 SC207 Software Engineering Term Paper 2003

My Best View of Component Metrics to Measure Component Quality

Identify the paper to one or more of the topics discussed in the lecture

The paper can be related to Software Quality Assurance, where metrics are used in the bid to find the various aspects of a component, such as its complexity, customizability and reusability.

New contribution that has been made to the field of software engineering

Traditional methods uses object-oriented methods which focus on object structures while the paper introduce component-based development (CBD) methods uses commonality and variability (C&V) analysis, components, component’s interfaces and relationships among components to measure its quality. Therefore we cannot use the traditional methods for our purpose.

Technique(s) Used

As stated above, component quality measures a component’s complexity, customizability and reusability. Cyclomatic complexity is traditionally sued to evaluate the complexity in algorithms. Component Complexity Metric (CCM) uses four different metrics; Component Plain Complexity (CPC), Component Static Complexity (CSC), Component Dynamic Complexity (CDC) and Component Cyclomatic Complexity (CCC). The combination of all the four metrics mentioned is used to evaluate the complexity of the component.

CPC is the summing of the number of classes, abstract classes, interfaces with their respective weights and with the complexity of each class and the complexity of each method. CPC focuses on the number of classes, interfaces methods and parameters.

CSC is calculated by the number of each relationship between classes and the weight value of each relationship. The weight values are of the following priority: Dependency<Generalization<Aggregation<Composition. CSC focuses on the complexity of the component’s internal structure using a static view.

CDC focuses on the number of message passing in a component. This metric measures the complexity of the internal massage passing using a dynamic view. It is derived from the summing up the complexity of each interface method, which is calculated by multiplying the number of messages with their respective frequency and then adding the complexity of each message present.

CCC is used after the component implementation is done. It is calculated based on the developed software code. CCC is the addition of the number of classes, interfaces and interface methods with the sum complexity of each class and the sum complexity of each interface method.

The component’s customizability is measured by dividing the number of customization by the count of method declared in each interface. Customizability reflects on how reusable the component is and thus, should be considered during component development process.

The reusability of the component is by dividing the sum of interface methods in a domain by the sum of the total interface methods. Therefore, the more functions supported in a component, the more reusability of the component in an application.

	Author(s)
	Year
	Article
	Some Description
	How does it relate to your main article

	Clemens Szyperski
	1998
	Beyond Object Oriented Programming
	It provides in-depth discussion of both the technical and the business issues to be considered, then moves on to suggest approaches for implementing component-oriented software production and the organizational requirements for success..
	The main article talks about how inadequate object oriented development is in modern programming and the focus should be on component oriented development where more aspects of the software can be taken into consideration.

	Linda H. Rosenberg and Lawrence E. Hyatt
	1997
	Software Quality Metrics for Object-Oriented Environments
	Product quality has 5 attributes, which are efficiency, complexity, understandability, reusability and maintainability. Nine metrics are proposed for this approach in software engineering.
	The article gives a very good insight to using object-oriented approach. Contrasts the methods described in the main article.

	Linda H. Rosenberg
	1998
	Applying and Interpreting Object Oriented Metrics
	Gives a description on how to use object-oriented metrics.
	Gives a better understanding of object-oriented metrics.

	Object Management Group
	1999
	CORBA Components
	CORBA applications are composed of objects, individual units of running software that combine functionality and data, and that frequently represent something in the real world
	Similar to object oriented approach in software engineering, which again, serves as a source of information on the topic.

	Rational Software Corp.
	1997
	Unified Modeling Language (UML)
	UML helps you specify, visualize, and document models of software systems, including their structure and design, in a way that meets all of these requirements
	UML was used in the article to describe a use case.

	McCabe & Associates
	1994
	McCabe Object Oriented Tool User’s Instructions
	Product Quality for code and design has five attributes. These are Efficiency, Complexity, Understandability, Reusability, and Testability/Maintainability.
	Used to help understand traditional object-oriented metrics

Relation to lab project

The article explains the shift of paradigm from object-oriented approach to component-based approach. This article also help me in understanding the need to place emphasis on the reusability and customizability of the lab project as they should all add to the evaluation of the component as a whole.

Extension of ideas and improvement on the article

In the article, several parts of the calculations involve using complexity of the classes and interfaces. However, it is not stated how the complexity should be counted. Perhaps the author can refresh the readers on the calculation of complexity, since it is vital to the article, rather than to simply assume that the reader has already known the method to calculate the complexity.

To calculate complexity of the component, we need to add the component plain complexity, component static complexity, component dynamic complexity and component cyclomatic complexity. I feel that simply adding them all up is insufficient, and that weightages should be tagged to each of this component complexity metrics. For example, I see that component dynamic complexity is actually more important than the rest of the other complexity metrics, since the complexity of the program in real time would affect the total complexity and the speed at which the program can be run. Therefore, it should have a weightage of perhaps 0.4. Next, cyclomatic complexity should have a weightage of maybe 0.3. This is due to the fact that it is a measure of the complexity of the completed code. Therefore, it’s measured complexity should stand a higher complexity since it would be a more reliable guide to the complexity of the program as compared to the component static complexity and component dynamic complexity. Therefore, I propose that for the last two metrics, they share the remaining 0.3 weightage equally.

Comments on notations/diagrams

Weightages are to be used in measuring customizability. However, the table for the weightage values are placed on another page. It would be more helpful if the table was placed in the explanation of the customizability of component, as this will help the reader get a better idea of how different the weightages of the various types are. There are not many diagrams available in the article.

Symbols were used for certain tables but there was no legend informing the reader what the symbols actually represent.

Validation and expansion on the ideas specified

For validation, I feel that the cases they show in the article are insufficient to fully demonstrate their views. This is

has the potential to be better than traditional object-oriented methods, since it does take into account of other factors involved in software engineering. However, more could be said on how the various equations listed in the article come about. Also, they did not show the same process on other products. Therefore, I cannot tell for certain how different it would be if I were to implement this approach on other products. Therefore, although I do understand the way they approach their idea, I cannot really tell how it would be like for other products.

Comments on Software Project, Process, Platform, People and Product specified in the article

Based on the results shown in the article, we cannot tell how much more accurate it is as compared to traditional object-oriented approach. However, based on the argument provided, it can be safe to assume that component-based software engineering is indeed more accurate than traditional means of calculating the various aspects of a software program.

References

[1] R.R. Dumke, A.S. Winkler, “Managing the Component-Based Software Engineering with Metrics” at URL http://www.computer.org/proceedings/sast/7940/79400104abs.htm

[2] George T. Heineman, William T. Councill, Component-Based Software
 Engineering: Putting the Pieces Together, Addison Wesley Professional, 2001

[3] Sun Microsystems Inc., “Enterprise JavaBeans Specifications”, at URL: http://www.javasoft.com”
[4] McCabe & Associates, McCabe Object Oriented Tool User’s Instructions, 1994

Related Work

