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3. Coupled Harmonic Oscillations 
 
 
 
3.1 Formulation of the Problem 
 
Coupled oscillations occur in many regions of physics. The Raman and infrared 
spectra, for example, have their origin in the coupled oscillations of atoms within the 
molecule. The analysis of these oscillations gives information not only on the 
structure of the molecule but also on the binding forces.  Coupled oscillations occur in 
technology when machine components run roughly. In the design of anchorages, 
resonance frequencies as well as damping play an important role. 
 
In this chapter we consider as a simple example the coupled harmonic oscillation of 
two point masses, each weighing 1 kg. They are linked to their rest positions by 
harmonic restoring forces.  The displacements from the rest positions are denoted by 
xl and x2 If the two displacements axe not equal, an additional harmonic force appears, 
which couples the two bodies to one another.  The equation of motion is the following 
coupled system of differential equations: 
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In particular, these equations describe the motion of 
sympathetic pendulums (see Fig. 3.1). When the 
displacements are small one has approximately 
harmonic restoring forces.  The force constants Cl 
and C2 are, determined by the lengths of the 
pendulums li and the force of gravity Mg. The 
coupling spring has the force constant C. If the 
pendulum lengths are not equal, then Cl #  C2, i.e. 
the sympathetic pendulums are "out of tune". Fig. 3.1. Sympathetic pendulums 

With the abbreviations: 
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Equation (3.1) can be brought into the general form 
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Generalisation to m bodies gives 
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If necessary frictional and driving forces can be added on the right hand sides of (3.4). 
We have at the outset mentioned technical applications. We recommend to our 
readers an interesting example for private study. It is the "earthquake-proof 
skyscraper".  In earthquake areas such as, e.g. Tokyo, it has been discovered that 
skyscrapers should be built not too rigid, if they are to withstand severe earthquakes.  
It is better to build structures capable of oscillation, and to provide for adequate 
damping.  By the methods, which we have now acquired, one can simulate on the 
computer the behaviour of a multi-storeyed building during an earthquake.  One 
makes the approximate assumption that the whole mass of the building is 
concentrated in the ceilings (see Fig. 3.2). The steel framework of the building 
furnishes the restoring forces, when ceilings of successive storeys undergo different 
lateral displacements.  The earthquake is simulated, by causing the ground floor to 
move to and fro in a stipulated manner.  The program developed in this chapter can be 
extended with little effort to calculate the coupled motions of the ceilings and show 
the solutions xi(t) on the screen.  It will be observed that the building can undergo 
dangerous characteristic "eigen-oscillations" if no damping is present. With 
appropriate oscillation damping built in, however, it can be shown on the screen that a 
skyscraper can well withstand moderately strong earthquakes. 
 
3.2 Numerical Method 
 
As already mentioned in Exercise I (Sect.1.2.1), a coupled system of second order 
differential equations can be reduced to a coupled system of first order differential 
equations.  Using the notation: 
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one obtains from (3.4) the system of equations (n =2n') 
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In order to solve the system of differential equations (3.6), we shall employ the 
Runge-Kutta method presented in, Exercise II (Sect. 2.2.2). 

 

Fig. 3.2. Simulation of the oscillation of a building during 
an earthquake: the mass is concentrated in the ceilings, 
restoring and frictional forces act diagonally across the 
storeys, the ground floor in oscillated to and fro by the 
earthquake according to the function f(t) 
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3.3 Programming 
 

The functions fi on the right-hand sides of our system of equations (3.6) are, 
according to (3.7) and (3.2), 

( ),tyf 31 =                                                                       (3.8a) 
 ( ),tyf 42 =                                                                       (3.8b) 
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Proceed in a similar manner as in Sessions I and II. 
 

3.4 Exercises 
 
3.4.1 Study the nature of the oscillations of sympathetic pendulums (Cl = C2) with 
weak coupling (C = C1 /10) and with strong coupling (C = 10C1). 
 
3.4.2 Choose a moderately strong coupling parameter C and unequal force constants 
C1 , C2.  Study the energy transfer between the two point masses for various initial 
conditions.  Are there initial conditions for which no transfer of energy takes place? 
 
3.5 Solutions to the Exercises 
 
NOTE: Output may vary according to input parameters. 
3.5.1 With weak coupling as a rule one 
pendulum transfers energy to the other 
pendulum until it no longer has any left.  
Then the process is reversed, see Fig. 3.7. 
One should notice the relative phases of 
the oscillation curves. The pendulum 
which, is delivering the energy has a phase 
lead of up to 90".  During the course of the 
energy transfer the phase lead is decreased 
and eventually becomes negative, when 
the driving pendulum becomes the driven.  
No transfer of energy takes place if the 
two pendulums are oscillating with equal 
amplitude either in phase or 180' out of 
phase. 

Fig.3.7.Oscillations of sympathetic 
pendulums with weak coupling (Cl = 

C2 = 39.5 Nm-1, C = 3.95 Nm-1). 
 
With strong coupling the two pendulums can oscillate relative to one another with a 
short oscillation period, whilst their combined centre of mass executes a pendulum 
motion with longer oscillation period, see Fig. 3.8. 
 
3.5.2 With unequal force constants C1 and C2 (unequal pendulum lengths) the 
energy is now completely transferred only in one direction (see Fig. 3.9). In the 
other direction, the transfer of energy in only partial 
 

Instructor: Prof. Dia-Eddin Arafah 
2001-2002 



Software Packages in Physics, Department of Physics, University of Jordan 

There are initial conditions for which no energy transfer takes place.  Fig.3.10 shows 
an oscillation with the same force constants as in Fig.3.9, but with the initial 
conditions y1 (0) = 5m, y2 (0) = 8m, y3 (0) = y4 (0) = 0. Such an oscillation is called 
an eigen-oscillation of the system.  In our example there are two eigen-oscillations.  
Their oscillation periods are about 1.08 and 0.84s. The search for the initial conditions 
leading to eigen-oscillations is equivalent to the search for so-called normal 
coordinates. The latter are obtained by an orthogonal transformation from the 
coordinates used by us.  The transformation to normal coordinates causes the non-
diagonal elements of the matrix (Aij) of the equations (3.4) to vanish. 

Fig.3.8. Oscillations of 
sympathetic pendulum with 
strong coupling (C1 = C2 = 
39.5 Nm-1, C = 395 Nm-1) 

Fig.3.10. One of the two 
eigen-oscillations of the 
system of two point masses; 
the force constants  are 
the same as in Fig. 6.9 

Fig.3.9. Coupled oscillation 
with  C1 = 40, C2=30 and C = 
10 Nm-l
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