
1

Real machines

• multiple scratchpads (called "registers")
• more instructions, though basically the same kinds

– move data
load a register from value stored in memory
store register value into memory

– arithmetic:
add, subtract, etc., usually operating on registers

– comparison, branching
select next instruction based on results of computation

change the normal sequential flow of instructions
normally it just steps through instructions in successive memory locations

– control rest of computer
– typical CPU has dozens to few hundreds of different instructions

• instructions and data usually occupy multiple memory locations
– typically 2 - 8 bytes

• real programs are enormous!

CPU block diagram (non-artist's conception)

Control unit

Registers

ALU

PC

Memory (RAM)

ALU = arithmetic/
logic unit

PC = program counter
= location of next instr

2

Computer architecture

• what instructions does the CPU provide?
– CPU design involves complicated tradeoffs among functionality, speed,

complexity, programmability, power consumption, …
– Intel and PowerPC are unrelated, totally incompatible

Intel: lot more instructions, many of which do complex operations
e.g., add two memory locations and store result in a third

PowerPC: fewer instructions that do simpler things, but faster
e.g., load, add, store to achieve same result

• how is the CPU connected to the memory and rest of machine?
– memory is the real bottleneck; memory is slow (70 nsec)

modern computers use a hierarchy of memories (caches) so that frequently
used information is accessible to CPU without going to memory

• what tricks do designers play to make it go faster?
– overlap fetch, decode, and execute so several instructions are in

various stages of completion (pipeline)
– do several instructions in parallel
– do instructions out of order to avoid waiting

• speed comparisons are very hard, not terribly meaningful

Caching: making things seem faster than they are

• cache: small very fast memory for recently-used information
– loads a block of info around the requested info

• CPU looks in the cache first, before looking in main memory
• CPU chip usually includes some cache ("L1" = level 1, ~ 16MB)
• CPU chip often includes L2 cache as well

– somewhat slower, usually much bigger (e.g., 512KB)
– may be a separate chip

• caching works because recently-used info is more likely to be
used again soon
– therefore more likely to be in the cache already

• cache usually loads nearby information at the same time
– nearby information is more likely to be used soon
– therefore more likely to be in the cache when needed

• this kind of caching is invisible to users
– except that machine runs faster than it would without

3

CPU block diagram (non-artist's conception)

Control unit

Registers

ALU

PC

memory

ALU = arithmetic/
logic unit

PC = program counter
= location of next instr

Cache

Caching is a much more general idea

• things work more efficiently if what we need is close
• if we use something now

– will use it again soon (time locality)
– or will use something nearby soon (space locality)

• other caches in computers:
– CPU registers
– L1 cache in CPU
– L2 cache in CPU
– RAM as a cache for disk or network or …
– disk as a cache for network
– network caches as a cache for faraway networks

• some are automatic, some are controlled by software, some
you have some control

4

Fundamental ideas

• von Neumann model
– general-purpose machine

change what it does by putting new instructions in memory
– instructions and data are in the same memory
– they are indistinguishable except by context

attributed to John von Neumann;
actually Eckert & Mauchly, in ENIAC

• Turing machines (Alan Turing, *38)
– all computers have exactly the same computational power
– though their performance will vary

Fabrication

• http://www.intel.com/education/teachtech/learning/chips
• grow layers of conducting material on a wafer of very pure

silicon
• each layer has intricate pattern of connections

– defined by chemical processes, mostly etching of unwanted material
• dice wafer into individual chips, put into packages

– yield is less than 100%, especially in early stages
• how does this make a computer?

– voltage on upper layer controls current on lower layer
– this is a transistor that acts as off-on switch

• how big? wire thickness today less than 1/10 micron
– 1 micron == 1/1000 of a millimeter
– human hair is about 100 microns

5

Moore's Law (Gordon Moore, founder & former CEO of Intel)

• computing power (roughly, number of transistors on a chip)
– doubles every 18 months
– and has done so since ~1961

– an aside on the Rule of 72
something that compounds at r percent doubles in 72/r periods
e.g., if you invest at 10% per year, your money will double in 7.2 years

• limits to growth
– fabrication plants now cost $2-4B
– line widths are nearing fundamental limits (10 more years?)
– complexity is increasing

Pentium bug
• maybe some other technology will come along

– atomic level; quantum computing
– optical
– biological

Wrapup on hardware

• CPU executes very simple instructions very quickly
– can change what it does next according to computed results

• instructions and data are stored in the same memory
– interpretation depends only on context

• same basic logical structure
– all have the same computing capabilities, differ only in performance
– many different physical structures
– one machine can simulate another machine

a program can simulate a machine

• Moore's Law: exponential increase in capabilities for 40+
years
– cheaper, faster, smaller, less power consumption per unit
– ubiquitous computers and computing

