Different Types of Encryption:
- Manual encryption is completely provided by the user (via the relevant software, of course): he has to manually select the objects for encryption (usually files or folders) and then run some special command/ menu item to encrypt or decrypt these objects. Thus, manual encryption systems demand the user's active participation, and he must strictly remember to encrypt his private data before he leaves this data outside of his personal control. This is risky from a security point of view - risking human error (forgetfulness). Nevertheless, manual (file) encryption, from a technical point of view, has a potential advantage: it can operate easily and reliably - more reliably than any other type of encryption software.
- Transparent encryption is almost a complete contrast to Manual encryption. In this case, decryption/ encryption is performed at a low level, permanently, during ALL read/write operations, so that encrypted data of any type (including executable programs) is always stored on the disk in encrypted form. The theft or loss of a notebook/ disk/ floppy disk, a sudden power/ software/ hardware failure/ breakdown does not threaten loss of data - it is always stored on the transparently encrypted volumes in encrypted form. From the point of general security principles, complete low-level transparent encryption is the most secure type imaginable, being easiest - imperceptible - for the user to manage, but it has a couple of disadvantages: it can't be "mobile" - i.e. can not transport encrypted data from computer to computer, (except via encrypted diskettes); it is very difficult to implement (engineer) correctly; and it generally doesn't fit into system architectures based on multi-user sharing of resources, as in networks. Nevertheless, when properly engineered, it is unbeatable for the protection of data on local work stations and stand-alone or mobile (laptop) machines.
- Semi-Transparent, or "On-the-fly", encryption operates not permanently, but before/after access is made to confidential objects or during some read/write operations. The most widespread example is ciphering during Copy/Move to a "secret" volume/folder; deciphering a file before opening it via standard Windows applications (Word, Excel, etc) and enciphering it after the application is finished; and deciphering specified folders/files at startup of the computer and enciphering them again at shutdown. Semi-Transparent encryption graduates from manual/file encryption. The typical great weakness of many of these encryption products is that they can cause degradation of the computer systems efficiency and a sudden/ emergency loss of data when the amounts to be encrypted are too great. The problem of developers is to find an optimal trade off between simplicity, security, effectiveness and reliability, and most developers get into a mess here. By the way, the semi-transparent features of F-Cryprite are based not on any doubtful programming tricks, but on the encryption speed of the SVC algorithm (which is essentially higher than any "open" operation in Windows): thus F-Cryprite's efficiency is absolutely uninfluenced by the total amount of data to be encrypted!
Page 3
Page 1