
Software Packages in Physics, Department of Physics, University of Jordan 
 

SESSION II 
2. Anharmonic Free and Forced Oscillations 
 
 
2.1 Formulation of the Problem 
 
An exactly harmonic potential seldom occurs in nature; a small anharmonicity is 
almost always present. In analytic calculations such perturbation terms present 
considerable difficulties. In numerical calculations on the computer, on the other 
hand, it makes scarcely any difference whether the potential is harmonic or 
anharmonic.  In what follows we shall again consider the one-dimensional motion of a 
point mass with mass M = l kg. Friction will be ignored. The potential of the restoring 
force has the form: 
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The restoring force is then: 
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If we also take into account a harmonic driving force the equation of motion becomes: 
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Figure 2.1 shows a few potential forms.  For B ٠ ,  we get an inclined plane in each 
of the positive and negative x-directions.  When the driving force vanishes this case 
can be treated quite simply even by analytic means.  One would have the solution of 
the free-falling body both for positive and negative x-values and could match the 
solutions at the origin. The oscillation period would then increase with the square root 
of the amplitude. When B = 1 we again have the harmonic case, and in the absence of 
the driving force the oscillation period is independent of the amplitude. For large 
values of B we approach the case of rigid reflecting walls, and the oscillation period 
becomes shorter with increasing amplitude. 
It is interesting to study the effect of the driving force.  It pushes the mass to and fro 
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Fig. 2.1a-d The potential V(x) for values of B. 



Software Packages in Physics, Department of Physics, University of Jordan 
 

with a fixed predetermined frequency ω. What will happen if we start in the rest 
position and let the force operate on the mass? The driving force can operate 
effectively, i.e. impart energy, only if its frequency corresponds well with the 
oscillation frequency. For an anharmonic oscillation this will occur only when a 
certain amplitude is reached.  Let us leave it to the computer to show us what will 
happen! 
 
 
2.2 Numerical Treatment 
 
2.2.1 Improvement of the Euler Method 
 
The exercises in Session I have shown that the Euler method requires long 
computation times, in order to achieve accurate results.  If the motion is complicated, 
e.g. by strong variations in the curvature of the solution, then the Euler method is no 
longer useful.  We must therefore look for a better method. 
The Runge-Kutta method, which we shall use here, is somewhat more difficult to 
understand than the Euler method.  As a bridge to the Runge-Kutta method, we shall 
therefore discuss first a possible improvement of the Euler method. We again consider 
a first order differential equation of the type:  
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In order to be able to apply the technique of the Taylor expansion, we shall assume in 
what follows that f (y, t) is differentiable a sufficient number of times with respect to y 
and t. Then, writing down the first few terms of the Taylor expansion of y(t) and 
applying (2.4), we obtain: 
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To differentiate f (y, t) with respect to t we apply (1.2) 
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and replace the quantity y(t +h) in (2.6) using (1.9). Substitution in (2.5) leads after 
some simple manipulation to 
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We thus obtain an improved recursion formula, whose error term is now only of order 
h3. One sees immediately where the improvement lies, compared with (1.9): instead 
of the gradient of the solution curve at the mesh point t, we now use the mean value 
of the gradients at the mesh points t and t + h. In order to specify the gradient at the 
mesh point t + h, one actually needs to know already the solution curve at this point.  
Since this is not the case, it is substituted by the approximation for y(t + h) obtained 
from the usual Euler formula (1.9). The error arising from this is of order h3 and is 
accordingly of the same order as the error already incurred in (2.5). 
 
For practical computation one often introduces the following abbreviations: 

Instructor: Prof. Dia-Eddin Arafah 
2001-2002 
 



Software Packages in Physics, Department of Physics, University of Jordan 
 

                             
( ) ( )( )
( ) ( ) ( )( ht,hktyfk

,t,tyfk
12

1

++=

=

)                                             (2.8) 

In this abbreviated notation the formula for the improved the Euler method is as 
follows: 
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The generalisation to several coupled equations follows immediately, since we have 
nowhere explicitly used the fact that y(t) is a scalar function.  We may regard (2.4) 
as a system of equations for vector functions: 
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From (2.8) we then write: 
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and hence from (2.9) 
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2.2.2 The Runge-Kutta Method 
 
The improved Euler method is better than the ordinary Euler method by one order in 
h. One can carry the improvement further, raising the order in h by the addition of 
further terms of the Taylor series (2.5). The best known of the methods obtained in 
this way is the Runge-Kutta method.  Besides the gradients at the beginning and the 
end of the interval, it also uses the gradient at the middle of the interval, the values of 
the solution functions yi(t) at the middle and end of the interval being suitably 
extrapolated from the values at the beginning of the interval.  Both in theoretical 
derivation and in practical application the Runge-Kutta method is similar to the 
improved Euler method.  The error term in the recursion formula, however, is of order 
h5, i.e. the Runge-Kutta method gives an improvement of a further two orders in h 
compared with the improved Euler method.  What this means in practice, we shall see 
in the exercises. 
The Runge-Kutta method uses four gradients, which one denotes by k(l) to k(4). The 
quantities k(2) and k(3) are gradients at the middle of the interval calculated in different 
ways. Their average value is used. Using the notation of (2.11), one calculates the 
gradients k(1) to k(4) as follows: 
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The recursion formula of the Runge-Kutta method then becomes: 
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For the derivation of the method refer to [E. Issacson,H.B. Keller: Analysis of 
Numerical Functions (John Wiley and Sons, Inc., New York, 1966]. 
 
The Runge-Kutta method was for a long time the most frequently used and best 
method for the numerical solution of ordinary differential equations, and even today it 
is often used. In recent year, however, a number of other methods, especially so-
called predictor-corrector methods, have achieved prominence. Since the Runge-Kutta 
method is easy to understand and simple to program, we shall use it here. 
 
2.3 Programming 
 
Let us once again consider the system of differential equations (1.12) presented in 
SESSION I. By a similar procedure we obtain from (2.3) the system of equations. 
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The right-hand sides of the system of differential equations (2.10) are accordingly: 
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Proceed then in a similar manner to Session I.  
 
2.4 Exercises 
 
2.4.1 Test the accuracy of the Runge-Kutta method in the case of a free harmonic 
oscillation B = 1 and in the case of a strongly anharmonic oscillation (B = 5).  
Hint: If the mesh width h is too big, very strong forces can lead to exponent overflow.  
In this case abort the program and restart it with new parameters! 
 
2.4.2 Compare the solution curves of the anharmonic oscillations calculated with 
various values for B. 
 
2.4.3 Switch on the driving force, and study the resonance effects in harmonic and 
anharmonic oscillations. 
 
 
2.5 Solutions to the Exercises 
 
2.5.1 It is surprising that the Runge-Kutta method with 5 mesh points per oscillation 
period already gives a profile similar to the true solution curve for the harmonic 
oscillation. The error in this case is essentially to he found in the damping: whereas 
the true solution without friction and without driving force is un-damped, the 
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approximate solution shows damping.  With 10 mesh points per oscillation period, 
scarcely any visible error remains in the graphical output. 

For anharmonic oscillations with B >2 the rapid variations in the curvature of the 
solution curve impose high demands on the solution method.  With 10 mesh points 
per oscillation period the inaccuracy for B = 5 is still easily detected.  Increasing the 
number of mesh points by a factor of 5 or 10, however, leads even here to a 
satisfactory accuracy for the graphical output. 

Figure 2.2 shows a harmonic oscillation calculated by the Runge-Kutta method 
with only 5 mesh points per oscillation period. 

Fig. 2.2. Harmonic oscillation calculated by 
the Runge-Kutta method using only 5 mesh 
points per oscillation period; the broken line 
shows the true solution for comparison 

Fig.2.3a-d Anharmonic and harmonic oscillations: 
a) Anharmonic oscillation with B = 0.00001, 
b) Harmonic oscillation, 
c) Anharmonic oscillation with B = 2, 
d) Strongly anharmonic oscillation with B = 10 

 
2.5.2 Figure 2.3 shows oscillation curves for B = 0.00001, B = 1, B = 2 and B = 10. 
When B = 0.00001 the restoring force is, apart from a change of sign at x = 0, 
independent of the displacement (the value B = 0.00001 stands for the value B = 0, 
which is not allowed by the program).  The oscillation curve accordingly consists of a 
sequence of parabolas.  For comparison the harmonic oscillation (B = 1) is shown.  
When B = 2 the point mass moves in a cubic potential. At the turning points the 
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restoring force is stronger than in the harmonic oscillation.  The reversal of motion is 
accordingly sharper.  This effect is shown still more strongly in the case B = 10.  Here 
the potential climbs so steeply that the reversal of motion assumes the character of an 
elastic reflection. In the remaining part of the motion the forces are then 
comparatively small and have only a slight effect on the velocity of the point mass. 
 
2.5.3 The frequency of the free 
harmonic oscillation is ω = 
SQRT(A/-M).  If one uses this value 
in the driving force one has the 
appropriate starting condition for an 
oscillation with increasing amplitude 
(resonance).  As friction is ignored in 
our calculation the amplitude of the 
oscillation will increase without 
limit. 
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When the frequency of the 
driving force differs slightly from the 
resonance frequency, e.g. by about 
10%, then a beat occurs: depending 
on the phase difference between the 
oscillation and the driving force, 
energy is fed into, or taken from, the oscillation; see for example Fig. 2.4. 

 
W

ghtly anharmonic (e.g. B = 1.1) 
one can also obtain beats.  In this 
case the amplitude of the oscillation 
cannot increase without limit, as the 
anharmonicity ensures that the 
driving force and the velocity are 
from time to time in opposition. 
With stronger anharmonicity a 
pronounced beat no longer occurs, 
because the driving force and the 
oscillation fall so quickly out of 
phase. An extreme case is shown in 
Fig. 2.5. A strong driving force 
pushes the point mass to and fro. In 
its motion it occasionally runs into the 
 

potential wall (B = 5) an

Fig.2.4.  Forced harmonic oscillations. The 
frequency of the driving force is about 10% 
greater than the frequency of the free oscillation. 

Fig.2.5. Point mass under the influence of a 
ic strong driving force and a strongly anharmon

(B=5) restoring force. 
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