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1. Introduction 

Fluid-conveying pipes are widely used in many industrial branches (nuclear power plants, chemical industry; ship, 

aircraft and space structures, long-distance pipelines, etc.). Sometimes, their role is simply to transport fluids. In other 

cases, they function as basic structural components as well. In both cases, however, the dynamic stability of the pipes is 

crucial for the proper operation of the entire equipment. 

Being acknowledged to be of such a significant importance, the dynamic stability of fluid-conveying pipes has been 

extensively studied in the past 40 years (see, e.g., the comprehensive book by Païdoussis [1] and the references therein). 

In general, it has been established that if an initially straight pipe conveys inviscid fluid with a relatively low velocity, 

then each disturbance applied to that pipe causes vibration diminishing with the time. In this case, the initial equilibrium 

state of the pipe is referred to as a stable one. However, for fluid velocities higher than a certain value (called critical 

flow velocity) even small disturbances could result in non-diminishing vibration or vibration with larger and larger 

amplitudes. Under these circumstances, the pipe equilibrium state is referred to as an unstable one.  

The dynamic stability of cantilevered pipes on Winkler foundations of constant modulus have been studied by Becker, 

Haugher and Winzen [2], Lottati and Kornecki [3] and Doare and de Langre [4]. In these works, it has been established 

that Winkler foundations of constant modulus have a stabilizing effect. Elishakoff and Impolonia [5] and Djondjorov 

[6] have studied the dynamic stability of cantilevered pipes on Winkler foundations of constant modulus that support 

only a part of the pipe span. They have obtained that such a foundation can either destabilize or stabilize the pipe 

depending on the position and length of the foundation. Djondjorov, Vassilev and Dzhupanov [7] and Djondjorov [8] 

have examined cantilevered pipes on Winkler foundations whose modulus is not constant. These authors have 

concluded that all such foundations stabilize the pipe. 

The present note is concerned with the dynamics and stability of cantilevered fluid-conveying elastic pipes lying on 

elastic foundations of Winkler type with variable modulus, which differ from those considered in [7] and [8]. The aim is 

to analyse the effect of the magnitude of the foundation modulus on the dynamic stability of the pipe. For that purpose, 

a computational procedure based on the Galerkin method is developed for determination of the eigenfrequencies of the 

pipes and the critical flow velocities. The results obtained are then verified by the shooting method used to solve the 

respective two-point boundary value problems and by a special technique based on reformulation of the problem in 

terms of Volterra integral equations. 

 

2. Basic Problem 

The small transverse vibration of an initially straight elastic pipe conveying inviscid fluid and lying on an elastic 

foundation of Winkler type is governed by the partial differential equation (see, e.g., [1-3, 7]) 
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where u(z,τ) denotes the transverse displacement of the pipe axis, z – the coordinate along this axis, τ – the time, E – 

Young's modulus of the pipe material, I – the inertia moment of the pipe cross-section, m and M – the masses per unit 

length of the pipe and the fluid, respectively, U – the flow velocity, and c(z) – the variable foundation modulus. 

Upon introducing the dimensionless parameters   
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where L is the pipe length, Eq. (1) takes the form 
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For a pipe of cantilevered type, i.e., its end x = 0 is fixed whereas the other one, x = 1, is free, the boundary conditions 

read 
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Thus, the dynamic behaviour of an initially straight elastic pipe conveying inviscid fluid with constant velocity and 

lying on an elastic foundation of Winkler type of variable modulus is determined by the solutions of the boundary value 

problem (2), (3).  

Here, we look for the solutions of the boundary value problem (2), (3) of the form 

( ) ( ).exp)(, txytxw ω=  

Substituting this expression into Eq. (2) and boundary conditions (3) one obtains the following two-point boundary 

value problem 
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Actually, this constitutes a non-self-adjoint eigenvalue problem, the eigenvalue parameter being the frequency ω.  
Here, this eigenvalue problem is solved by a standard Galerkin method, an N-term approximate solution to it being 

expressed as a linear combination of the first N well-known eigenfunctions of a cantilevered elastic pipe without flow 

and foundation, i.e., v = 0, k(x) = 0 (see [1, 7]). The eigenfrequencies are determined as the roots ωi (i = 1, 2,..., 2N) of a 
2Nth-order polynomial whose coefficients depend on β, v and some other parameters describing the foundation 

considered. The critical flow velocities are determined as the lowest values of v at which this polynomial has a root with 

non-negative real part, the rest of the pipe parameters being kept fixed. Once the values of a critical flow velocity and 

the corresponding eigenfrequency are obtained for a given number N, a Maple 9.5 implementation of the shooting 

method (package shoot) is applied to check the existence of a sufficiently accurate approximate solution to the 

respective boundary value problem. The results presented below are achieved using ten terms in the Galerkin 

approximation of the considered eigenvalue problems. The values of the critical flow velocities and the corresponding 

eigenfrequencies computed at this level of Galerkin approximation turned out to provide an excellent accuracy of the 

approximate solutions obtained then by the shooting method, namely: each such solution whose maximal norm is about 

one satisfies the equation and boundary conditions within an absolute error of order less than 10
-10
. 
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where c0, c1, c2, and c3 are arbitrary complex numbers, Eq. (4) can be reduced to the Volterra integral equation of 

second kind 
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For each combination of the complex numbers c0, c1, c2, c3, pipe parameters and frequency ω., using the recursion 
formula  
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one obtains a sequence ( )( )..,2,1=nxnϕ  of approximate solution of integral equation (7) that converges point-wise to 

the respective exact solution. Then, on the ground of formula (6), one can construct a sequence ( )( )..,2,1=nxyn  of 

approximate solution of differential equation (4) that also converges point-wise to its exact solution. Now, given an 
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approximate solution ( )xyn  and taking into account the boundary conditions (5), one is leaded to a certain matrix 

( )kvAij ,,, βω that should to be such that 

( ) ( )3,2,1,0,0,,, == jickvA jij βω , 

in order that boundary conditions (5) to be satisfied. Consequently, for a given set of values of the pipe parameters, the 

eigenfrequences ω are determined by the condition 

( ) 0det =ijA . 

The numerical results presented below are also verified using a Maple implementation of the above procedure.  

 

4. Numerical Results  
First, in order to test the aforementioned computational procedure, the critical flow velocities of several well-known 

problems concerning dynamic stability of cantilevered pipes without foundation have been determined. The results of 

our computations, shown in Fig.1, are in an excellent agreement with the earlier results presented in [1] (Fig.3.30) and 

[3] (Fig.8) up to the limiting case β → 0 to be discussed below.  

Let us first note that in the vicinity of β = 1, for 0.919 ≤ β ≤ 0.994, the 10-term Galerkin approximation, verified by the 

shooting method, predicts that the vcr curve contains an new S-shaped domain in addition to the ones presented in [1] 

(Fig.3.30) and [3] (Fig.8). This observation is in accordance with the remark in the Païdoussis' book [1], ''As β → 1, 

more and more S-shaped jumps are encountered''. On the other hand, Mukhin [9] has shown that at β = 1 the critical 
flow velocity tends to infinity. Let us recall that the so-called S-shaped domains are associated with an instability-

restabilization-instability sequence (see [1]). 

 

 

 
 

Fig. 1 Critical flow velocity vcr of a cantilevered pipe without foundation (k = 0) as a function of the mass ratio β. 
 

As for the vicinity of β = 0, the results of our computations shown in Fig.1 do not confirm the corresponding curve in 

[1, 3]. The matter is that for β < 0.01 this curve in [1, 3] is a straight horizontal line at value vcr = 4.18 but in the vicinity 
of β = 0 it turns rapidly upward and smoothly goes to vcr = 4.48 (see also formulae (16) in [3]). Our computations show 

that when β approaches zero with positive values the critical flow velocity is vcr = 4.19 and the respective curve in Fig.1 

never turns upward for β down to 10-24. Therefore, we can conclude that the limit value of the critical flow velocity 

when β → 0, β > 0 is vcr = 4.19, whereas at β = 0 it is known to be vcr = 4.48 (see [1, 3]). For pipes without foundation, 
the critical flow velocity depends only on the parameter β, that is vcr = vcr(β). Thus, it is established that the function 
vcr(β) is discontinuous at β = 0 and the jump is 

 

.29.019.448.4)(lim)0( cr)0,0(cr =−=− >→ βββ vv  

 

This observation contradicts the idea that the critical flow velocity smoothly tends to vcr = 4.48 when β → 0, β > 0. 
Consider now elastic foundations whose modulus is of the form 

 

k(x) = 4hx(1 – x), h = const, h > 0, 
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i.e., it is a concave function with a maximal value h at the middle of the pipe span vanishing at the pipe ends. These 

foundations differ from those considered earlier in [7] and [8]. The purpose is to study the influence of such foundations 

on the dynamic stability of elastic cantilevered pipes. 

First, in order to study this influence for small β, the cases β = 0.0001 and β = 0.04 are considered, the results being 
shown in Fig. 2 (a) and Fig. 2 (b).  

 

 

 
 

 
 

Fig. 2 Critical flow velocity vcr of a cantilevered pipe as a function of the foundation parameter h at the following values 

of the mass ratios: (a) β = 0.0001, (b) β = 0.04, (c) β = 0.1296, (d) β = 0.49. 
Apparently, foundations of small foundation parameter h destabilize the pipe whereas foundations of larger h are 

stabilizing ones. For instance, when β = 0.04, the elastic cantilevered pipe is destabilized for foundations with h < 4680, 
the maximal destabilization effect being achieved at h = 1220 where vcr = 3.75 that is about 85% of the critical flow 

velocity vcr = 4.39 at h = 0. Thus, due to the influence of an elastic foundation of variable modulus, the critical flow 

velocity of an elastic cantilevered pipe can be reduced with approximately 15% 

Next, pipes of comparatively large mass ratio are considered. The results for a pipe with β = 0.1296 are displayed in 
Fig. 2 (c). It is seen that the vcr curve contains an S-shaped domain in the interval 680 ≤ h ≤ 1600. Finally, the critical 

flow velocities for a pipe with β = 0.49 are displayed in Fig. 2 (d). It is established that all foundations considered have 
a strong stabilizing effect. 
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