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1. Introduction 

The dynamic stability of fluid-conveying pipes has been extensively studied in the past 40 years (see, e.g., the 

comprehensive book by Païdoussis [1]). In general, it has been established that if an initially straight pipe conveys 

inviscid fluid with a relatively low velocity, then each disturbance applied to that pipe causes vibration diminishing with 

the time. In this case, the initial equilibrium state of the pipe is referred to as a stable one. However, for fluid velocities 

higher than a certain value (called critical flow velocity) even small disturbances could result in vibration with larger 

and larger amplitudes. Under these circumstances, the pipe equilibrium state is referred to as an unstable one. 

Usually the pipes are supported at the ends but, for different reasons, they are often supported along the span too. From 

mathematical point of view, these internal supports could be described as a continuous foundation the pipe is resting on. 

Surprisingly, in spite of the intuitive expectation, it turns out that a foundation does not always stabilize a pipe. The 

same holds true with respect to the internal damping as well. 

In 1978, Becker, Haugher and Winzen [2] considered the dynamic stability of cantilevered viscoelastic pipes on 

foundations of constant modulus for several small mass ratios. Later, Lottati and Kornecki [3] studied the same problem 

but for all admissible values of the mass ratio and several different values of the internal damping coefficient. In these 

works, it has been established that Winkler foundations of constant modulus have a stabilizing effect, as expected (see 

also paper [4] by Doared and de Langre). However, the internal damping has been found to have either destabilizing or 

stabilizing effect on the pipe depending on the mass ratio. Elishakoff and Impolonia [5] and Djondjorov [6] have 

studied the dynamic stability of cantilevered pipes on foundations of constant modulus that support only a part of the 

pipe span. They have obtained that such foundations could either destabilize or stabilize the pipe depending on the 

position and length of the foundations. Djondjorov, Vassilev and Dzhupanov [7] and Djondjorov [8] have examined 

cantilevered pipes on Winkler foundations whose modulus is a certain sixth-, second- or first-order polynomial. They 

have concluded that all such foundations stabilize the pipe. Vassilev and Djondjorov [9] considered elastic cantilevered 

pipes on foundations whose modulus is a second-order polynomial vanishing at the pipe ends and found that such 

foundations destabilize the pipes. 

The aim of the present note is to analyse the effect of the internal damping on the dynamic stability of cantilevered 

viscoelastic pipes lying on the elastic foundations of Winkler type considered in [9]. The computational procedure used 

here is the one developed in [9] but modified to account for the internal damping. Using an appropriate Green function, 

a Volterra integral equation equivalent to the considered governing differential equation is derived. It is solved by the 

Neumann series method in Maple environment and is used to verify whether a frequency, obtained by the Galerkin 

computational procedure at given pipe parameters (flow velocity, mass ratio, internal damping and foundation 

parameters), corresponds to a sufficiently good approximate solution to the respective two-point boundary value 

problem. 

 

2. Governing Equations and Boundary Conditions 

The small transverse vibration of an initially straight viscoelastic pipe conveying inviscid fluid and lying on an elastic 

foundation of Winkler type is governed by the partial differential equation (see, e.g., [1-3,7]) 
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where u(z,τ ) denotes the transverse displacement of the pipe axis, z – the coordinate along this axis, τ – the time, E – 

Young's modulus of the pipe material, I – the inertia moment of the pipe cross-section, λ – the internal damping 

coefficient related to the viscosity of the pipe material, m and M – the masses per unit length of the pipe and the fluid, 

respectively, U – the flow velocity, and c(z) – the variable foundation modulus. 

Let L be the pipe length. Upon introducing the dimensionless parameters   
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where L is the pipe length, Eq. (1) takes the form 
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Let the pipe be of cantilevered type, i.e., its end x = 0 is fixed while the other one, x = 1, is free. Then, the boundary 

conditions read 
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The dynamic behaviour of a cantilevered fluid-conveying pipe is determined by the solutions of the boundary value 

problem (2), (3).  

Here, similarly to [9],  we look for the solutions of the BVP (2), (3) of the form 
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Substituting this expression into Eq. (2) and boundary conditions (3) one obtains the two-point boundary value problem 
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Approximate solutions to this problem are obtained using an appropriate modification of the methods in [9] in order to 

account for the internal damping coefficient.  

 

3. Integral equation 

Let us denote by G(x,ξ) the Green function satisfying the differential equation 
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and the boundary conditions (5) whose jump of the third derivative at x = ξ  is 1. It is a simple matter to find that this 

function is 
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Using the Green function (6), the solution to the two-point boundary value problem (4)-(5) reads 
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Integrating this expression twice by parts it is written as the classic Volterra equation of the second kind 
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where the kernel is 
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and the constants w2 and w3 are expressed in terms of the solution y(x) of form 
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Thus, the integral equation (7) with the kernel (8) and expressions (9)-(10) for w2 and w3 is equivalent to the two-point 

boundary-value problem (4)-(5). 

The dependence of w2 and w3 on y(x) is a feature of (7) that distinguished it from the classic Volterra equation of the 

second kind. In the present study, approximate solutions to (7) are obtained in the following manner. First, w2 and w3 

are regarded as given constants independent on y(x) and approximate solutions to the integral equation (7) are obtained 

by the Neumann series method. These solutions are linear functions of w2 and w3. Then, substituting these solutions in 

expressions (9)-(10) one gets to a system of form 
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admitting a nontrivial solution (w2,w3) if and only if  
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The expressions for aij depend on the frequency ω and all pipe parameters. Thus, given the values of the pipe 

parameters, the only unknown in (11) is the frequency ω. Solving (11) for ω one obtains the frequencies of the pipe 
under consideration and can deduce its stability. 

Finally, we would like to underline that the Neumann series method is point-wise convergent to the exact solution. 

Using this property of the Neumann series method, the results obtained by the Galerkin computational procedure are 

verified determining the corresponding approximate solutions to the integral equation (7). It turned out that the results 

by the 10-term Galerkin approximation provide an excellent agreement with the results by the integral equation (7). 

 

4. Numerical Results 

First, in order to test the aforementioned computational procedure, the critical flow velocities of several well-known 

problems concerning dynamic stability of cantilevered pipes without foundation have been determined. The results of 

our computations, shown in Fig. 1, are in an excellent agreement with the earlier results presented in [1] (Fig. 3.30) and 

[3] (Fig. 8) up to the limiting case β → 0 discussed in [9]. Let us recall that elastic pipes are considered in [9]. For such 
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pipes the critical flow velocity vcr depends only on the mass ratio β that is vcr = vcr(β). In this case it is established in [9] 
that the function vcr(β) is discontinuous at β  = 0 and the jump is 0.29. In the case under consideration here, the critical 

flow velocity vcr depends on the internal damping η as well, i.e., vcr = vcr(β,η). From theoretical point of view, it seems 

natural to study also the continuity of this function at β = 0, η = 0. Similarly to the finding in [9], the function vcr(β,η) 
turns out to be discontinuous at this point. Indeed, at β = 0, η → 0, η >0 the critical flow velocity tends to vcr = 3.30, 
whereas at β = 0, η = 0 it is vcr = 4.48. This jump 

 

18.130.348.4),0(lim),0( cr)0,0(cr =−=− >→ ηη ηη vv  

 

is even bigger than the jump in [9].  

 

  
 

 Fig. 1. Critical flow velocity vcr of a cantilevered pipe without foundation k = 0 as a function of the mass ratio β at the 
following four values of the internal damping coefficient η: (a) η = 0 (thick curve), η = 0.001 (curve 1), η = 0.01 (curve 

2), η = 0.1 (curve 3); (b) magnification of the domain marked by the dashed rectangle in figure (a). 

 

In order to clarify the behaviour of the function vcr(β,η) in a close neighbourhood of the point β = 0, η = 0 several cases 
of very small values of the parameters β and η have been examined. The results are shown in Fig. 2 (a). Observing this 

figure, one sees that the function vcr(β,η)  behaves quite strange -- for very small values of β and η it varies in the 

relatively large interval between 3.30 and 4.47. On the other hand, for values of β  greater than 0.001, the dependence 

of the critical flow velocities on the internal damping η, shown in Fig. 2 (b), is not so unusual. 
 

 

 

Fig. 2. (a) Values of the critical flow velocity vcr of a cantilevered pipe without foundation k = 0 at values η = 1E-20, 

1E-19, ..., 1E-1 of the internal damping coefficient at mass ratios β = 1E-18, 1E-17, ..., 1E-3 (from the very left 

broken line to the very right one, respectively); (b) critical flow velocity vcr of a cantilevered pipe without foundation k 

= 0 as a function of the internal damping coefficient η at mass ratios β = 0 (curve 1), β = 0.01 (curve 2), β =0.1 

(curve 3). 
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Consider now elastic foundations studied in  [9]. Their modulus is a second-order polynomial of the form 

 

k(x) = 4hx(1 – x), h = const, h > 0, 

 

i.e., it is a concave function with a maximal value h at the middle of the pipe span vanishing at the pipe ends.  

These foundations differ from those considered earlier in [7]. The purpose is to study the influence of such foundations 

on the dynamic stability of viscoelastic pipes. 

 

 

 

 
 

Fig. 3. Critical flow velocity vcr of a cantilevered pipe as a function of the foundation 

parameter h at values η = 0 (thick curve), η = 0.001 (curve 1), η = 0.01 (curve 2), η = 0.1 
(curve 3) of the internal damping coefficient at mass ratios: (a) β = 0.0001, (b) β = 0.04, (c) 

β = 0.1296, (d) β = 0.49. 
 

First, in order to study this influence for small β, the cases β = 0.0001 and β = 0.04 are considered. The results for four 
different values of the internal damping coefficient are shown in Figs. 3 (a) and 3 (b), respectively. Apparently, in the 

case η = 0.1 each foundation stabilizes the pipe, but in the other cases a foundation of small h destabilizes the pipe 

whereas foundations of larger h are stabilizing ones.  

Next, pipes of comparatively large mass ratio are considered. The results for pipes with β = 0.1296 are displayed in Fig. 
3 (c). It is seen that at the largest value of the internal damping coefficient η = 0.1 considered here all foundations have 
a strong stabilizing effect except for the crease in the vicinity of h = 500. Stabilizing effect is observed for η = 0.01 as 
well. It should be noted also that the curve corresponding to η = 0.001 contains an S-shaped domain in the interval 790 

≤ h ≤ 1170, similar to the S-shaped domain in the case of elastic pipe (η = 0) obtained in [9]. 
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Finally, the critical flow velocities for a pipe with β = 0.49 are displayed in Fig. 3 (d). It is seen that in the cases η = 
0.001 and η = 0.1 all foundations considered have a strong stabilizing effect. As for the case η = 0.01, only foundations 
such that 1060 < h < 1800 destabilize the pipe in the sense that the critical flow velocities for such values of the 

foundation parameter h are less than the critical flow velocity for h = 1060.  
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