COM3101 Database Systems

Notes 3 – Entity-Relationship Diagram and Normalization Theory
1. ER Diagram
Figure 1 A Simple Entity-Relationship (ER) diagram

Entity - any object about which we wish to record information.

Example of a manufacturing company:

· projects on hand

· parts used in those projects

· suppliers who supply those parts

· warehouses in which the parts are stored

· employees who work on the projects

Relationship - linking those basic entities together.

Example of a manufacturing company:

· SP: between suppliers and parts. It represents that each supplier supplies certain kinds of parts and each certain kind of part is supplied by certain suppliers.

· e.g. if S1 supplies P1, P2, P4; S2 supplies P2, P3; S3 supplies P1, P3

P2 is supplied by S1, S2; P3 is supplied by S2, S3

· PJ: between projects and parts. It represents that parts are used in projects, and projects use parts.

· WP: between warehouses and parts. It represents that parts are stored in warehouses and warehouses store parts.
· Most relationships are binary relationships, i.e. involve only two entities.
· There are also ternary relationships, e.g. SPJ.

· Relationships that involve only one entity is known as “bill-of-materials” relationships and this shows that the particular entity is either composed of a number of entities, or as a part of some entity, e.g. PP.

· A given set of entity types might be linked together in any number of distinct relationships, e.g. the relationship EJ shows that employees are assigned to project; the relationship MJ shows that employees manage projects.

Attributes
· Attributes are used to describe the object totally.

· The actual information, or values, of the object are recorded in the database.

· Assumption: simple attributes with simple data types are used in databases, e.g. numbers, strings, dates, times.

Example of a manufacturing company:

· suppliers: locations

· parts: weight

· projects: priorities

· assignments: start dates

2. Introduction to Relational Database Design

· Logical design – to design the conceptual schema.

· Designing a database is very much an art, and not a science. However, there are some scientific principles that can be applied.

· Consider the supplier-and-parts database once again. A variation of this relation is shown in the SCP table below.

SCP

SNo
City
PNo
Qty

S1
London
P1
300

S1
London
P2
200

S1
London
P3
400

S1
London
P4
200

S1
London
P5
100

S1
London
P6
100

S2
Paris
P1
300

S2
Paris
P2
400

S3
Paris
P2
200

S4
London
P2
200

S4
London
P4
300

S4
London
P5
400

· Relation SCP obviously contains a high degree of redundancy, i.e. repetitive information, e.g. for every S1, London is found.

· This redundancy leads to a number of problems:
For example: After an update, one entry for S1 might show London while another entry might show S1 to be in Amsterdam etc.

· Two solutions are possible: either change all of the entries or only show one piece of information in one place only. With the latter solution, the format of the original relation has to be changed, e.g. break the relation into smaller ones.

Which solution is better?

3. Functional Dependence

Given a relation R, attribute Y of R is functionally dependent on attribute X of R if and only if each X-value in R has associated with it precisely one Y-value in R (at any time, i.e. time-independent). Attributes X and Y may be composite. Symbolically, R.X (R.Y

For example:

In relation SCP, attribute city is dependent on S#, i.e. S# (city. Note, for every S# value, there is only one city value, i.e. S1 is matched with London only and S2 is matched with Paris only.

P#, is not dependent on S#, i.e. s# --/(p#. This is because for every S# value, there is more than one P# value associated with it, i.e. S2 is matched by P1 and P2, and S4 is matched with P2, P4 and P5 etc.

Note, in the case of S1 and S4, London is matched. This is permitted as each supplier is matched with one value, i.e. London, despite this value is the same.

Exercise

Are the following dependencies correct? If not, why not?

i. city (s#
Ans. : No, because London is matched with s1 and s4
ii. s# (qty
Ans. : No, because s1 is matched with many qty
iii. qty (p#
Ans. : No, because 200 is matched with many parts
Note, if attribute X is a candidate key / primary key of relation R, then all attributes Y of relations R must necessarily be functionally dependent on X.

For example, P# -> PName, P# -> Color.

Exercise

Show this is true for SCP when the primary key is (s#, p#).

Full Dependency (Left-irreducible FDs)

Attribute Y of relation R is said to be fully dependent on attribute X of relation R if it is functionally dependent on X but not functionally dependent on any other proper subset of X.

For example

SCP.(s#. p#) (city
city is functionally dependent on (s#, p#)

SCP.s# (city
city is fully dependent on s#.

City is dependent on (s#, p#) because there is only one matching city per (s#, p#). But, it is possible for city to depend solely on part of (s#, p#) alone, namely s#. Hence, city is not fully dependent on (s#, p#).

How about {S#, P#} -> Qty?

Remark: Differences between the wording of “is dependent on” and “determine”.

FD Diagram (Functional Dependency Diagram)

Functional dependencies may be represented graphically.

For example,

The FD diagram for relation SCP is as follows:

The arrows in the diagram have the same meaning as before, i.e. city is dependent on s# and qty is dependent on (s#, p#). The FDs are: s# -> city and {s#, p#} -> qty.

Exercise

i. Using a FD diagram, find all the attributes in relation S that fully depends on s#.

ii. Repeat this for P.

iii. Repeat this for SP.

4. First Normal Form (1NF)

Un-normalized

SNo
Status
City
PNo
Qty

S1
20
London
P1
300

P2
200

P3
400

P4
200

P5
100

P6
100

S2
10
Paris
P1
300

P2
400

S3
10
Paris
P2
200

S4
20
London
P2
200

P4
300

P5
400

Definition for first normal form

A relation is in 1NF if and only if all underlying simple domains contain atomic values only. As a result, any normalized relation is in 1NF.

A relation that is in first normal form (1NF) has a structure that is undesirable for a number of reasons.

i. non-key attributes may dependent on each other.

ii. all non-key attributes may not dependent on the primary key.

Non-key attributes: Attributes that does not participate in the primary key of the relation concerned.
For example: Below show the relation First (S#, P#, Status, City, Qty) which is in 1NF.

First

SNo
Status
City
PNo
Qty

S1
20
London
P1
300

S1
20
London
P2
200

S1
20
London
P3
400

S1
20
London
P4
200

S1
20
London
P5
100

S1
20
London
P6
100

S2
10
Paris
P1
300

S2
10
Paris
P2
400

S3
10
Paris
P2
200

S4
20
London
P2
200

S4
20
London
P4
300

S4
20
London
P5
400

We add a constraint city -> status.

Note: S3 status is changed from 30 to 10.

The FD diagram for First is as follows:

Exercise: Write down the FDs.

Problems with First
i. Obvious Redundancies, i.e. s#, status, and city are repeated many times.

ii. Update anomalies are introduced.

Insertion: A supplier in a particular city cannot be inserted unless it supplies at least one part because p# is part of the primary key. For example, the supplier s5 located in Athens is not shown.

Deletion:
Wanted information may also be lost if a tuple is removed. For example, if we delete the shipment information of s3, we will loose where s3 is located.

Modification
: The entire relation has to be searched an updated, or face with the chance of having an inconsistent relation. For example, when changing the status of s1 to 50, all must be changed also, otherwise, some will read 20 while others will read 50.

5. Second Normal Form (2NF)

Definition

A relation is in second normal form (2NF) if and only if it is in 1NF and every non-key attribute is fully dependent on the primary key.

Solution: Replace First with two smaller relations:
Second
(
s#, status, city
)
and
SP
(
s#, p#, qty
)
Exercise: What are the FD diagrams for the two relations? Write down the FDs.
Second

SNo
Status
City

S1
20
London

S2
10
Paris

S3
10
Paris

S4
20
London

S5
30
Athens

SP

SNo
PNo
Qty

S1
P1
300

S1
P2
200

S1
P3
400

S1
P4
200

S1
P5
100

S1
P6
100

S2
P1
300

S2
P2
400

S3
P2
200

S4
P2
200

S4
P4
300

S4
P5
400

The effect of the above change is the elimination of non-full dependencies, i.e. non-key attributes dependent on part of the primary key.

Effects of change:

Insertion: It is now possible to add a supplier into the database without knowing whether it supplies parts or not.

Deletion: It is possible to remove s3’s shipment information without erasing all the information of s3.

Modification: The problem of searching still exists but the effect is certainly reduced. Since the s#.City redundancy has been eliminated, we can change the city for S1 in one tuple of second.

6. Non-loss decomposition
The reduction process consists of replacing the 1NF relation by suitable projections. The collection of projections so obtained is equivalent to the original relation, in the sense that the original relation can always be recovered by taking the (natural) join of those relations.

Note: the conversion process looses no information. For example:

Second and SP are both in 2NF and are projections of First. First is the join of Second and SP over s#. Exercise: prove this.

7. Transitive Dependencies

Relation Second still suffers from a lack of mutual independence among its non-key attributes.
Mutually Independent: Two or more attributes are mutually independent if none of them is functionally dependent on any combination of the others. Such independence implies that each such attribute can be updated independently of all of the rest.
Referring to relation Second.

s#
(
city
and
city
(
status

then logically,

s#
(
status

Transitive dependencies will also lead to update anomalies:

Insertion: It is not possible to specify a city has a status unless there is a s# also, i.e. there is a supplier in the city (e.g. Rome has status 50).

Deletion: If a particular supplier is removed, the information relating a city and its status is also removed.

Modification: Repetitive search and inconsistency problems still exist. For example, if we need to change the status for London from 20 to 30. We must ensure that all the tuples are changed.

8. Third Normal Forms (3NF)

Definition:

A relation is in 3NF if and only if it is in 2NF and every non-key attributes (if any) is mutually independent (or no transitive dependencies)

In the case of Second, replace it with two smaller relations:
SC
(
s#, city
)
and
CS
(
city, status
)
SC

CS

SNo
City

City
Status

S1
London

Athens
30

S2
Paris

London
20

S3
Paris

Paris
10

S4
London

Rome
50

S5
Athens

Exercises:

1. What are the FD diagrams for the two relations?

2. Write down all relation schemas after the break down of the First relation.

Relation P is in 3NF according to the above definition, i.e. attributes Pname, color, weight, and city are certainly all independent on one another, and they are all fully dependent on the key p#. (It is possible to change the color of a part without simultaneously having to change its weight.)

Exercise: How about the relation S and SP? Why?

It is not possible just to look at the tabulation of a given relation at a given time and to say whether or not that relation is in 3NF - it is also necessary to know the meaning of the data, i.e. the dependencies, before such a judgment can be made.

9. Good and Bad Decomposition

There is another way of projecting Second, i.e. SC (s#, city) and SS (s#, status). Both SC and SS are non-loss decomposition and the two projections are again in 3NF. But, this decomposition has the same problem as before. This is because it is not possible to insert the information that a particular city has a particular status unless some supplier is located in that city.

Question: Does the dependency of “city (status” still hold with SC and SS which hold for Second originally?

Answer: Yes, but we have to check this by examining both tables, i.e. the dependency is no longer logically implied as before.

SS
SC
city (status

s#
status
s#
city
city
status

s1
20
s1
London
London
20

s2
10
s2
Paris
Paris
10

s3
10
s3
Paris
(Athens
30)

s4
20
s4
London

(s5
30)
(s5
Athens)

· Intra-relational constraints are dependencies within a relation.

· Inter-relational constraints are dependencies that are deduced by examining two or more relations.

· Choose a decomposition that automatically enforces all intra-relational constraints.

Exercise: Is the decomposition of Second to SS (s#, status) and CS (city, status) good or not? Why? Prove it.

s#

p#

qty

city

s#

p#

city

status

qty

PAGE
N3-6

