function [sum]=mlcosh(x,toll)
i=1;
t=1;
sum=0;
while abs(t)>toll
    sum=sum+t;
    t=t*(x^2)/(2*i-1)*(2*i);
    i=i+1;
end
i=i-1;


function C=pm(A,B)
[m,n]=size(A);
[l,o]=size(B);
if(n==l)
    for i=1:m
        for j=1:o
            C(i,j)=A(i,1:n)*B(1:l,j);
        end
    end
else disp('non va')
end

function [A,B]=tartaglia3(n,i)
A=eye(n+1)+[zeros(1,n+1);ones(n,1),zeros(n)];
for k=3:n+1
    for j=2:k-1
        A(k,j)=A(k-1,j-1)+A(k-1,j);
    end
end
B=A(n+1,i+1);


function [x,i]=bisezione(a,b,toll)
fa=g(a);
fb=g(b);
if fa*fb<0
    
    itmax=1+fix(log((b-a)/toll)/log(2));
    
    x=(a+b)/2;
    fx=g(x);
    i=0;
    
    while i=toll 
       if fx*fa<0
           b=x;
       elseif fx*fa>0
           a=x;
       else
           break;
       end
       x=(a+b)/2;
       fx=g(x);
       i=i+1;
    end            
else
    x=sprintf('metodo non applicabile');
end
    

sistemi triangolari
x=b./diag(A)  triang.inf
x=b.*diag(A)  triang.sup
opp
x(i)=(b(i)-A(i,1:i-1)*x(1:i-1))/A(i,i)  triang.inf
x(i)=(b(i)-A(i,i+1:n)*x(i+1:n))/A(i,i)  triang.sup


matrice diagonale
if(any(any(tril(A,-1)))==0)
if(any(any(triu(A,1)))==0)

estrarre un vettore riga da una matrice
r=A(p,:);

binomiale
(a+b)^n=sommatoria da k=0 a n di (riga tartaglia)(k+1)*b^(n-k)

function [y,dy,ddy]=hruff(a,x)
n=length(a)-1;
y=a(1);
dy=a(1);
ddy=a(1);
for i=1:n-1
    y=x*y+a(i+1);
    dy=dy*x+y;
end
ddy=n*(n-1)*a(1)*x^(n-2)+(n-1)*(n-2)*a(2)*x^(n-3);
y=y*x+a(n+1);

    Source: geocities.com/tokyo/shrine/9206

               ( geocities.com/tokyo/shrine)                   ( geocities.com/tokyo)