Let f be a function whose domain is a subset A of \Re^n and with range contained in \Re^m . By this we mean that to each $\mathbf{x} = (x_1, x_2, ..., x_n) \in A$, f assigns a value $f(\mathbf{x})$, an m-tuple in \Re^m . Such functions f are called vector-valued-functions if m > 1, and scalar-valued functions if m = 1. In general, the notation $\mathbf{x} \mapsto f(\mathbf{x})$ is useful for indicating the value to which a point $\mathbf{x} \in \Re^n$ is sent. We write $f: A \subset \Re^n \to \Re^m$ to signify that A is the domain of f (a subset of \Re^n) and the range is contained in \Re^m . We also use the expression f maps A into \Re^m . Such functions f are called functions of several variables if $A \subset \Re^n$, n > 1. When $f:U\subset \Re^n\to \Re$, we say that f is a real-valued function of n variables with domain U. ## **Definition:** Graph of a Function Let $f: U \subset \Re^n \to \Re$. Define the graph of f to be the subset of \Re^{n+1} consisting of all the points $(x_1, x_2, ..., x_n, f(x_1, x_2, ..., x_n))$ in \Re^{n+1} for $(x_1, x_2, ..., x_n)$ in U. Symbolically, graph $f = \{(x_1, ..., x_n, f(x_1, ..., x_n)) \in \Re^{n+1} \mid (x_1, ..., x_n) \in U\}$ ## **Definition: Level Curves and Surfaces** Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ and let $c \in \mathbb{R}$. Then the level set of value c is defined to be the set those points $\mathbf{x} \in U$ at which $f(\mathbf{x}) = c$. If $\mathbf{n} = 2$, we speak of a level curve and if $\mathbf{n} = 3$, we speak of a level surface. Symbolically, $\{\mathbf{x} \in U \mid f(\mathbf{x}) = c\} \subset \mathbb{R}^n$. Note that the level set is always in the domain space. The open disk of radius r and center \mathbf{x}_0 is defined to be the set of all points \mathbf{x} such that $\|\mathbf{x} - \mathbf{x}_0\| < r$. This set is denoted $D_r(\mathbf{x}_0)$, and is the set of points \mathbf{x} in \Re^n whose distance from \mathbf{x}_0 is less than r. ## **Definition: Open Sets** Let $U \subset \Re^n$. We call U an open set when for ever point \mathbf{x}_0 in U ther exists some r > 0 such that $D_r(\mathbf{x}_0)$ is contained within U; symbolically, we write $D_r(\mathbf{x}_0) \subset U$.