

Key SI Concepts

- Transmission Line Effects
- Crosstalk
- Ground Bounce / Power Noise (SSN/SSO/□I)
- Current Return Path

March 2003

Dr. Cheung-Wei Lam

=

SI: Transmission Line Effects

■ Impedance (Z_0) and Propagation Velocity (v)

$$Z_0 = \sqrt{\frac{L}{C}} \qquad v = \frac{1}{\sqrt{LC}}$$

- Delay = Length / Propagation Velocity
- Discontinuities ☐ Reflection ☐ Ringing

March 2003 Dr. Cheung-Wei Lam

SI: Noise Mechanisms

- Crosstalk
 - □ Trace, cable, connector, package, via, RPD, ...
- Ground Bounce / Power Noise (SSN/SSO/\(\pi\)I)
 - Mechanism: L dl/dt
 - □ Input reference, supply V, signal quality, crosstalk

March 2003

Dr. Cheung-Wei Lam

8

■ Reflections do not only occur at both ends. ■ Transmission line transitions: □ Microstrip □ Stripline □ PCB Trace □ Cable □ Motherboard □ Daughter Card ■ DM and CM matching ■ High-speed connector Z₀ ■ Clocks & HS I/O's: EMI > si

■ PCB Stackup & Placement PCB Stackup for EMI All SI considerations plus the following: Use Ground Planes or Ground Grids. 2 or more Ground Layers Ground Stitching Provide solid Ground Plane underneath Noisy IC's. Component Placement for EMI All SI considerations plus the following: Place I/O connectors on one side of the PCB. Place High-Speed IC's away from I/O & PCB edges.

E©/S©: Power Decoupling Minimize Inductance Proper layout On-package capacitors On-die capacitance Use single value C's Avoid anti-resonance! Power plane resonance Thin dielectric lowers Q due to skin loss! Use lossy capacitors! Power isolation! March 2003 Dr. Cheung-Wei Lam Zc for L = 2 nH Double 3 nH Double 2 nH Double 3 nH Double 4 nH Double 5 nH Double 4 nH Double 4 nH Double 4 nH Double 4 nH Double

E©/S©: Differential Signaling Improve noise immunity. (SI) Reduce ground bounce. (SI) Reduce ground drop V_G = L_G dI_G/dt. (EMI) Current mode differential signaling eliminates shoot through current. (SI & EMI) Minimize differential skew and maintain balance. HS Differential I/O's: EMI > si

Summary

- Design Concepts
 - □ Transmission Line Effects
 - Noise Mechanisms
 - □ Current Return Path
 - □ Antenna
 - ☐ Ground Inductance
- Compare and contrast SI & EMI considerations.
- Design rules may change but underlying concepts will remain.

March 2003 Dr. Cheung-Wei Lam 37