Software Packages in Physics 0332481 Mid Term Exam (Part 2) Date: 4/5/2004

IMPORTANT INSTRUCTIONS:

- 1. Write your name(s) below.
- 2. Solve the TWO questions below.

3. Use "Save As" to save the notebook after you finish, by changing the name of this file "midterm" to YourName

Name(s) and Registration Number(s):

QUESTION ONE: Damped Harmonic Oscillator

The equation of motion for a damped harmonic oscillator is:

$$\frac{d^2 x}{d t^2} + \gamma \frac{d x}{d t} + \omega_0^2 x = 0$$

where $\gamma = 0.5 \, s^{-1}$ is the damping coefficient, and $\omega_0 = 3 \, s^{-1}$ is the natural frequency.

This second-order differential equation can be reduced to two first-order differential equations, one of them can be: $\frac{dx}{dt} = v$.

1. Write down the other first-order differential equation.

2. Using x(0) = 1m and v(0) = 0 as initial conditions, solve the obtained coupled differential equations for x(t) and v(t).

3. Plot the phase diagram (*i.e.*, plot v(t) versus x(t) with t ranging from 0 to 12 s.

• Note: Your plot should be as self-contained as possible.

QUESTION TWO: Radioactive Decay

The radioactive decay of the element thorium is given by the equation:

$$N_f = N_i e^{-\lambda}$$

where $\lambda = \ln 2 / t_{\frac{1}{2}} = 1.14 \times 10^{-8} s^{-1}$ and N_f is the number of remaining nuclei, $N_i = 1000 \text{ kg}$ is the initial number of thorium nuclei *t* is the time elapsed, and $t_{\frac{1}{2}}$ is the half-life of the thorium. When t = 0, N_f is equal to N_i and no decay occurs.

1. Calculate the amount of thorium remaining after 2×10^3 s, 2×10^7 s, and write the result as "The amount left

2003/2004. Instructors: Usama al-Binni and Hanan Saadah.

after s is kg".

2. Show that as t increases the amount of thorium, N_f , decreases until it becomes zero after a very long time, theoretically ∞ .

♡ Hint: Use Mathematica's Limit[].

Good Luck

Solution of Problem 1:

Substituting the first equation $\frac{dx}{dt} = v$ in the original equation, we get:

$$\frac{dv}{dt^2} + \gamma v + \omega_0^2 x = 0$$

which is the other first-order equation. The two equations are coupled. The solution using the given initial equations is:

sol = DSolve [{x'[t] == v[t],
v'[t] ==
$$-\frac{1}{2}$$
 v[t] -3^2 x[t], x[0] == 1, v[0] == 0}, {x[t], v[t]}, t]
{{x[t] $\rightarrow \frac{1}{143} e^{-t/4} \left(143 \cos \left[\frac{\sqrt{143} t}{4} \right] + \sqrt{143} \sin \left[\frac{\sqrt{143} t}{4} \right] \right),
v[t] $\rightarrow -\frac{36 e^{-t/4} \sin \left[\frac{\sqrt{143} t}{4} \right]}{\sqrt{143}} }{\sqrt{143}}$ }$

which means that the position as a function of time is given by:

$$\mathbf{x[t] /. sol} \left\{ \frac{1}{143} e^{-t/4} \left(143 \cos\left[\frac{\sqrt{143} t}{4}\right] + \sqrt{143} \sin\left[\frac{\sqrt{143} t}{4}\right] \right) \right\}$$

and the velocity is:

$$\left\{-\frac{36 e^{-t/4} \operatorname{Sin}\left[\frac{\sqrt{143} t}{4}\right]}{\sqrt{143}}\right\}$$

2003/2004. Instructors: Usama al-Binni and Hanan Saadah.

```
ParametricPlot[{x[t], v[t]} /. sol,
    {t, 0, 12}, AxesLabel → {"x(m)", "v(m/s)"}];
```


Solution of Problem 2:

 $\lambda = 1.14 \times 10^{-8}$; Ni = 1000; Nf[t_] := Ni Exp[- λ t] Print["The amount left after ", 2×10³, "s is ", Nf[2×10³], "kg."] Print["The amount left after ", 2×10⁷, "s is ", Nf[2×10⁷], "kg."] The amount left after 2000s is 999.977kg. The amount left after 2000000s is 796.124kg.

 $Limit[Nf[t], t \rightarrow \infty]$

0.

Software Packages in Physics 0332481 Mid Term Exam (Part 2) Date: 6/5/2004

IMPORTANT INSTRUCTIONS:

- 1. Write your name(s) below.
- 2. Solve the TWO questions below.

3. Use "Save As" to save the notebook after you finish, by changing the name of this file "midterm" to YourName

Name(s) and Registration Number(s):

■ **<u>QUESTION ONE:</u>** RLC Circuit

A circuit containing a resistor, an inductor, and a capacitor connected in series is called an RLC circuit. Using Kirchhoff's rules, one can obtain the charge on the capacitor Q and the current I as functions of time via the differential equation:

$$\frac{d^2 Q}{dt^2} + \frac{R}{L} \frac{d Q}{dt} + \frac{1}{LC} Q = 0$$

where $R = 10 \Omega$ is the resistor, and L = 0.1 H is the inductance, and $C = 1 \times 10^{-6}$ F is the capacitance.

This second-order differential equation can be reduced to two first-order differential equations, one of them is: $\frac{dQ}{dt} = I.$

1. Write down the other first-order differential equation.

2. Using Q(0) = 1 C and I(0) = 1 A as initial conditions, solve the obtained coupled differential equations for Q(t) and I(t).

3. Plot I(t) versus Q(t) with t ranging from 0 to 0.03 s.

• Note: Your plot should be as self-contained as possible.

QUESTION TWO: Temperature Coefficient of Resistivity

The resistivity of a metal varies with temperature according to the expression:

$$\rho = \rho_0 e^{\alpha (T - T_0)}$$

where ρ is the resistivity at some temperature T (in degrees Celsius), ρ_0 is the resistivity at some reference temperature T_0 (usually taken to be 20°C), and α is the temperature coefficient of resistivity.

1. Calculate the resistivity of tungsten ($\alpha = 4.5 \times 10^{-3} (^{\circ}\text{C})^{-1}$, $\rho_0 = 5.6 \times 10^{-8} \Omega \cdot \text{m}$) at 100°C, and then at 120°C, then write the result as "The resistivity of tungsten at ____°C is___ $\Omega \cdot \text{m}$ ".

2. Show that the resistivity is given approximately by the expression $\rho = \rho_0 [1 + \alpha (T - T_0)]$ for $\alpha (T - T_0) \ll 1$. \heartsuit Hint: Use *Mathematica*'s **Series**[].

Good Luck

Solution of Problem 1:

Substituting the first equation $\frac{dQ}{dt} = I$ in the original equation, we get:

$$\frac{dI}{dt} + \frac{R}{L}I + \frac{1}{LC}Q = 0$$

which is the other first-order equation. The two equations are coupled. The solution using the given initial equations is:

$$\begin{aligned} &\text{sol} = \text{DSolve} \Big[\Big\{ Q'[t] =: i[t], \\ &i'[t] =: -100 i[t] - \frac{1}{10^{-7}} Q[t], Q[0] =: 1, i[0] =: 1 \Big\}, \{Q[t], i[t]\}, t \Big] \\ &\{ \{Q[t] \rightarrow \frac{e^{-50 t} (66650 \cos[50 \sqrt{3999} t] + 17 \sqrt{3999} \sin[50 \sqrt{3999} t])}{66650}, i[t] \rightarrow \frac{1}{1333} (e^{-50 t} (-1333 \cos[50 \sqrt{3999} t] + 66667 \sqrt{3999} \sin[50 \sqrt{3999} t])) \} \Big\} \end{aligned}$$

which means that the charge as a function of time is given by:

$$\left\{ \frac{e^{-50 t} (66650 \cos[50 \sqrt{3999} t] + 17 \sqrt{3999} \sin[50 \sqrt{3999} t])}{66650} \right\}$$

and the current is:

$$\left\{-\frac{e^{-50 t} (-1333 \cos[50 \sqrt{3999} t] + 66667 \sqrt{3999} \sin[50 \sqrt{3999} t])}{1333}\right\}$$

Solution of Problem 2:

 $\alpha = 4.5 \times 10^{-3}; \rho_0 = 5.6 \times 10^{-8}; T0 = 20;$ $\rho[T_] := \rho_0 Exp[\alpha * (T - T0)]$ Print["The resistivity of tungsten at ", $100, " °C is ", <math>\rho[100]$, " $\Omega \cdot$ m"] Print["The resistivity of tungsten at ", 120, " °C is ", $\rho[120]$, " $\Omega \cdot$ m"] The resistivity of tungsten at 100 °C is $8.02664 \times 10^{-8} \Omega \cdot$ m The resistivity of tungsten at 120 °C is $8.78255 \times 10^{-8} \Omega \cdot$ m Series[$\rho 0 * Exp[\alpha \alpha * (T - T00)], \{T, T00, 1\}]$ $\rho 0 + \alpha \alpha \rho 0 (T - T00) + 0[T - T00]^2$