$$\sin \theta = \frac{1}{2i} (e^{i\theta} - e^{-i\theta}) \quad and \quad \cos \theta = \frac{1}{2} (e^{i\theta} + e^{-i\theta})$$
Proof

By Euler's Formula
$$e^{i\theta} = \cos \theta + i \sin \theta \quad and \quad e^{-i\theta} = \cos \theta - i \sin \theta$$
Using Cramer's Rule
$$\det \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2, \quad \det_y \begin{vmatrix} 1 & e^{i\theta} \\ 1 & e^{-i\theta} \end{vmatrix} = -(e^{i\theta} - e^{-i\theta}), \quad \det_x \begin{vmatrix} e^{i\theta} & 1 \\ e^{-i\theta} & -1 \end{vmatrix} = -(e^{i\theta} + e^{-i\theta})$$

$$\therefore \cos \theta = \frac{\det_x}{\det A} = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad and$$

$$i \sin \theta = \frac{\det_y}{\det A} = \frac{e^{i\theta} - e^{-i\theta}}{2} \Leftrightarrow \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

For matrices A and B on which multiplication is defined.

$$AB = BA \Rightarrow (A+B)^2 = A^2 + 2AB + B^2$$

Proof

By a calculation

$$(A+B)^2 = (A+B)(A+B) = A^2 + AB + BA + B^2.$$

Since AB = BA (that is, A commutes with B)

$$(A+B)^2 = A^2 + 2AB + B^2 = A^2 + 2BA + B^2$$

O.E.D.

Q.E.D.

$$(AB)^T = B^T A^T$$

Proof

Let
$$A = [a_{ij}]_{m \times p}$$
 and $B = [b_{ij}]_{p \times n}$

Therefore the product of A and B is defined. Moreover the ij^{th} entry of AB is

$$AB = \left[\sum_{k=1}^{p} a_{ik} b_{kj}\right]_{m \times r}$$

The transpose of AB,

$$(AB)^T = \left[\sum_{k=1}^p a_{jk} b_{ki}\right]_{n \times m}$$

The transpose of A and B are

$$B^{T} = [b_{ij}]_{n \times p}$$
 and $A^{T} = [a_{ji}]_{p \times m}$

Therefore the product of B^T and A^T is defined. Moreover the ij^{th} entry of B^TA^T is

$$B^{T} A^{T} = \left[\sum_{k=1}^{p} b_{ki} a_{jk} \right]_{n \times m} \quad Since \ b_{ki}, a_{jk} \in \Re$$

$$B^T A^T = \left[\sum_{k=1}^p a_{jk} b_{ki} \right]_{n \times m}$$

$$\therefore (AB)^T = B^T A^T.$$
Q.E.D.

For all $n \in N$ with $n \ge 4$, $n! > 2^n$ Proof (by mathematical induction)

Let
$$T = \{n \in N : n! > 2^n\}$$

Claim1: $4 \in T$

if n = 4, then n! = 24

if n = 4, then $2^n = 16$

$$\therefore 4! = 24 > 16 = 2^4$$

 $\therefore 4 \in T$

Claim 2: if $k \in T$, then $(k+1) \in T$

$$(k+1)! = (k+1)k!$$

Since $k! > 2^k$, it follows that

$$(k+1)k! > (k+1)2^k$$

Since $k \ge 4$, it follows that $k+1 \ge 5 > 2$

$$(k+1)k! > (k+1)2^k > 2 \cdot 2^k = 2^{k+1}$$

Summary: It follows from Claim1 and Claim2 that $T=\{4,5,6,\ldots\}$

In other words, $n ! > 2^n \ \forall \ n \in N \ni n \ge 4$