Why study / use Javascript?

pretty easy to start with

easy to do useful things with it
all browsers process Javascript
- canuse it in your own web pages

- can understand what other web pages are doing (and steal from them if
desired)

ideas carry over into other languages

there are good reasons not to use Javascript too:
- limited functionality for general use, outside of web pages
- many irregularities and surprising behaviors
- no browsers match ostensible standards exactly
- doesn't illustrate much about how big programs are built

Javascript components

+ Javascript programming language
- statements that tell the computer what to do
get user input, display output,
set values, do arithmetic,
test conditions, branch, loop, ...

libraries, built-in functions
- pre-fabricated pieces that you don't have to create yourself
math functions, text manipulation

* access to browser and web pages
- buttons, text areas, images, page contents, ...

Basic example: add 2 numbers
Javascript code between <script>...</script> tags

<html>

<body>

<P> add2.html: adds 2 numbers

<script>
var numl, num2, sum
numl = prompt(*'Enter first number')
num2 = prompt("'Enter second number')
sum = parselnt(numl) + parselnt(num2)
alert('Sum = " + sum)

</script>

Variation: concatenate two strings of characters

<html>
<body>
<P> name2.html: concatenates 2 names
<script>
var numl, num2, sum
numl = prompt(“'Enter last name')
num2 prompt(“Enter first name ")
sum = num2 + numl
alert(hello, " + sum)
</script>

Adding up numbers: addup.html

- variables, operators, expressions, assignment
statements

+ while loop, relational operator

<html>
<body>
<script>
var sum = 0
var num
num = prompt("Enter new value, or 0O to end")
while (num 1= 0) {
sum = sum + parselnt(num)

num = prompt("Enter new value, or 0O to end")

}

alert('Sum = " + sum)

Find the largest number: max.html

* needs an If to test whether new number is bigger
- another relational operator
* needs parselnt or parseFloat to treat input as a number

var max = 0
var num
num = prompt("Enter new value, or O to end")
while (num I= 0) {
if (parseFloat(num) > max)
max = num
num = prompt(*'Enter new value, or O to end")

}

document.write('<P> Max = " + max)

Programming language components

statements: instructions that say what to do

variables: places to hold data in memory while program is running
- numbers, text, ...

syntax: grammar rules for determining what's legal

- what's grammatically legal? how are things built up from smaller things?
semantics: what things mean

- what do they compute?

most languages are higher-level and more expressive than the
assembly language for the toy machine

- statements are much richer, more varied, more expressive
- variables are much richer, more varied
- grammar rules are more complicated
- semantics are more complicated
but it's basically the same idea

Variables, constants, expressions, operators

* a variable is a place in memory that holds a value
- has a name that the programmer gave it, like sum or Area or n
in Javascript, can hold any of multiple types, most often
numbers like 1 or 3.14, or
sequences of characters like "Hello" or "Enter new value"
- always has a value
- has to be set to some value initially before it can be used
- its value will generally change as the program runs
- ultimately corresponds to a location in memory
- but it's easier to think of it just as a hame for information

a constant is an unchanging literal value like 3 or "hello"
an expression uses operators, variables and constants
to compute a value
3.14 * rad * rad
* operators include + - * /

Computing area: area.html

var rad, area;
rad = prompt("Enter radius')
whille (rad !'= null) {

area = 3.14 * rad * rad

document.write("’<P> radius = " + rad + ", area = "

rad = prompt(“Enter radius™)

how to terminate the loop

- 0Ois avalid data value

- prompt returns null for Cancel and "" for OK without typing
string concatenation to build up output line

no exponentiation operator so we use multiplication

Types, declarations, conversions

+ variables have to be declared in a var statement

each variable holds information of a specific type

+ area)

- really means that bits are to be interpreted as info of that type
- internally, 3 and 3.00 and "3.00" are represented differently

Javascript usually infers types from context, does conversions

automatically
- "radius =" + rad

sometimes we have to be explicit:

- parseInt(string) if can't tell from context that string is meant as an

integer
- parseFloat() if it could have a fractional part

Errors:

Javascript is very bad at reporting errors!
if you do something wrong, the browser may not tell you at all

if you use Mozilla, turn on the Javascript console (Tools)

Control flow statements: decisions and loops
if-else is the Javascript version of compare and goto

if (condition is true) {
do this part
} else {
do this part instead
}

while is a Javascript version of a loop

while (condition is true) {
do these statements

}

if-else examples (sign.html)

if (i >=0) {

alert(i + " is positive")
¥
if (i >=0) {

alert(i + ™ is positive")
} else {

alert(i + ™ is negative')
}

can include else-if sections for a series of decisions:
if (i >0 {
print i, " is greater than zero”
} else if (i == 0) { // note: ==
alert(i + ™ is zero™)
} else {

alert(i + " 1s negative™)
}

Control flow statements: while loop

counting or "indexed" loop:
i=1
while (i <= 10) {
do something with i
i=i+1

}

the most general loop; can simulate all others
var n = prompt("Enter number'™)
while (n I= null) {

i=0

while (i <= n) {
document.write('
" + i + " " + i*i)
i=1+1

}

n = prompt(Enter number')

Functions

a function is a group of statements that does some computation

the statements are collected into one place and given a name
- other parts of the program can "call" the subroutine
that is, use it as a part of whatever they are doing
- can give it values to use in its computation (arguments or parameters)
- computes a value that can be used in expressions
- the value need not be used

Javascript provides some useful functions

you can write your own functions

Function examples

+ syntax
function name (list of “arguments") {
the statements of the function

}

function definition:

function area(r) {
return 3.14 * r * r

}

+ function uses:
rad = prompt(“Enter radius™)
alert(radius = " + rad + ", area = " + area(rad))

alert(area of ring =" + area(1.75) - area(0.6))

Ring.html

var rl, r2;

rl = prompt("Enter radius 1")

while (r1 '= null) {
r2 = prompt("Enter radius 2")
alert('area = " + (area(rl) - area(r2))) // parens needed!
rl = prompt(*'Enter radius 1")

}

function area(r) {
return 3.14 * r * r

}

Why use functions?

+ if a computation appears several times in one program
- a function collects it into one place
* breaks a big job into smaller, manageable pieces
- that are separate from each other
defines an interface
- implementation details can be changed as long as it still does the same
Jjob
multiple people can work on the program
a way to use code written by others long ago and far away

- most of Javascript's library of useful stuff is accessed through
functions

Javascript library functions, etc.

* Math
- sgrt, max, min, random, ...
+ String

- searching, subsstring, case conversion, convert to HTML,
+ "Regular expression"

- pattern matching
+ Date/Time

- current time, elapsed time, conversions

* Array
- set of related items, accessible by index
- use for things like sorting

A working sort example

var name, 1 = 0, j, temp
var names = new Array()

// Till the array with names
name = prompt(*'Enter new name, or OK to end")
while (name 1= ") {
names[names. length] = name
name = prompt(*'Enter new name, or OK to end")
¥
// insertion sort
for (i = 0; i < names.length-1; i++) {
for (= i+l; j < names.length; j++) {
it (names[i] > names[j]) {
temp = names[i]
names[i] = names[j]
names[j] = temp

}
bs

// print names
for (i = 0; i < names.length; i++) {
document.write("'
 " + names[i])

}

Summary: elements of (most) programming languages

constants: literal values like 1, 3.14, "Error!"
variables: places to store data and results during computing
declarations: specify name (and type) of variables, etc.

* expressions: operations on variables and constants to produce new
values
assignment: store a new value in a variable
statements: assignment, input/output, loop, conditional, call
conditionals: compare and branch; if-else
loops: repeat statements while a condition is true
functions: package a group of statements so they can be
called/used from other places in a program

+ libraries: functions already written for you

How Javascript works

* recall the compiler -> assembler -> machine instruction process
for Fortran, C, etc.

+ Javascript is analogous, but differs significantly in details

when the browser sees Javascript in a web page,
- checks for errors (may or may not report them usefully)

- compiles your program into instructions in an "assembly language" for
something like the toy machine

but richer, more complicated, higher level

- runs a simulator program (like the toy demo) that interprets these
instructions

the simulator is usually called
“interpreter" (older term) or
"virtual machine" (newer, as in Java)

11

