Speciation

- Steps to getting a new species:
 - Founding mothers and fathers
 - Separation of populations
 - Mutations/adaptations
 - Reproductive isolation
 - Sharing the same space :
 - Can they survive together because they now occupy different niches

• Reproductive isolation

- This is the most important factor in speciation
- Two populations *must* be isolated to prevent mixing their gene pools so that adaptations made in one population can't be transferred to the other
- There are several ways reproductive isolation can occur
 - Geography
 - Courtship behavior (mating)
 - Fertile periods (mating)
- Divergent evolution
 - One species gives rise to many
 - o Also called adaptive radiation
 - Two or more populations of one species must become reproductively isolated, and then go through adaptation and/or *genetic drift*
- Convergent evolution
 - Adaptations in different species may produce species with *analogous structures* to serve the same purpose
 - *Ex.* Wings are analogous structures in birds, insects and bats.

Genetic drift

- Random changes in the gene pool of a small population
 - Occurs when the number of individuals in the population is so small that genetic variation is decreased.

 Genetic bottlenecks (massive reduction in number of individuals) cause genetic drift.

Ex. Cheetah

Genetic variation is necessary to create new species

Taxonomy

- There are over 10 million kinds of organisms
- There are hundreds of languages and dialects
 - A good biological classification system does two things -- it assigns a universally accepted name (crossing the language barrier) and it shows evolutionary relationships by organizing organisms into groups with biological meaning
- By the 18th century, scientists were already starting to use Greek and Latin names for organisms. These *scientific names* were highly descriptive and cumbersome
- *Carolus Linnaeus*, from Sweden, developed a less confusing system of *bionomial nomenclature*, where every organism gets a two-part name.
- The first part of the name is the *genus* and the second part is the *species*. Organisms that are closely related will have the same genus name, but different species names.

- Hyla versicolor and Hyla septentrionalis are both treefrogs, but they are different species
- Linnaeus then developed a taxonomy system based on structural characteristics
 - Taxonomist are currently revamping this system,
 basing it on molecular data and genetic relationships
- There are 7 taxa (groupings) in the Linnaen system. From largest (most general) to smallest (most specific),

Kingdom, Phylum, Class, Order, Family, Genus, Species

- Originally, there were only 2 kingdoms. Now there are 5
- The *only* taxon with a clear biological identity is the species. All other taxa are groupings of related organisms (many species)
- Species most closely related (shown through molecular studies) are grouped in the same genus and/or family
- Why do we have five kingdoms now? Because of increased knowledge

Five Kingdoms

Prokaryotae (single-celled bacteria)

Protista (algae, slime molds)

Fungi (mushrooms, molds, yeast)

Plantae (multicellular organisms that carry of photosynthesis,-Plants)

Animalia (multicellular organisms that eat other organisms for nourishment)

Six kingdoms? Maybe, soon, Bacteria will be split into Archaebacteria and "modern" bacteria