(*) from rates; JYA

mysql> select count(*) from rates;

+----------+

| count(*) |

+----------+

| 90 |

+----------+

1 row in set (0.01 sec)

37. Type select min(rate) from rates; JYA

mysql> select min(rate) from rates;

+-----------+

| min(rate) |

+-----------+

| 77.75 |

+-----------+

1 row in set (0.01 sec)

38. Type select max(rate) from rates; JYA

mysql> select max(rate) from rates;

+-----------+

| max(rate) |

+-----------+

| 536.55 |

+-----------+

1 row in set (0.01 sec)

39. Type select avg(rate) from rates; JYA

mysql> select avg(rate) from rates;

+------------+

| avg(rate) |

+------------+

| 226.165222 |

+------------+

1 row in set (0.00 sec)

Finally, SQL allows us to group rows together.

40. Try select specialtyID, count(*) from specializations group by specialtyID;. JYA

If you use group by, it only makes sense to always have the group by column in the projection list. This is like the 'control break' field in a COBOL control break report.

mysql> select specialtyID, count(*) from specializations group by specialtyID;

+-------------+----------+

| specialtyID | count(*) |

+-------------+----------+

| 110 | 7 |

| 120 | 6 |

| 130 | 11 |

| 140 | 11 |

| 700 | 6 |

| 710 | 7 |

+-------------+----------+

61 rows in set (0.02 sec)

41. Compare the outputs of

select distinct countyID from rates; and

select countyID from rates group by countyID; JYA

Now try select distinct countyID, count(*) from rates; JYA

Does that work? Why not? (The count, max, min etc are grouping functions--they only work with the group by clause.)

42. Try select countyID, count(*) from rates group by countyID; JYA

mysql> select countyID, count(*) from rates group by countyID;

+----------+----------+

| countyID | count(*) |

+----------+----------+

| AP | 6 |

| SC | 6 |

| YM | 6 |

| YP | 6 |

+----------+----------+

15 rows in set (0.00 sec)

So, you can use grouping functions by themselves, if you are not using group by, or with a control break field in the projection list and in the group by clause.

What if we do not want to see each group yielded by the group by clause? SQL gives us a having clause, which is like a where clause, but only works with the group by clause and specifies a criteria for which groups to display.

43. Try select specialtyID, count(*) from specializations group by specialtyID having count(*) > 10; JYA

mysql> select specialtyID, count(*) from specializations group by specialtyID having count(*) > 10;

+-------------+----------+

| specialtyID | count(*) |

+-------------+----------+

| 130 | 11 |

| 680 | 15 |

+-------------+----------+

21 rows in set (0.02 sec)

44. Try select countyID, max(rate) from rates group by countyID; JYA

mysql> select countyID, max(rate) from rates group by countyID;

+----------+-----------+

| countyID | max(rate) |

+----------+-----------+

| AP | 428.65 |

| YP | 479.05 |

+----------+-----------+

15 rows in set (0.00 sec)

Now try select countyID, max(rate) from rates group by countyID having max(rate) > 500.00; JYA

mysql> select countyID, max(rate) from rates group by countyID having max(rate)>500.00;

+----------+-----------+

| countyID | max(rate) |

+----------+-----------+

| CC | 503.92 |

| GL | 525.69 |

| GR | 516.27 |

| LP | 536.55 |

| PM | 503.92 |

| PN | 525.69 |

| SC | 516.27 |

| YM | 536.55 |

+----------+-----------+

8 rows in set (0.00 sec)

But, to summarize, once more, the official syntax of the select statement is:

select [distinct] columns-list

 from table-name

 [where conditional-expression]

 [order by sort-column-name [ASC|DESC]

 [group by column-name

 [having conditional-expression]];

Make sure to follow the instructions for electronic submission.

Use start as the folder name suffix.

Submit the following files:

vlab_start.doc

