Additional Material
Dix 3.2
Models of interaction

There are 2 participants:
User (|(System

Interface

Models:
· What is going on in the interaction?

· What causes difficulties?

Both Norman’s and Abowd’s models describe the interaction in terms of goals and actions of the user.

3.2.1
The terms of interaction

Purpose of an interactive system: accomplishing goals from some domain:

· graphic design

· authoring

· process control, etc.
The domain consists of concepts, e.g. in graphic design:

· geometric shapes

· drawing surfaces

· drawing utensil

Tasks are operations to manipulate concepts, therefore:

a goal is the desired output from a performed task.

An intention is a specific action required to meet the goal.

Task analysis involves identification of the problem space in terms of its

· domain

· goals

· intentions

· tasks

Major concepts:

System (|(User

Described by

Described by means

means of a core

of a task language

language describing

describing

computational attributes

psychological attributes

3.2.2
The execution – evaluation cycle

Goal (in task language) is imprecise, therefore refine:

Intention

Specify action sequence

Execute action

Perceive system state

Interpret system state

Evaluate system state

The above cycle illustrates why some interfaces cause problems to their users:

Gulfs of execution and evaluation
The difference between

Amount of effort a person must

intention and

exert to interpret the physical state

allowable actions,

of the system and to determine how

i.e. the difference between

well the expectations and intentions

the user’s formulation of the

have been met, i.e. the distance between

actions required to reach the

the physical presentation of the system state

goal, and the actions allowed

and the expectation of the user.

by the system.

3.2.3
The interaction framework

[image: image1.png]core

Output language

[

u

/ask

Input language

Evaluation
[o]
3 PreseW w‘ewauon
four

ranslations s u
2. Performance of 1. Atticulation

operations 1 1
goal aind task

Execttion

3.3
Frameworks

The interaction framework provides a means to judge the overall usability of an entire interactive system.

· Ergonomics addresses issues on the user side (I and O), as well as the user’s immediate context:

[image: image2.png]Ergonormics|(human factors).

Anrangement of controls and display
Physical enironment

Helath issues

u Use of colour

· Dialogue design and interface styles are placed on the input branch, addressing articulation and performance, but biased more to the computer side of the framework:

[image: image3.png]Dialogue:

Cormmand line interface
Merus

Natural language

Q/A and query dialogue
Forrrfils and spreadsheets
WIMP

The entire framework can be placed within a social and organizational context.

The seven stages of action as design aids

Use a checklist of questions to ask to ensure that the Gulfs of Evaluation and Execution are bridged:

How easily can one

determine the function of the device?

Tell what actions are possible?

Tell if system is in desired state?

Determine mapping from intention to

Determine mapping from system

physical movement?

state to interpretation?

Perform the action?

Tell what state the system is in?

This boils down to:

· Visibility

· A good conceptual model

· Good mapping

· Feedback
Raskin 2-2
Cognitive Conscious and Cognitive Unconscious

Understanding that we possess these two distinct sets of limited mental abilities and understanding how they work in relationship to human-machine interfaces is as essential to designing interfaces as is knowing the size and the strength of the human hand when we are designing a keyboard.

Unconscious mental processes are those processes of which you are not aware at the time they occur. We can tangibly demonstrate this by means of a question: What is the last character in your first name? Until you read the previous sentence, you were probably not thinking about this alphabetic character and its relationship to your name. Although you know the character and its place in your name, you were not paying attention to that knowledge – you were not conscious of it, yet you could recover it on demand from the cognitive unconscious.

Without speculating about how you became aware (conscious) of the alphabetic character, we simply acknowledge that you were not conscious of the character at one moment and were conscious of it at another moment. When you thought of that character, that thought became part of your conscious awareness. This change of state shows that you have at least two forms of knowing.

A stimulus, such as reading a particular portion of this text, can trigger the migration of an item of information, a sensation, a feeling, or some other aspect of your memory or knowledge from the unconscious, where it is stored, to the conscious, where you are aware of it. But “movement” in the other direction is also possible: A sudden noise or other unexpected event can pull your attention away from what you are doing to the question of what caused the sound. After you return to reading, your knowledge of the event will move from the cognitive conscious to the cognitive unconscious.

Although we don’t know how the brain works, we can build mental models, and in this case we picture the conscious and unconscious as two separate compartments. They have different ways of interacting with the world and with concepts, and they have properties beyond our awareness and unawareness of them. The following table characterises some of the properties of the conscious and the unconscious. Next we investigate the implications for interface design.

	Property
	Conscious
	Unconscious

	Engaged by

Used in

Can handle

Accepts

Operates

Controls

Capacity

Persists for
	Novelty

Emergencies

Danger

New circumstances

Decisions

Logical propositions

Sequentially

Volition

Tiny

Tenths of seconds
	Repetition

Expected events

Safety

Routine situations

Nonbranching tasks

Logic or inconsistencies

Simultaneously

Habits

Huge

Decades (lifelong)

Raskin 2-3
Locus of Attention
When you are awake and conscious, your locus of attention is a feature or an object in the physical world or an idea about which you are intently and actively thinking. Attention includes not only the case of actively paying attention but also the passive case of just experiencing what is taking place.

You see and hear much more than whatever is the locus of your attention. If you go into a room to look for a misplaced item, what you seek may be plainly in view but remain unnoticed because it never became your locus of attention. Direct perceptions seem to persist for a brief period: visual perception decays typically in 200 msec, making it possible to watch movies. Perceptions do not automatically become memories – most are lost after they decay. One implication for interface design is that you cannot assume that, because someone has seen or heard a particular message 5 seconds earlier, that person will remember its wording. Either you must display the message until it is no longer needed, or the user must apply the information immediately. As the information becomes the locus of attention, it moves into STM, where it will persist for up to 10 seconds.

2-3-1
Formation of habits

When you perform a task repeatedly (practice), it tends to become easier to do. Your competence becomes habitual. Any habit is a surrender of detail control, but habits are essential to all higher life forms; when it comes to the routine aspects of everyday life, you want your conscious attention to “cease to be.” Small habits help you to use your computer, watch, alarm clock, telephone, etc.

Persistent use of any interface will cause you to develop habits that you will find yourself unable to avoid. It is the mandate of the designer to create interfaces that do not allow habits to cause problems for the user. Interfaces must:

· deliberately take advantage of the human trait of habit development, and

· allow users to develop habits that smooth the flow of their work.

The ideal humane interface reduces the interface component of a user’s work to benign habituation. Both the helpful and injurious properties of habit formation must be taken into account. One notable example is the tendency to provide many ways of doing the same task. Having multiple options can shift your locus of attention from the task at hand to the choice of method. A designer can create a nasty trap by permitting to run, on one computer, two or more heavily used applications that differ in only a handful of often-used details. In such a circumstance, the user is guaranteed to develop habits that will cause errors when he/she attempts to use in one application a method appropriate to only the other.

2-3-2
Execution of simultaneous tasks
A task that you have learned to do without conscious thought has become automatic. Automaticity allows you to do more than one activity at a time. All but at most one of the tasks that you perform simultaneously are automatic. The one that is not automatic is the one that most directly involves your locus of attention. Humans cannot avoid developing automatic responses – any sequence of actions that you perform repeatedly will, eventually, become automatic. A set of actions that form a sequence also becomes clumped into a single action; once you start a sequence that takes less than 1 or 2 seconds to complete, you will not be able to stop the sequence but will continue executing the actions until you complete that clump. You also cannot interrupt sequences that take longer than a few seconds to execute unless that sequence becomes your locus of attention.

The inevitability of habit formation has implications for interface design. For example, confirming a file deletion becomes a habit, so that the computer’s query, intended to serve as a safety measure, is rendered useless by habituation; it serves only to complicate the normal file-deletion process. Any confirmation step that elicits a fixed response soon becomes useless. A more effective strategy is therefore to allow users always to undo an erroneous command, even if they have performed intervening actions since issuing it.

2-3-3
Singularity of the locus of attention

There is only one locus of attention; this observation underlies the solution of many interface problems. Our attention may wander: you may be unconscious of all but one line of thought, but an unsuspected or surprising event triggers conscious attention from that line – you have acquired a new locus of attention and lost the old. However, if outside or internal events are routine and unpressing, the unconscious recognizes that status and you ignore these events, without being conscious that you are ignoring them. The use of a computer is often so stressful and difficult that a user will become absorbed in working on the computer system, and therefore be distracted from the completion of tasks. Our goal is to leave the task as the locus of the user’s attention.
On the other hand, absorption, if it is confined to the task and the system does not pull attention to itself, is essential to productivity. But then again, if the computer behaves unexpectedly while you are using an interface, you become less likely to see hints, help messages, or other user aids as you become increasingly agitated about the problem. The more critical the task, the less likely it is for users to notice warnings that alert them to potentially dangerous actions. A computer message is most likely to be missed when it is most important for it not to be missed. Therefore, make sure that users cannot make interface operation errors, or that the effects of any actions are readily reversible rather than simply notifying users about the potential consequences of their actions. Most interface situations can be designed such that error messages are unnecessary.

Raskin 3-2
Modes

Modes are a significant source of errors, confusion, unnecessary restrictions, and complexity in interfaces.

A gesture is a sequence of human actions completed automatically once set in motion. For example, typing a common word such as the is a single gesture for the experienced typist, whereas the typing of each letter would be a separate gesture for a beginning typist. Combining a sequence of actions into a gesture is called chunking.

Most interfaces can interpret a given gesture in different ways. For example, at moment, tapping Return inserts a return character into the text, whereas at another time, tapping Return causes the typed text immediately prior to that tap to be executed as a command. Modes are manifested by how an interface responds to a gesture. For any given gesture, the interface is in a particular mode if the interpretation of that gesture is constant.

A classic problem caused by an interface that has modes, is that you cannot tell by inspecting the controlling mechanism what operation you need to perform to accomplish your goal. If you operate the controlling mechanism without separately verifying the state of the system, you cannot predict the effect that the operation will have.

Toggles (such as radio buttons) are especially difficult to label. When used to indicate an operation (such as Lock or Unlock), they are easily misunderstood to indicate state (Locked or Unlocked) and are therefore better implemented to indicate state. Check boxes can leave the user guessing what the alternative is; therefore, it is often better to use radio buttons. They are not modal, and the user can clearly see not only the current state but also the alternative(s). Whichever is used, it is important to label them with adjectives describing the state of the object affected, rather than verbs, which describe an action, in which case the user does not know whether the action has taken place or is yet to take place.

Toggles can cause users errors, except when the state is the locus of attention. Although the kinds of errors are usually transient, and recovery is easy, they should not be overlooked in interface design. Errors annoy by pulling the user’s attention away from the work flow. For example, when the Caps Lock key is accidentally toggled, the first indication of this mode switch is that you notice that the sentence you have just typed is set in all uppercase letters; only then do you notice that the Caps Lock key’s light is on.

Modes cause problems because they make habitual actions have unexpected effects. The most common remedy is to display prominently to the user the state of the system. Although Norman blames mode errors on inadequate feedback (by some indicator of system state), the real reason is that the provided indicator is not the user’s locus of attention. Feedback and indicators of system state are not sufficient to guarantee the elimination of mode errors, even if the indicators are physically located at your locus of attention.

Expertise is no protection against modes; an expert has developed firm habits. Naiveté is also no protection. According to Norman there are three ways to minimize mode errors:

1. Do not have modes.

2. Make sure that the modes are distinctively marked.

3. Make sure that the commands required by different modes are not the same, so that a command issued in the wrong mode will not lead to difficulty.

Of these three, only the first always prevents mode errors. The second works sporadically, and the third does not decrease the number of errors but it does reduce the penalty for erring. Extreme techniques will usually draw a user’s attention to a mode indicator, but by their intrusive strength, they redirect the user’s locus of attention to the current state of the system and not on what she is trying to accomplish – a result that is as undesirable as the mode error that the indicators might prevent. Norman defines mode errors as mistakes that occur when a user misclassifies, or when the user makes an erroneous analysis of a situation. These terms hint at active, conscious participation on the part of the user and therefore apply while he is unfamiliar with a command but do not apply after his use of it has become automatic.

3-2-1
Definition of modes

A human-machine interface is modal with respect to a given gesture when (1) the current state of the interface is not the user’s locus of attention and (2) the interface will execute one among several different possible responses to the gesture, depending on the system’s current state. A given interface feature can be modal for one user and not modal for another; an interface can be modal with respect to one gesture and not modal with respect to another gesture.

3-2-2
Modes, user-preference settings and temporary modes

Facilities for setting user preferences constitute an example of modes and are a major source of user frustration. Customizations are software design changes that are not reflected in the documentation. Allowing the user to change the interface design often results in choices that are not optimal because the user will, usually, not be a knowledgeable interface designer. Typically, a user will choose the method closest to one with which he is already familiar or a customization needed only temporarily. By providing preferences we burden users with a task outside their job function, because time spent in learning and operating the personalization features is time mostly wasted from the task at hand.

To summarize: If you design a modal interface, users will make mode errors except when the value of the state that is controlled by the mode is the user’s locus of attention and is visible to the user or is in the user’s short-term memory. The burden is on the designer to demonstrate that a mode is being used under the appropriate condition or that the advantages of a particular modal design outweigh its unavoidable disadvantages. It is always safe to avoid interface designs that have modes.

3-2-3
Modes and quasimodes

There is a significant difference between using the Caps Lock key to type uppercase letters and holding the Shift key to the same effect. The first case establishes a mode, the second case does not. Mode errors are not induced by holding the Shift key, because we constantly receive signals reporting back to us that certain muscles are actively producing a force. The terms user-maintained mode or quasimode are used to denote modes that are maintained kinesthetically.
Although quasimodes are very effective in eliminating modes, their excessive use can lead to absurd interface conventions that require the user the remember dozens of commands, such as Control-Alt-Shift-Esc-q.

Raskin 3-3 Noun-Verb versus Verb-Noun Constructions

Many commands involve applying an action to an object. For example, in a word processor you might take a paragraph and change its typeface; in this case the object is the paragraph and the action is the selection of a new font. The interface can allow you to sequence the operations in two ways. You choose either (1) the verb (change font) first and then select the noun (the paragraph) to which the verb should apply, or (2) the noun first and then apply the verb. It might seem that the order is of no importance, but in most interface designs the situation is not symmetrical and the order makes a significant difference in usability.

A locus-of-attention analysis shows the benefits:

· Error reduction: Verb-noun style sets up a mode. Once you have chosen a command in this style, it will take effect on the next selection you make. If there is a delay or distraction between issuing the command and making the selection, the ensuing action may be surprising when you next make a selection. With noun-verb construction, commands are executed when issued, when your locus of attention is the command.

· Speed: You do not have to shift your attention away from your content – which is what triggered the need to perform an operation – to the command and then back to find your place in the content again to make the selection. With noun-verb construction, you make the selection – your locus of attention – and then switch your attention to the command. There is one change of locus of attention instead of two.

· Simplicity and reversibility: In the verb-noun paradigm, you need to have an escape or a cancel feature associated with the command; if you issue a command and then decide against it, you are in a mode where the system expects you to make a selection, so a mechanism must be provided so that you can signal the system that you do not want to make a selection, you want to issue another command. In noun-verb construction, if you decide to change your selection, you simply make another selection. No Cancel button or cancel method is necessary.

So, in general, the noun-verb paradigm is preferred. Verb-noun methods should be limited to palette selections intended for immediate use.
Dix 3.4, Raskin 4
8 Human Aspects of Computing and of Using Computers

8.1
Ergonomics

This is the study of the physical characteristics of human interactions with everyday objects; the design of the controls, the physical environment in which the interaction takes place, and the layout and physical qualities of the object (e.g. computer screen).

Ergonomics also touches upon human psychology and system constraints.

8.1.1
Arrangement of controls and displays

Sets of controls and parts of the displays should be grouped logically to allow rapid access by the user – especially in critical applications such as:

· Plant control

|
Users are under pressure,

· Aviation

|
a huge range of

· Air traffic control

|
displays and controls.

But even i less critical applications, inappropriate placement of controls and displays can lead to inefficiency and frustration. For example, when grammar-checking, the “Next sentence” button, when pressed, turns into “Replace”, which can easily lead to mode errors.

It is therefore important to group controls together logically, and to keep opposing controls separate. Depending on domain and application, organization can be:

· Functional controls and displays organized so that those that are functionally related are placed together;
· Sequential controls and displays organized to reflect the order of their use in a typical interaction (e.g. in aviation);
· Frequency controls and displays organized according to how frequently they are used – most commonly used controls being most easily accessible.
Also, the entire system interface must be arranged appropriately in relation to the user’s position. The user should be able to reach all controls, critical displays should be at eye level, and lighting should be directed to avoid glare and reflection.

8.1.2
The physical environment

Consider:

· Where will the system be used?

· By whom will it be used?

· Will users be sitting, standing, or moving?

· The size of the users – smallest, tallest…

All users should be comfortable, able to see critical displays, seated comfortably, stable, with back support.

8.1.3
Health issues

Consider:

· Physical position: Reach, see, sit/stand comfortably;

· Temperature: Extreme heat and cold affect performance and health;

· Lighting: Adequate, to allow users to see computer screen without discomfort or eyestrain. Avoid glare and reflection;

· Noise: Excessive noise is harmful to health, causes pain and can lead to loss of hearing;

· Time: The time users spend with the system should be controlled. Excessive use of CRT displays can be harmful, particularly to pregnant women.

8.1.4
Use of colour
The visual system has some limitations with regard to colour – e.g. the number of colours that are distinguishable, perceiving blue. Not all people perceive colours the same. Colours used should be as distinct as possible – should not be affected by contrast.

Do not use blue to display critical information. Colour should not be the sole indicator of a condition – always provide other information. Colours should correspond to common conventions and user expectations (e.g. red, yellow, green).

8.2
Cognitive models

These model some aspect of the user’s understanding, knowledge, intentions, or processing – e.g.

· Competence models – they predict legal behaviour sequences, but without reference to whether they could actually be executed by users;

· Performance models – they describe what the necessary behaviour sequences are, what the user needs to know, and how this is employed in actual task execution.

In the following Sections the interaction framework is used, modelling the user and his/her task language, and the articulation translation between the task language and the Input language.

8.2.1
Goal and task hierarchies

In this type of model the user achieves goals by solving subgoals (divide and conquer). For example: to produce a report on books sold – subgoals are:

1. Gather data.

1.1
Find names of books.

1.2
Search database.

2. Produce tables and graphs.

3. Write descriptive material.

This is turned into an algorithm:

produce report

gather data

find book names

do search on names database

etc.

sift through names and abstracts

etc.

search sales database

etc.

etc.

layout tables and graphs

etc.

etc.

etc,

write descriptive material

etc.

Note:

· Where do we stop/start? – granularity.

· Models: GOMS and CCT

The GOMS keystroke-level model

The GOMS description has 4 elements:

· Goals:
What the user wants to achieve.

· Operators:
The lowest level of analysis – the basic actions that a user must perform to use the system.

· Methods:
Goals can be split into sub-goals in different ways; these are called methods.

· Selection:
Choose between methods depending on the user and the state of the system, e.g.:

Goal:
Iconize-window

[select
Goal: Use-close-method

 Move-mouse-to-window-header

 Pop-up-menu

 Click-over-close-option

Goal: Use-F7-method

 Press-F7-key]

By analyzing the GOMS goal structure, measures of performance can be found, and from there, the short-term memory requirements. The time it takes the user-computer system to perform a task is the sum of the times it takes for the system to perform the serial elementary gestures that the task comprises. A set of typical comparative times for different gestures was developed by careful laboratory experiments:

K = 0.2 sec
Keying:
The time it takes to tap a key on the keyboard.

P =1.1 sec
Pointing:
The time it takes a user to point to a position on a

display.

H = 0.4 sec
Homing:
The time it takes a user’s hand to move from the

keyboard to the GID or from the GID to the keyboard.

M = 1.35 sec
Mentally preparing: The time it takes a user to prepare mentally

for the next step.

R

Responding:
The time a user must wait for a computer to respond

to input.

The wide variability of each measure means that we cannot use this simple model to obtain absolute timings with any certainty; however, by using the typical values it is usually possible to obtain the correct ranking of the performance times of two interface designs, using the heuristics listed in the Table.

Heuristics for placing mental operators

Rule 0

Initial insertion of candidate M’s

Insert M’s in front of all K’s. Place M’s in front of all P’s that select commands, but do not place M’s in front of any P’s that point to arguments of those commands.

Rule 1

Deletion of anticipated M’s

If an operator following an M is fully anticipated in an operator just previous to that M, then delete that M.

Rule 2

Deletion of M’s without cognitive units

If a string of M K’s belongs to a cognitive unit, then delete all the M’s but the first. A cognitive unit is a contiguous sequence of typed characters that form a command name or that is required as an argument to a command.

Rule 3

Deletion of M’s before consecutive terminators

If a K is a redundant delimiter at the end of a cognitive unit, such as the delimiter of a command immediately following the delimiter of its argument, then delete the M in front of it.

Rule 4

Deletion of M’s that are terminators of commands

If a K is a delimiter that follows a constant string – e.g. a command name or any typed entity that is the same every time that you use it – then delete the M in front of it. (Adding the delimiter will have become habitual, and thus the delimiter will have become part of the string and not require a separate M.) But if the K is a delimiter for an argument string or any string that can vary, then keep the M in front of it.

Rule 5

Deletion of overlapped M’s

Do not count any portion of an M that overlaps an R – a delay, with the user waiting for a response from the computer.

__

Example

Hal works at a computer, typing reports. He is occasionally interrupted by one or another of the researchers in the room, and is asked to convert a temperature reading from degrees Fahrenheit or Celsius to Celsius or Fahrenheit, respectively. For example, he might be asked, “Please convert 302.25 ºF to ºC.” Hal must use the keyboard or GID to enter the temperature provided. Conversions from ºF to ºC and from ºC to ºF are equally likely to be required. About 25% of the temperatures to be converted are negative, although the digits are unpredictable and equally distributed, and only 10% of the temperatures have integer values, such as 37º. The numerical result must appear on the display; no other output means are available. Hal reads to the researcher the converted value from the screen. The input and the output must allow for at least ten digits on each side of the decimal point.

In designing an interface for a system that allows Hal to do his job, your goal is to minimize the time it takes Hal to do the conversion. Speed and accuracy must be maximized; screen area is not limited. The window, or area of the display in which the temperature conversion takes place, is already active and waiting for Hal’s input via GID or keyboard. The way Hal interacts with the interface to return to his typing on the computer is not your concern; your job is finished as soon as the result is displayed.

In estimating the time it takes Hal to use the interface, assume an average of four typed characters in an entered temperature, including any decimal point and sign. For simplicity’s sake, assume that Hal’s typing is perfect; error detection and notification are not needed.

The GOMS representation is developed as follows:

· Move hand to GID:

H
· Point to a radio button:

H P
· Click on the radio button:

H P K
· Move hands back to keyboard:
H P K H
· Type four characters:

H P K H K K K K
· Tap Enter:

H P K H K K K K K
Using rule 0, add M’s in front of all the K’s and P’s except those P’s that point to arguments, of which there are none in this example:

H M P M K H M K M K M K M K M K

Rule 1 tells us to change P M K to P K and to eliminate any other fully anticipated M’s, of which there are none. Rule 2 eliminates M’s in the middle of strings:

H M P K H M K K K K M K

The M before the final K is required by Rule 4. Rules 3 and 5 do not apply. Now add the times represented by the letters:

H + M + P + K + H + M + K + K + K + K + M + K

= 0.4 + 1.35 + 1.1 + 0.2 + 0.4 + 1.35 + 4 * (0.2) + 1.35 + 0.2

= 7.15 seconds

Cognitive Complexity Theory

This theory adds to the GOMS model to give it more predictive power. CCT describes both the user’s goals and the computer system or device. The user’s goals are expressed as in GOMS, but expressed using production rules:

if condition

 then action

The description for even a small part of an interface can become enormous. Also, there may be several ways of representing the same user behaviour and interface behaviour.
8.2.2
Linguistic models

Interactions with a computer often make use of language, therefore many models have developed around this concept.

BNF rules

The Backus-Naur Form views dialogues simply at a syntactic level, ignoring the semantics. Assume, for example, a graphics system. To select a line-drawing function, the user selects the line menu option. In the following description, non-terminals (in lower case) are higher-level abstractions, often defined in terms of other non-terminals:

name ::= expression,

while terminals (in upper case) represent the lowest (elemental) level of user behaviour, such as pressing a button:

draw-line

::=
select-line + choose-points + last-point

select-line

::=
position-mouse + CLICK-MOUSE

choose-points

::=
choose-one | choose-one + choose-points

choose-one

::=
position-mouse + CLICK-MOUSE

last-point

::=
position-mouse + DOUBLE-CLICK-MOUSE

position-mouse
::=
empty | MOVE-MOUSE + position-mouse

 selection
 sequence
 iteration/recursion

The complexity of this dialogue can be analyzed, for example by counting the number of rules (which is sensitive to the way the interface is described), or by adding to this count the number of + and | structures. The BNF definition can also be used to work out how many basic actions are required for a particular task, which will provide an estimate of the difficulty of that task.

Task-action grammar

Consider the UNIX commands cp, mv, and ln. Each has two forms:

copy
::=
‘cp’ + filename + filename | ‘cp’ + filenames + directory

move
::=
‘mv’ + filename + filename | ‘mv’ + filenames + directory

link
::=
‘ln’ + filename + filename | ‘ln’ + filenames + directory

TAG is designed to reveal consistency, which BNF cannot do, e.g. to show an inconsistent alternative when a directory argument is taken first. A TAG description would be:

file-op[Op]

::=
command[Op] + filename + filename

| command[Op] + filenames + directory

where
command[Op=copy]
::=
‘cp’, etc.
8.2.3
Display-based systems

The above techniques were developed for interactive command line or keyboard-based systems. They have been adapted slightly to deal with window- and mouse-driven interfaces, but especially the lowest-level lexical structure (see GOMS, above). Pressing a key, or clicking a mouse button, is a reasonable lexeme, but moving a mouse one pixel is not sensible. This can be ‘abstracted’ by regarding operations such as ‘select region of text’ or ‘click on OK button.’

Display-oriented systems encourage less structured methods for goal achievement. The user performs a more exploratory task:

WRITE-LETTER

FIND-SIMILAR-LETTER

Such recognition-based

COPY-IT

searching is very difficult to

EDIT-COPY

represent as a goal structure

At a lower, more concrete, level, goal hierarchies become more applicable:

DELETE-WORD

SELECT-WORD

MOVE-MOUSE-TO-WORD-START

DEPRESS-MOUSE-BUTTON

MOVE-MOUSE-TO-WORD-END

RELEASE-MOUSE-BUTTON

CLICK-ON-DELETE

MOVE-MOUSE-TO-DELETE-ICON

CLICK-MOUSE-BUTTON
