
SESSION VI PROJECTILE MOTION

• Introduction:

$$\mathbf{Y}(\mathbf{X}) = \mathbf{X} \tan{(\mathbf{\theta})} - \mathbf{g} \frac{X^2}{2V_0^2 \cos^2{(\mathbf{\theta})}}$$

• FORTRAN 90

Program projectile Implicit none

Real	V ₀	the launch velocity of particle
Real	theta	the launch angle in degrees
Real	a	the launch angle in radians
Real	Х	!the horizontal –distance of particle with time
Real	У	the vertical-distance of particle with time
Real	tmax	!the time of flight
Real	range	the horizontal range of the projectile
Real	g	the acceleration due to gravity
Real	i	!the counter of data loop, i takes the values of time t
Real	j	!the counter of data loop, j takes the values of the launch angle a
Read*, V0		
Read*, theta		
a=theta*(pi/180.0)		

 $tmax = (2*V_0*sin (a))/g$

PART ONE: "Generating a data for t, x, y using the values of launch velocity and the launch angle".
Opening a file to save t, x, y data on it
Open (1,file='xytdata.dat')
Making a loop to generate data for x, y, t
Do i = 0.0, tmax, tmax/15
applying the projectile relations to find x and y using V0, t, g and the angle a X = v₀ * cos (a) *i
Y = v₀ sin (a) i- 0.5g(i**2)
Writing values of t, x and y on the file
PART TWO: "Generating a data for the relation between launch angle and the horizontal range and time of flight"
Opening a file to save the angle and range and time of flight data on it. Open (2,file='rangedata.dat')

■ making a loop to generate a data for launch angle and the range and time of flight [tmax]

Do j=0.0,pi/2,pi/30

■ applying the equations to find the range and time of flight when the launch angle varied Range= $2^{*}(v_0 **2)^{*}(\cos (j)**2)^{*}\tan (j)/g$ tmax= $(2^{*}v_0^{*}\sin (j))/g$

• Exercises and lab works:

Ex.1: Give the physical meaning for the following:

■ <u>*Part One*</u>:

- 1) Plotting Y versus time (t).
- 2) Plotting X versus time (t).
- 3) Plotting Y versus X.
- 4) Plotting Y versus X with different initial velocities and Launch angles at the same graph.

■ <u>*Part One*</u>:

- 1) Plotting Range versus Launch angle (radian).
- 2) Plotting tmax versus Launch angle.

Note: you can vary the initial velocities and launch angles

Ex.2: Write this program by using "<u>MATHEMATICA</u>".