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Abstract
In this paper we consider the problem of detecting range-distributed targets in the presence of
structured disturbance modeled as an autoregressive Gaussian process with unknown parameters.
We focus on two different scenarios. The former assumes that all the data vectors from the cells
under test share the same covariance matriz (homogeneous environment). The latter refers to
the case of data vectors characterized by completely different covariances (heterogeneous envi-
ronment). We devise and assess four detectors ezxploiting the asymptotic generalized likelihood
ratio criterion. Remarkably they ensure the Constant False Alarm Rate (CFAR) property with
respect to the disturbance power level and two of them are asymptotically CFAR with respect
to the disturbance covariance matriz. Finally the performance assessment, based also on real
radar data, has shown that the newly devised detectors achieve in general satisfactory detection

performances.
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1 Introduction

In the past few years the problem of detecting range-distributed targets has received
more and more attention [1]. It naturally arises when considering detection with High
Resolution Radars [2, 3] capable of resolving a target into a number of scattering centers
appearing into different range cells [4]. Moreover, it is also well known that the point-
target model may fail in many practical scenarios wherein a low/medium resolution radar
is employed: examples of these situations are the detection of large ships with coastal
radars, and that of a cluster of point-targets flying at the same velocity in close spatial
proximity to one another. The adaptive detection of range-distributed targets has already
been handled in [5, 6, and references therein] with reference to targets embedded in
Gaussian disturbance with unknown covariance matrix. Therein it is assumed that data
are collected by N sensors and the possible target is contained within H range cells.
Moreover, in 6], it is also supposed the existence of K secondary data vectors free of target
components. Both the approaches employ the assumption that interference returns are
independent and identically distributed Gaussian vectors (homogeneous environment),

and lead to detectors achieving satisfactory performance when H > 2N (for [5]) and
K > 2N (for [6]).

Unfortunately experimental campaigns have demonstrated that for reasonable values of
N the assumption of H > 2N or K > 2N homogeneous data is not, always verified [7].
Additionally, the analysis of several Space-Time Adaptive Processing (STAP) algorithms,
mostly conducted assuming homogeneity of the secondary data, has shown that inhomo-
geneities magnify the loss between the adaptive implementation and optimum conditions
(8, 9, 10]. It is thus possible that the homogeneous model does not. adequately describe
the actual radar scenario; in these situations it can be thought of resorting to data selec-
tion techniques in order to collect secondary samples. To this end techniques, relying on
knowledge-based criteria, have been proposed in [11]. In [12], instead, two data-adaptive
methodologies, called “Power Selected Training” and “Power Selected Deemphasis”, for
selecting the training data set are proposed and assessed on recorded radar data. A quite

different strategy to cope with the lack of a huge amount of homogeneous data could be
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that of exploiting the structural information about the disturbance covariance. By doing
80, we get a reduction in the number of parameters to be estimated so that the amount of
data required for achieving good estimation performance could be significantly reduced
thus decreasing the uncertainty in learning. This approach has been followed in [13] where
the covariance of the interference has been modeled as the sum of an unknown positive

semidefinite matrix plus a known full rank one.

In this paper we still consider the case of structured interference. More precisely the
proposed approach relies on modeling the overall disturbance as an autoregressive (AR)

Gaussian process. The reasons for using this model are reported in the sequel [14]:

* For a wide-sense stationary process with Power Spectral Density (PSD) S(f) and
for any € > 0 there exist an AR PSD S ar(f) such that at every frequency the error
made replacing S(f) by Sar(f) is at most e.

e Given N values of the disturbance covariance, the PSD that corresponds to the most,
random or the most unpredictable time series whose covariance function agrees with
the known values is the AR PSD whose coefficients are computed solving a set of

linear equations known as the Yule-Walker equations (Maximum Entropy Method
(MEM)).

e It is well known that in many situations of practical interest, the interference can
be modeled as an AR process of relatively low order M. Specifically, in radar echo

modeling, M ranges from 2 to 5, whereas in active sonar environment M is usually

chosen equal to 8 [14, pp. 16)].

Previous works in the field of radar signal processing involving AR processes concern
mainly the problem of designing adaptive clutter cancellators. In particular in [15, 16]
the MEM approach is invoked for devising adaptive clutter filters exploiting the Burg
algorithm. In [17], instead, the authors resort to the Kalman filtering technique for
estimating the AR coefficients and thus develop adaptive filter structures achieving a fast
adaptivity even for the cases in which the clutter Doppler frequency changes significantly

over short range intervals.
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With reference to the problem of detecting point-like targets, the AR model is exploited
in [18], for the case of known target echo, in [14] for the detection of an AR process in
the presence of disturbance still modeled as an AR process with different coefficients, and
in [19] for the detection of a target signal known up to a scaling factor. Finally, more
recently, the use of multichannel AR processes for radar STAP applications has been
proposed in [20, 21] for point-like targets embedded in a Gaussian environment, and in

[22] for the case of non-Gaussian disturbance.

In this paper, for the first time, we attack the problem of detecting range spread tar-
gets in the presence of disturbance modeled as an AR process with unknown parameters.
More specifically we focus on two radar scenarios of relevant practical interest: the former
assumes that all the data vectors share the same covariance matrix, whereas the latter
considers the case of a totally inhomogeneous environment where the data from the cells
under test possess completely different covariances. In both situations we do not suppose
the presence of training data and devise detection structures which are asymptotic ex-
pressions of the Generalized Likelihood Ratio Test (GLRT). Remarkably all the proposed
receivers ensure the CFAR property with respect to the disturbance power level and two
of them are also asymptotically CFAR with respect to the disturbance covariance.

The paper is organized as follows. Section 2 is focused on the problem formulation and the
design of the novel detectors. Section 3 contains the performance assessment, conducted

also with the aid of real data collected by the IPIX radar. Finally, conclusions are drawn

in Section 4.

2 Problem Formulation and System Design

We assume that data are the returns from a coherent pulse train composed of N pulses
and deal with the problem of detecting the presence of a target across H range cells. We
denote by z,,t=1,..., H, the N-dimensional vector of the returns from the #-th range

cell and neglect range migration?.

The detection problem to be solved can be formulated in terms of the following binary

!Notice that if the range resolution A, is greater than 3 m and the CPI is smaller than 1 msec than
the range migration can be neglected if the target velocity is smaller than 500 m/sec. [23].
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hypotheses test:
H022g=ng, ?le,...,H

1

Hi: z,=a p+ny, R R, |
where p = [1,e/?™e . e27(N-D/a]T denotes the N-dimensional steering vector, (-)7
denotes transpose, f; is the normalized target Doppler, and the a4’s, t = 1,..., H, are
(unknown) deterministic parameters accounting for both the target and the channel prop-
agation effects. As to the disturbance vectors, we assume that the m's,t=1,...,H, are
N-dimensional complex vectors, samples from independent, AR Gaussian processes of

order M. Precisely the k-th component of n, n¢(k), is given by

M
(k) = a(Dne(k — 1) +wy(k) k=1,...,N (2)
1=1
where a; = [a;(1),...,a,(M)] is the complex M-dimensional vector of the AR, parameters

and uy(k) is a sequence of independent and identically distributed complex Gaussian
random variables with zero-mean and variance o? 2.

In the sequel we consider two different scenarios. The former, referred to as homogeneous
environment, assumes that the interference vectors share the same covariance, i.e. a; = a
and ¢ = 0%, t=1,...,H. The latter, instead, deals with the case where the vectors n,
t=1,...,H, have a completely different covariance matrix (heterogeneous environment).
According to the Neyman-Pearson criterion, the optimum solution to the hypotheses
testing problem (1), is the likelihood ratio test; but, for the cases under consideration,
it cannot be employed since total ignorance of the parameters a,o?, aq,...,ay for the
homogeneous environment, and a,.. s B OF s 03 Oy s+ os s fOF the heterogeneous
scenario is assumed. A possible way to cope with the aforementioned a priori uncertainty
relies on exploiting the Generalized Likelihood Ratio Test (GLRT), which is tantamount
to replacing the unknown parameters by their maximum likelihood estimates under each
hypothesis [1]. Unfortunately, the decision statistic based on the above algorithm does

not admit a closed form expression. In fact the exact maximization with respect to the

?Notice that the derivations which follow apply also to the case of disturbance vectors n; modeled as
samples of an autoregressive Spherically Invariant Random Process (SIRP) [24, 25].

This is tantamount to assuming that the driving process w;(k) can be written as the product of a
nonnegative random variable, referred to in the sequel as tezture, times a Gaussian white process g;(k).
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AR parameters produces a set of highly nonlinear equations [26]. However, for large data
records, the probability density function (pdf) of the data vectors can be suitably approxi-
mated and, thus, it is possible to come up with a closed form expression for the maximum
likelihood estimates. Precisely, denoting with f( z|a,, 0, Hy) and f( zi|ay, o}, oy, Hy)
the pdf’s of the vectors® z,, ¢t = 1,..., H, under H, and H,y, it can be shown [14] that
for N> M

1 1
2 4
f( zi|a, of, Hy) = WBXD {_;?( U — Ztat)f( U — Ztat)} (3)

I( zilay, 0}, on, Hy) =

Wj—f)‘ exp {_;]:;f( U — oy q— Ztat — X Pat)t( U — g g — Zgat = (¥} Pag)

(4)
where (-)f denotes conjugate transpose, w = [2(M+1),..., z(N))7, q=[pM+
1,..., p(N)],

( z (M) zZ(M-1) ... z(1)
Z;(M = 1) Zt(M) e zt(2)
Z; =
\ 2(N—1) 2(N-9) ... z(N-M)}
([ BM) pM-1) ... p(l)
p(M+1) pM) ... p(2)
P=
\ p(N-1) p(N-2) ... p(N-M)}/

Remarkably we will prove that the maximization of (3) and (4) with respect to the un-
known parameters leads to closed form expression for the estimates. Hence this last

consideration justifies the use of the above pdf’s for evaluating the Asymptotic GLRT
(AGLRT).

®Note that equations (3) and (4) refer to the heterogeneous scenario. However letting a; = a and
of =0 t=1,...,H we come up with the pdf’s for the homogeneous case.
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2.1 Homogeneous Environment

Assuming that a and 0% are unknown parameters we solve the hypotheses test (1) resorting

to the AGLRT, namely we consider the following decision rule

2 H,
max Zi5v0y Zla, H
a?, a,&f( 13 ) H| 1(72: «, l) z T N >>M, (5)
max,z » f( 21,..., zgla,o , Hp) i,
where a = [m,...,ax], f( 21,..., zx|a,0?, a, Hy) and f( z1,..., zgla,0? H,) are

the pdf’s of the data vectors under Hy and H; respectively. Moreover, exploiting the
independence of the vectors z,,t=1,..., H, we can write the joint pdf’s as

1 1 &
f(21,..., zgla,o® Hy) = (wa?ym—mnm °XP {*; ‘;( u— Za)'(u, — Zta)} (6)

f( Zlyeney ZHla,(’J'z, aaHl) =

1 L&
WEXP{—;;(U;—(}:Q— Z;a—at Pa)t(ut—atq— Zta—at Pa)

(7)

It is now necessary to evaluate the maximum of (6) and (7) with respect to the unknown

parameters. To this end we observe that in [14] it has been shown that

(N-M)H
(N—-M)H
max f( z1,..., zg|a,o?, H, z[ — — ‘ 8
W (B 2l B = | e 7 ®)
where & = (S, 2} 2,)” T2, Z} u,.
Moreover maximizing (7) over o? yields
max,2 f( z1,..., zgla,0?, o, H)) =
(N s, M)H (N_AI)H (g)

[:rr Selwm—oqg— Za—o; Pa)i( u;— o, q— Z,a— oy Pa)
Maximizing the last quantity with respect to « is tantamount to minimizing the quadratic

forms
Jw)=(w—a,qg— Zia—oy P (u,—oy q— Za—oy Pa) (10)
over ayg, t = 1,..., H. Hence, after some algebra, it can be shown that
n&i{n J(Oﬂg) —- ( u; — Z:a)f H( U — Zta) (11)

7
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where H is the projection matrix

_(g+ Pa)(q+ Pa)t

: 12
(g+ Pa)l( g+ Pa) (12)
Expression (11) implies that
(N-M)H
N - M)H
ax yifiaisy ) 23 yHy) = (
max f( 2 zgla,o®, a, Hy) Tl (w— Za) H(u— Za) o

It still remains to maximize the last expression over a. To this end we note that in [19]
it is shown that the matrix (12) is independent of a and can be written as I — —Qrﬁ

where ¢ = [1,e72"e, . /2" N=-M-1Sa)T Thys maximizing (13) with respect to a, after

some algebraic manipulations, yields

max f( Zlyeny Zﬂla, (721 a:Hl) =
a2, ,a

(N - M)H peid
[WZtHzl(‘U-t" Zté'I)T H( Uy — Zzé\l')] :
(14)

where a; = (Et 1 Z,, H Zt) YE ZIH . Finally, working backward, we come up
with the following decision rule
H ~t =~ H
L= we — Zoag)'(u, — Z,a)

>
— e T : 15
i (w— Za@)t H(u, - Z,a) ﬁn 1 (15)

where T} is the appropriate modification of the threshold in (5). We explicitly point out
that the decision statistic performs a comparison between the estimates of o2 under the
hypotheses H, and H;. Moreover, due to the homogeneous assumption, the estimators
exploit, through a non-coherent integration (summation), all the H available data vectors.
However, under the H, hypothesis, the data are first projected into the null space of ¢
in order to get target free observations. Remarkably the newly receiver (15) ensures the
CFAR. property with respect to o2. In fact, under the hypothesis Hy, this parameter
factors out between the numerator and the denominator of (15).

It is worth pointing out that receiver (15) assumes the knowledge of the model order
M or equivalently that a reliable estimate of M is available. However it is possible
conceiving a more general version of the detector that gets rid of the quoted information.
Precisely, denoting by M, the maximum of M over all the expected disturbance scenarios

(as previously pointed out My = 5 for radar scenarios and M, = 8 for the sonar case

8
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[14]), the methodology adopted to cope with a possible uncertainty about M could be
that, of evaluating the GLRT over the model order with the constraint M € (1,..., Mp).
Otherwise stated it is reasonable considering the following decision rule

2
Mel('rll!a),{Mo)”glg{af( Zlyeany ZHlM:a,o ] Q,H‘[) Hl T N>>M (16)
xfCa o, zalMa,0n W) 5 ’

ME(I, wMo) 412 Hy
which, exploiting (13) and (14), can be recast as
H
min = > (u— Za@)(u, - Zag) H,
ME(].,.--yMO) =1 > T (17)
H =

. - Pt
MG(T.IEMD)EI( U~ Z.a) H(u -~ Z,a)

Notice that the minimization over M is to be performed through an exhaustive search over
the discrete set (1,..., M) leading to an increase in the computational complexity with

respect to the case of known M. Finally receiver (17) still ensures the CFAR. property

with respect to the parameter o2,

2.2 Heterogeneous Environment

In this case each data vector possesses a different covariance matrix. Thus the AGLRT

can be written as

maxa,a,Af(zla . zh| A, o, aHl)

G N>M 18
max 5 A f(21,..., zg| A, o, Hy) Ho ’ (1%)
where A = [ay,...,ay], o= [0%,...,0%]" and the joint pdf’s of zi,..., 2y are
H
f(zll"'l zHl A) a-rHﬂ):Hf( ztlat’o—tz;HO) (19)
=1
and
H
f( Zlyeeny zHl A’ a, C!,Hl) iy H f( zf.lat;(fgz:ah Hl) (20)
t=1
under Hy and H; respectively. To perform the maximizations required in (18) we observe
that,
max f( zy,..., zx| A, o, Ho)_Hmaxf ( z¢|lay, o, Hp) (21)
a, A t=1 ¢saf.
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maxA_f( Z1,..., zg| A, 0, a, H)) = H max f( z|a, 07, 0, Hy) (22)

, O, t=1 Gtauhal

Moreover, from (8) and (14) it follows that

(N-M)
(N - M) ]
max f( z|ay, 02, Hy) = —- — i 23
e f( tI ty (74 0) l:ﬂ_( o Ztat,())i( u — Ztat,ﬂ) ( )
(N—M
(N - M)
ﬂ‘z,cu,ae f( ztlat’gt » % Hl) = l:ﬂ'( s — Ztai:i)i H( Uy — Zta-t 1) (24)
where a;5 = ( Z! Zt) P u, and a5 a; = ( ZI H Zt)-l Z, H w,;. Finally, substitut-
ing (23) in (21) and (24) in (22 ) we can rewrite the AGLRT (18) as
( U — Zté‘i}’)t( Uy — Ztét-'a) Iil Gl (25)
=1 (e — Zyag)t H( u, — Za, 1) Em ’

where G| is the appropriate modification of the threshold in (18). The decision statistic
compares the geometric mean of the o’s estimates under Hy, with the geometric mean
of the o?’s estimates under H,. Moreover, as in the homogeneous case, the data ex-
ploited under H, are first projected into the null space of ¢ in order to get target free

observations. Interestingly receiver (18) ensures the CFAR property with respect to o7,
i=1,... H.

As in Subsection 2.1 it is possible generalizing receiver (25) accounting for a partial
uncertainty on the model order M. Otherwise stated one can consider the following
decision rule

F(zy,..., zy|M, A, o, o, Hi) H,

Z G N>M, (26)
Hy

max ax
Me(1,...,Mp) g, o, A
ma;cif( Z1,..., zyg|M, A, o, Hp)

max
ME(]'! 'MU)

which, after some algebraic manipulations exploiting also (23) and (24), can be rewritten

as

Me(l MU)H( w — Zag) (u— Zagy) H,

};—1 Z Gl. (27)
uelEiy L = Z285)! H(w, = Zeags) Ho

Notice that the CFAR property with respect to of, t = 1,..., H still holds. Finally, if

H =1 namely point-like target, detector (15) coincides with (25) whereas detector (17)
coincides with (27).

10
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3 Performance Assessment

In this section we assess the performance of the detectors (15), (17), (25), and (27) in
terms of the probability of false alarm (Py,) and the probability of detection (Pg). To
this end, we first note that closed form expressions for both (Pya) as well as (P;) are not
available, but for the asymptotic case, i.e. when N tends to infinity, and the receivers
(15) and (25).
Specifically, it can be shown that for N — co and under H, the GLRT’s (15) and (23) are
distributed according to a central chi square random variable with 2H degrees of freedom
[27]. Thus, the asymptotic expression for the Py, is
H-1 J

Pe=rt 25 (5) @
which highlights that the proposed decision rules are asymptotically CFAR with respect
to the covariance matrix.
As to the asymptotic P; we notice that, under H; and for N — oo, the GLRT's (15)
and (25) are distributed according to a non-central chi square random variables with 2H
degrees of freedom and non-centrality parameters

252, |l pt R p receiver (15)

N (29)
2% L, leul? pt Ry p receiver (25)

where R ( R;) is the covariance matrix of the disturbance vector B, b =1, 500 B, with

reference to the homogeneous (heterogeneous) scenario (see Appendix 1 for the proof).

It follows that the P, can be expressed as

Py=Qu (VAVG), (30)

where Qg (-, +) denotes the Marcum function [28]. The above expression also shows that
the asymptotic performance is irrespective of the statistical characterization of the s
phase. Indeed it can be shown that this is a general performance trend, namely it holds
true even for finite values of N.

In this last case, however, we must numerically evaluate the performance of all the pro-

and

: ! i 100
posed receivers. To this end we resort to Monte Carlo techniques, based on
fa

11
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F‘? independent trials, for Py, and for Py, respectively. Moreover, in order to limit the
computational burden, we assume Py, = 1074, Further developments require specifying
both the disturbance as well as the target model.

Disturbance Model. As previously stated, the clutter is modeled as an AR Gaussian
process of order M and parameters a and o2 for the homogeneous case, and a,,...,ag,
ai,...,0% with reference to the heterogeneous environment. In order to evaluate the
performance it is necessary assigning both the order of the clutter process as well as
the values of the unknown parameters. We carry out order selection and parameters
estimation analyzing the spectral properties of the data collected by the McMaster IPIX
radar in Grimsby, on the shore of Lake Ontario, in winter 1998 [29]. The quoted system
is a fully coherent X-band radar, with advanced features such as dual transmit /receive
polarization, frequency agility, and stare/surveillance mode. We refer to the dataset
file_19980223_170435_antstep.cdf, range resolution 15m and in particular to the range
cells from the 11-th to the 20-th. A thorough statistical analysis of the aforementioned

dataset has been conducted in [30] and the results have highlighted the compatibility of
the data with the SIRP model.

Our first goal is to proper select the model order. It is well known that many problems
may arise in estimating the order of an AR process, in particular when the sample size
N is smaller than 10P, where P denotes the maximum possible value of the process
order. Several studies have been carried out on this topic (31, and references therein],
leading to different selection criteria whose common starting point is the minimization
of a function involving the Kullback-Leibler discrepancy [32]. An extensive discussion on
the performance and the applicability of those criteria is reported in [31].

In this work order selection is achieved by fitting the non-parametric estimate of the
clutter PSD, performed by means the Welch method [33], with the AR PSD of increasing
order starting from M = 1. As to the method employed for estimating the unknown AR
parameters, we resort to the Burg technique [26]. Indeed recent comparisons between the
various approaches, proposed in the last decades for estimating the AR parameters, have
shown that the Burg technique guarantees stationarity of the estimated model ensuring

also a small bias and a small finite sample variance.

12
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Cell Disturbance Parameters
Number
a(1) a(2) a(3) a;

1 0.85 - 0.52i 0.02 - 0.19i | 0.09 + 0.26i | 35.907
2 0.45 - 0.29i 0.09 - 0.261 -0.01 - 0.051 | 46.673
3 0.46 - 0.211 0.17 - 0.204 0.01 - 0.06i | 50.604
4 0.47 - 0.261 0.12 - 0.22i 0.01 - 0.03i 52.13
5 0.74 - 0.51i 0.06 - 0.20i 0.07 - 0.23i 42.23
6 0.59 - 0.351 0.11-0.251 | -0.01 + 0.07i | 43.51
7 0.63 - 0.404 0.10 - 0.241 | 0.01 + 0.12i | 45.81
8 0.62 - 0.371 0.10 - 0.23i | 0.01 + 0.16i | 42.05
9 -0.64 + 0.36i | -0.14 + 0.23i | -0.02 - 0.191 | 40.99
10 -0.46 + 0.24i | -0.13 + 0.22i | 0.01 + 0.04i | 51.46

Table I: AR parameters of the clutter process. Order M = 3. Cells from 11-th to 20-th, dataset
[ile-19980223_170435_antstep.cdf , HH polarimetric channel.

The results of the spectral analysis show that a good match between the parametric and
the non-parametric estimate of the PSD is obtained modeling the disturbance as an AR
process of order 3. In particular, in Figure 1, we compare the estimated power spectrum
of the returns from the 13-th range cell of the dataset performed exploiting the Welch
method with the parametric AR PSD employing the Burg technique. The plots, which
refer to both the co-polarized HH and VV as well as to the cross-polarized HV and VH
channels, confirm that M = 3 is adequate for a good fitting. Finally, in Table I, we report
the estimates of the AR parameters, with reference to the range cells from the 11-th to
the 20-th of the real dataset and the HH polarimetric channel, which will be used in the
rest of the paper for simulation purposes.

Target Model. We adopt a deterministic multiple dominant scatterers (MDS) model
with H = 10 and the target scatterers’ locations given in Table II: for each cell we indicate
the percentage of total useful target energy backscattered from that cell. As to the total
energy from the target, £ say, it is the sum of the energies, & = |ay|>p'p, t = 1,..., H

k)

say, from the target scatterers, i.e.,

Notice that a more general target model accounting also for a possible fluctuation as well

13
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Model Cell Number

Number
1 2 3 4 5 6 7 8 9 10
M, 1/10 [1/10 | 1/10 1/10 [ 1/10 | 1/10 1/10 | 1/10 | 1/10 | 1/10
M, 2/5 [3/10 | 1/5 1/10| 0 0 0 0 0 0
M, 3/4 | 1/4 0 0 0 0 0 0 0 0

Table II: Target models with H = 10, discrete scatterers’ locations and percentage of total
energy reflected, i.e., %‘-, t=1;...,H,

as a possible correlation of the amplitudes oy’s can be found in [6].

(17), (23), and (27) in terms of P,, versus the SCR, defined as

25, lw|?* p' R™' p receivers (15) and (17)
SOR =

2%, |o)® pt Ry p receivers (25) and (27)

Notice that real radar data have been only exploited for estimating the model order, the
AR parameters, and thus, via the algorithm of [34, 26], the covariance matrix of the distur-
bance process. However both Py and Py have been obtained by means of data simulated
according to the models described in Section 2. Otherwise stated s t=1...,H, are
independent complex AR Gaussian vectors whose model order and parameters coincide
with the values estimated from the real dataset. Precisely, the model order has heen
selected equal to 3. Moreover, with reference to the homogeneous environment, the AR
parameters have been chosen as the average of the values reported in each column of
Table I, whereas for the heterogeneous environment they are just the values displayed in
each column of the table.

In Figure 2 we plot the performance of the detectors (15) and (17) for Py, = 1074,
fa=0.03, H=10, M = 3, My = 6, and several values of N. Moreover, for comparison
purposes, the asymptotic performance is displayed too. The curves show that the perfor-
mance loss with respect to the asymptotic case, defined as the horizontal displacement,
of the corresponding curves, is kept within 3 dB for N = 40, Py = 0.9 and both the de-
tectors. The trends of the curves also highlight that receiver (15) converges more quickly

than detector (17). In fact the former achieves almost the same detection performance
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for N = 30 and N = 40 whereas the latter shows a performance improvement when the
sample size ranges from N = 30 to N = 40. Finally, notice also that, for the homogeneous
case, the performance is irrespective of the actual MDS target model.

In Figures 3a, 3b, and 3¢ we consider the case of heterogeneous environment. Specifically,
we plot the performance of the detectors (25) and (27), for Py, = 1074, f; = 0.03, H = 10,
M =3, My = 6, several values of N, and the target models of Table II. In particular,
Figure 3a refers to the target model M; whereas Figures 3b and 3c to the models M,
and M, respectively. The curves still show that an increase in the sample size leads to
better and better performances. Moreover the loss with respect to the asymptotic curve
strongly depends on the target model being in force. In particular, the more concentrated
the target, the poorer the performance. Otherwise stated the receivers suffer a collapsing
loss.

We also highlight that the sample size required to ensure satisfactory performances is
greater than the value required for the homogeneous case. This behavior can be easily
explained observing that in the case at hand the size of the parameter space is larger
and thus a greater sample size is required for achieving reliable parameter estimates.
Before concluding we notice that for N < 50 the receiver (27) which does not assume
the knowlwdge of M suffers a heavier performance loss with respect to the receiver (25)

which knows M. Finally this loss can be partially compensated increasing N.

4 Conclusions

In this paper we have considered the design and the analysis of radar detectors for range-
spread targets embedded in Gaussian disturbance modeled as an AR process of order
M. We have focused on two distinct scenarios (the homogeneous and the heterogeneous
environments) and for each of them we have devised two detectors. The former receiver
assumes the perfect knowledge of the model order M whereas the latter gets rid of this
a-priori information. Both ensure the CFAR property with respect to the disturbance
power levels and one of them is also asymptotically CFAR with respect to the disturbance

covariance matrix.

At the analysis stage we have evaluated the performance of the newly introduced detectors
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in terms of Py, and P;. To this end we have first performed a spectral analysis on real
radar clutter collected by the IPIX Radar in 1998 in order to estimate the actual AR
parameters as well as the model order to be used in the simulations. Thus we have
analyzed the behavior of the novel detectors for P, = 107, The results have shown
that they achieve in general satisfactory performances. Moreover the Py of the receivers
designed in the presence of homogeneous environment is irrespective of the actual target
model. On the contrary detectors designed for the heterogeneous scenario suffer the
collapsing loss namely the more concentrated the target, the poorer the performance.

Before concluding we highlight that assuming the presence of secondary data (free of useful
target signal) the number of Doppler samples N, required to achieve a given performance
level, reduces. Otherwise stated it is possible to trade off Doppler samples with secondary

data.

Finally, a possible future research track could concern the extension of the approach to
the multichannel case.
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5 Appendix 1

In this Appendix we derive the asymptotic expressions of the Py, and the P; for the

receivers (15) and (25). To this end we denote with

e Re(:) and I'm(-) the real and the imaginary parts of the argument, respectively;
* 0, = [RP.((J!]_), Im(()q), seey Re(aH), Im'(aH)]T;
®
[Re(al), Im(aT), o?)T receiver (15)
0=
[Re(al), Im(a]), ..., Re(al), Im(ak),02,...,0%4]T receiver (25)
e 0= 9?: GT]T;
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e J(0)= J(8,, 8,) the Fisher information matrix [35] which can be partitioned

as
J9,.,0.(08) Jg g6
J(8) = .

J6,06,(8) Jg, 0.(6)
According to [27], under H, and for N — oo, the GLRT is distributed according to a
central chi square random variable with 2H degrees of freedom. Hence, exploiting (28,
pp. 1 formula B3], we get (28). Moreover, under H; and for N — oo, the GLRT follows

a non-central chi square random variable with 2H degrees of freedom and non-centrality

parameter

T

A=017 0)- J 8) J 0)J ]
[J o, 0.6 6,,6,(0)J7g ¢(0)J g g (0) 8- 01, 7]

where 0,,, denotes a m x n matrix of zeros. Hence, exploiting [28, pp. 2 formula C3],
we get the asymptotic Py (30).
Further developments require evaluating the Fisher information matrices for both the
receivers (15) and (25). As to the former it can be shown, after some algebra, that
J g, 0.(68)=2p" R'p Iy
(31)
79,,0.(00= J% (8= Omanss;
where I, is the m x m identity matrix. Thus, substituting (31) in (5) we can recast the
non-centrality parameter as
H
A=2)|a*p' R p.
t=1
As to the latter it can be proved, after some algebra, that
J g, 0,(0)=2 diag(p' R{'p,...,p!' Rz'p)® I,
(32)
Jo. (0= JTah 0.(0) = Ooyarrinym
where diag(dy, ..., ) denotes a diagonal matrix with diagonal elements 4y, ..., d,5 and

® the Kronecker product. Hence substituting (32) in (5) we get the non-centrality pa-

rameter, i.e.

H
A=2) |’ p' B p.
=1
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Figure 1. Power Spectral Density of the returns from the 13-th range cell versus the normalized
frequency f. Model-based PSD estimates (dashed curves), non-parametric PSD estimates (solid

curves).
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Figure 2. Py versus SCR of the receiver (15) (dashed curve), (17) (dotted curve), and asymp-
totic performance N = oo (solid curve), for Pro =107%, f4 =003, H=10, M = 3, My = 6,
and N as a parameter.
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Figure 3a. P; versus SCR of the receiver (25) (dashed curve), (27) (dotted curve), and
asymptotic performance N = oo (solid curve), for Py, = 1074, f3 = 0.03, H = 10, M =14,
My = 6, target model M;, and N as a parameter.
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Figure ?fb' Py versus SCR of the receiver (25) (dashed curve), (27) (dotted curve), and
asymptotic performance N = oo (solid curve), for Pro = 1074, f4 = 0.03, H = 10, M = 3,
My = 6, target model My, and N as a parameter.
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Figure 3_-4:. Fy versus SCR of the receiver (25) (dashed curve), (27) (dotted curve), and
asymptotic performance N = oo (solid curve), for Py, = 1074, fq = 003, H=10, M = 3,
My = 6, target model Mj, and N as a parameter.
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