David's Web Page


Sound quality

 

Without data reduction, digital audio signals typically consist of 16 bit samples recorded at a sampling rate more than twice the actual audio bandwidth (e.g. 44.1 kHz for Compact Disks). So you end up with more than 1.400 kbit to represent just one second of stereo music in CD quality. By using MPEG audio coding, you may shrink down the original sound data from a CD by a factor of 12, without losing sound quality. Factors of 24 and even more still maintain a sound quality that is significantly better than what you get by just reducing the sampling rate and the resolution of your samples. Basically, this is realized by perceptual coding techniques addressing the perception of sound waves by the human ear.    

Using MPEG audio, one may achieve a typical data reduction of

1:4

by Layer 1 (corresponds with 384 kbps for a stereo signal),

1:6...1:8

by Layer 2 (corresponds with 256..192 kbps for a stereo signal),

1:10...1:12

by Layer-3 (corresponds with 128..112 kbps for a stereo signal),

still maintaining the original CD sound quality.     By exploiting stereo effects and by limiting the audio bandwidth, the coding schemes may achieve an acceptable sound quality at even lower bitrates. MPEG Layer-3 is the most powerful member of the MPEG audio coding family. For a given sound quality level, it requires the lowest bitrate - or for a given bitrate, it achieves the highest sound quality.   General       Sound Quality    

Some typical performance data of MPEG Layer-3 are:

sound quality

bandwidth

mode

bitrate

reduction ratio

telephone sound

2.5 kHz

mono

8 kbps *

96:1

better than shortwave

4.5 kHz

mono

16 kbps

48:1

better than AM radio

7.5 kHz

mono

32 kbps

24:1

similar to FM radio

11 kHz

stero

56...64 kbps

26...24:1

near-CD

15 kHz

stereo

96 kbps

16:1

CD

>15 kHz

stereo

112..128kbps

14..12:1

*) Fraunhofer uses a non-ISO extension of MPEG Layer-3 for enhanced performance ("MPEG 2.5")

    In all international listening tests, MPEG Layer-3 impressively proved its superior performance, maintaining the original sound quality at a data reduction of 1:12 (around 64 kbit/s per audio channel). If applications may tolerate a limited bandwidth of around 10 kHz, a reasonable sound quality for stereo signals can be achieved even at a reduction of 1:24.     For the use of low bit-rate audio coding schemes in broadcast applications at bitrates of 60 kbit/s per audio channel, the ITU-R recommends MPEG Layer-3. (ITU-R doc. BS.1115) .


If a link on this page doesn't work, let me know It doesn't fuckin'work!

All this web page is designed by Dave Guile © 1998