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Abstract. The present paper is concerned with the geometric (point) Lie sym-
metry groups of the Willmore equation � the Euler-Lagrange equation associated
with the Willmore functional. The 10-parameter group of special conformal trans-
formations in 3-dimensional Euclidean space, which in known to be the symmetry
group of the Willmore functional, is recognized as the largest group of geometric
transformations admitted by the Willmore equation in Mongé representation. The
conserved currents of ten linearly independent conservation laws, which correspond
to the variational symmetries of the Willmore equation and hold on its smooth
solutions, are derived. All types of non-equivalent group-invariant solutions of the
Willmore equation are identi�ed, an optimal system of one-dimension subalge-
bras being given together with the invariants of the corresponding one-parameter
groups, up to one exception. Special attention is paid to the rotationally-invariant
(axially-symmetric) solutions.

1. Introduction

The so-called Willmore functional

(1) W =

Z

S
H2dA

which assigns to each surface S its total squared mean curvature H (here dA is
the area element on the surface) has drawn much attention after the publishing of
Willmore�s paper [18] in 1965. In this work, Willmore proposed to study the surfaces
providing extremum to the functional (1), which are now referred to as Willmore
surfaces. These surfaces obey the corresponding Euler-Lagrange equation

(2) ¢H + 2(H2 ¡ K)H = 0

which will be further referred to as the Willmore equation. Here ¢ is the Laplace-
Beltrami operator on the surface S and K is the Gaussian curvature of S. Ap-
parently, according to Thomsen [16], Schadow was the �rst who had derived this
equation in 1922 as the Euler-Lagrange equation for the variational problem

(3)
Z

S

µ
1

R1

¡ 1

R2

¶2
dA

where 1/R1 and 1/R2 are the two principal curvatures of the surface S. This varia-
tional problem is studied in Thomsen�s paper [16] devoted to the conformal geome-
try. There, a reference to the aforementioned (and probably unpublished) result by
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Schadow was given. Actually, the Lagrangian densities of the functionals (1) and
(3) are proportional up to the divergence term 2K and that is why they lead to the
same Euler-Lagrange equation.
The study of the extremals of functional (1), i.e. the Willmore surfaces, turned
out to be of great importance not only for di¤erential geometry (in connection with
the Willmore problem and conformal geometry) but also for the 2D string theory
and 2D gravity based on the Polyakov integral over surfaces (see [14]). In these
theories, functional (1) is known as the Polyakov�s extrinsic action. The properties
of the Polyakov�s extrinsic action as well as various generalizations, such as the
Polyakov-Kleinert rigid string action [15], [9]

(4) A =

Z

S

¡
αH2 + γ

¢
dA α, γ ¡ constant

for instance, have been studied in a number of papers (see the review paper [4]).
The functional (1) has found application in biophysics too. In Helfrich theory [5],
the bending energy of a homogeneous vesicle membrane is assumed to be given by
the functional

Fc = k

Z

S
H2dA+ ¹k

Z

S
KdA

where k and ¹k are real constants representing the bending and Gaussian rigidity of
the membrane. The equilibrium shape of the vesicle is supposed to be determined
by the extremals of the Helfrich curvature free energy (shape energy)

(5) F = k

Z

S
(H ¡ Hs)

2 dA+ ¹k

Z

S
KdA+ λ

Z

S
dA+¢p

Z
dV

where dV is the volume element, Hs, λ and ¢p are real constants and denote the so-
called spontaneous curvature, tensile stress and osmotic pressure di¤erence between
the outer and inner media. The corresponding Euler-Lagrange equation

(6) k¢H + 2k (H ¡ Hs) (2H
2 ¡ K) ¡ 2k (H ¡ Hs)

2H ¡ 2λH +¢p = 0

(derived in [20], [21]) is referred to as the Helfrich�s membrane shape equation. There
is a vast amount of papers in which the extremals of functional (5), i.e. the solutions
of equation (6) are studied (see e.g. [10], [22] and the references therein).

2. Willmore equation in Mongé representation

Let (x1, x2, x3) be a �xed right-handed rectangular Cartesian coordinate system in
the 3-dimensional Euclidean space R3 in which a surface S is immersed, and let this
surface be given by the equation

(7) S : x3 = w(x1, x2), (x1, x2) 2  ½R2

where w : R2 ! R is a single-valued and smooth function possessing as many
derivatives as may be required on the domain  . Let us take x1, x2 to serve as
Gaussian coordinates on the surface S. Then, relative to this coordinate system,
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the components of the �rst fundamental tensor gαβ, the second fundamental tensor
bαβ, and the alternating tensor εαβ of S are given by the expressions

(8) gαβ = δαβ + wαwβ, bαβ = g¡1/2wαβ, εαβ = g¡1/2eαβ

where

(9) g = det(gαβ) = 1 + (w1)
2 + (w2)

2

δαβ is the Kronecker delta symbol and eαβ is the alternating symbol. The contravari-
ant components gαβ of the �rst fundamental tensor read

(10) gαβ = g¡1δαβ + εαµεβνwµwν = g¡1
¡
δαβ + eαµeβνwµwν

¢
.

Here and in what follows: Greek indices have the range 1, 2, and the usual summa-
tion convention over a repeated index is employed, wα1...αk

(k = 1, 2, ...) denote the
k-th order partial derivatives of the function w with respect to the variables x1 and
x2, i.e.,

wα1α2...αk
=

∂ kw

∂xα1 ...∂xαk
, k = 1, 2, ...

The mean curvature H of the surface S and its Gaussian curvature K are given as
follows

(11) H =
1

2
gαβbαβ, K =

1

2
εαµεβνbαβbµν

that is,

(12) H =
1

2
g¡3/2

¡
δαβwαβ + eαµeβνwαβwµwν

¢
, K =

1

2
g¡2eαµeβνwαβwµν.

In the above Mongé representation the Willmore functional (1) reads
(13)

W =

Z Z



H2g1/2dx1dx2 =

Z Z



1

4
g¡5/2

¡
δαβwαβ + eαµeβνwαβwµwν

¢2
dx1dx2.

The application of the Euler operator

E =
∂

∂ w
¡ Dµ

∂

∂ wµ
+DµDν

∂

∂ wµν
¡ ¢¢¢

where

Dα =
∂

∂ xα
+ wα

∂

∂ w
+ wαµ

∂

∂ wµ
+ wαµν

∂

∂ wµν
+ wαµνσ

∂

∂ wµνσ
+ ¢¢¢

denote the total derivative operators, on the Lagrangian density

(14) L = H2g1/2 =
1

4
g¡5/2

¡
δαβwαβ + eαµeβνwαβwµwν

¢2

of the Willmore functional leads, after taking into account expressions (8), (9), (10)
and (12), to the expression

E(L) = ¢H + 2(H2 ¡ K)H.

Actually, in Mongé representation, the Willmore equation E(L) = 0 is to be regarded
as a fourth-order partial di¤erential equation in two independent variables x1, x2
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and one dependent variable w � the displacement �eld. This equation belongs to
the class of equations of the form

(15) E ´ 1

2
g¡1/2gαβgµνwαβµν +©(x1, x2, w, w1, . . . , w222) = 0

where ©(x1, x2, w, w1, . . . , w222) is a di¤erential function depending on the indepen-
dent and dependent variables and the derivatives of the dependent variable up to
third order. Indeed, using expressions (8), (9), (10) (12) and the well-known formula

¢ = g¡1/2
∂

∂xα

µ
g1/2gαβ ∂

∂xβ

¶
= gαβ ∂2

∂xα∂xβ
+ g¡1/2

∂

∂xα

¡
g1/2gαβ

¢ ∂

∂xβ

one can represent the Willmore equation (2) in the form (15).
It should be remarked that there are other equations of form (15) which have at-
tracted much attention in di¤erential geometry, theoretical physics and biology.
Among them are, for instance, the equations for the Willmore surfaces in the three-
dimensional sphere S3 and in three dimensional manifolds of constant negative cur-
vature (see [8]), the Euler-Lagrange equation for the Polyakov-Kleinert rigid string
action (4) and the Helfrich�s membrane shape equation (6).

3. Symmetry groups

The main objective of the present Section is to establish, following [12], [13] and
[7], the invariance properties of the Willmore equation (2) relative to local one-
parameter Lie groups of local point transformations acting on open subsets of the
3-dimensional Euclidean space R3, with coordinates (x1, x2, w), representing the
involved independent and dependent variables x1, x2 and w, respectively. For that
purpose Lie in�nitesimal technique is used and the results obtained are expressed
in terms of the in�nitesimal generators (operators) of the respective groups. In the
present case, the latter are vector �elds on R3 of the form

(16) v = ξµ ∂

∂xµ
+ η

∂

∂w

where ξµ and η are functions of the variables x1, x2 and w. The in�nitesimal criterion
of invariance

(17) pr(4)v (E) = 0 whenever E = 0
where pr(n)v denotes the n-th prolongation of the vector �eld v (see [12]), leads,
through the standard computational procedure (see, e.g. [13] or [12]), to the follow-
ing result.

Proposition 1. The 10-parameter Lie group GSCT of special conformal transfor-
mations in R3 (whose basic generators vj, j = 1 . . . 10, their characteristics, com-
mutators and corresponding � nite transformations and invariants are given in Table
1, Table 2 and Table 3 listed below) is the largest group of geometric transformations
of the involved independent and dependent variables that a generic equation of form
(15) could admit.
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Table 1. Generators and characteristics of the group of special conformal trans-
formations in R3. Here the following notations are used: χ1 = (x1)2 ¡ (x2)2 ¡ w2,
χ2 = (x2)2 ¡ (x1)2 ¡ w2 and χ3 = w2 ¡ (x2)2 ¡ (x1)2.

Generators Characteristics
translations
v1 =

∂
∂x1

Q1 = ¡ w1
v2 =

∂
∂x2

Q2 = ¡ w2
v3 =

∂
∂w

Q3 = 1

rotations
v4 = ¡ x2 ∂

∂x1
+ x1 ∂

∂x2
Q4 = x2w1 ¡ x1w2

v5 = ¡ w ∂
∂x1
+ x1 ∂

∂w
Q5 = x1 + ww1

v6 = ¡ w ∂
∂x2
+ x2 ∂

∂w
Q6 = x2 + ww2

dilatation
v7 = x1 ∂

∂x1
+ x2 ∂

∂x2
+ w ∂

∂w
Q7 = w ¡ x1w1 ¡ x2w2

inversions
v8 = χ1 ∂

∂x1
+ 2x1x2 ∂

∂x2
+ 2x1w ∂

∂w
Q8 = 2x

1w ¡ χ1w1 ¡ 2x1x2w2
v9 = 2x

2x1 ∂
∂x1
+ χ2 ∂

∂x2
+ 2x2w ∂

∂w
Q9 = 2x

2w ¡ 2x1x2w1 ¡ χ2w2
v10 = 2x

1w ∂
∂x1
+ 2x2w ∂

∂x2
+ χ3 ∂

∂w
Q10 = χ3 ¡ 2x1ww1 ¡ 2x2ww2

Table 2. Commutator table

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
v1 0 0 0 v2 v3 0 v1 2v7 ¡ 2v4 ¡ 2v5
v2 0 0 0 ¡ v1 0 v3 v2 2v4 2v7 ¡ 2v6
v3 0 0 0 0 ¡ v1 ¡ v2 v3 2v5 2v6 2v7
v4 ¡ v2 v1 0 0 ¡ v6 v5 0 ¡ v9 v8 0

v5 ¡ v3 0 v1 v6 0 ¡ v4 0 ¡ v10 0 v8
v6 0 ¡ v3 v2 ¡ v5 v4 0 0 0 ¡ v10 v9
v7 ¡ v1 ¡ v2 ¡ v3 0 0 0 0 v8 v9 v10
v8 ¡ 2v7 ¡ 2v4 ¡ 2v5 v9 v10 0 ¡ v8 0 0 0

v9 2v4 ¡ 2v7 ¡ 2v6 ¡ v8 0 v10 ¡ v9 0 0 0

v10 2v5 2v6 ¡ 2v7 0 ¡ v8 ¡ v9 ¡ v10 0 0 0

Here, the entry in row i and column j represents the commutator [vi,vj ].
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Table 3. Finite transformations and invariants. Here, the entries in the ��-
nite transformation" column give the transformed points exp (εvj) (x

1, x2, w) and
χ = r2 + w2.

Groups Finite Transformations Invariants
G (v1) (x1 + ε, x2, w) I1 = w, I2 = x2

G (v2) (x1, x2 + ε, w) I1 = w, I2 = x1,

G (v3) (x1, x2, w + ε) I1 = x1, I2 = x2

G (v4) (x1 cos ε ¡ x2 sin ε, x2 cos ε+ x1 sin ε, w) I1 = w, I2 = r

G (v5) (x1 cos ε ¡ w sin ε, x2, w cos ε+ x1 sin ε) I1 = (x
1)2 + w2, I2 = x2

G (v6) (x1, x2 cos ε ¡ w sin ε, w cos ε+ x2 sin ε) I1 = (x
2)2 + w2, I2 = x1

G (v7) (eεx1, eεx2, eεw) I1 =
w
x1

, I2 =
x2

x1

G (v8) ( x1¡εχ
1¡2εx1+ε2χ

, x2

1¡2εx1+ε2χ
, w
1¡2εx1+ε2χ

) I1 =
x2

χ
, I2 =

w
χ

G (v9) ( x1

1¡2εx2+ε2χ
, x2¡εχ
1¡2εx2+ε2χ

, w
1¡2εx2+ε2χ

) I1 =
x1

χ
, I2 =

w
χ

G (v10) ( x1

1¡2εw+ε2χ
, x2

1¡2εw+ε2χ
, w¡εχ
1¡2εw+ε2χ

) I1 =
x1

χ
, I2 =

x2

χ

Remark 1. Let us denote by LSCT the Lie algebra corresponding to the group
GSCT , i.e. LSCT is the 10-dimensional Lie algebra spanned by the vector � elds vj,
j = 1 . . . 10. Actually, the group GSCT is a representation of the Lie group O (4, 1)

in the vector space R3, which corresponds to the action of O (4, 1) on R3 determined
by the representation LSCT of its Lie algebra o (4, 1) in R3.

Proposition 2. In Mongé representation, the Willmore equation (2) admits all the
transformations of the group GSCT .

It should be noticed that the geometric symmetries of a system of partial di¤erential
equations equivalent to the Helfrich�s membrane shape equation (6), including the
Willmore equation (2) as a special case, are studied in [11]. It seems that the sym-
metry groups obtained in this paper can be interpreted as generalized symmetries
of the Willmore equation (2) in Mongé representation, but this matter remains to
be clari�ed.

4. Conservation laws

A particular interest exists for the variational symmetries of equation (2) � the Lie
groups generated by the so-called in�nitesimal divergence symmetries (see De�nition
4.33 in [12]) of any variational functional with (2) as the associated Euler-Lagrange
equation. Note that if two functionals lead to the same Euler-Lagrange equation,
then they have the same collection of in�nitesimal divergence symmetries. This in-
terest is motivated by the fact that, in virtue of Bessel-Hagen�s extension of Noether�s
theorem, each variational symmetry of a given self-adjoint equation corresponds to
a conservation law admitted by the smooth solutions of the equation. Thus, if a
vector �eld v of form (16) is found to generate a variational symmetry of equation
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(2), then Bessel-Hagen�s extension of Noether�s theorem implies the existence of a
conserved current, which, in the present case, is a couple of di¤erential functions
P α (i.e. functions depending on the independent and dependent variables and the
derivatives of the dependent variable) such that

(18) DαPα = QE(L)

where Q is the characteristic of the vector �eld v; by de�nition

(19) Q = η ¡ wµξ
µ.

The total divergence of the conserved current Pα vanishes on the smooth solutions
of equation (2) and so we have the conservation law

(20) DαP α = 0

(18) being its expression in characteristic form, and Q � its characteristic.
To derive the conservation laws of the foregoing type, one can proceed by �rst
determining the variational symmetries of the equation considered on the ground of
the invariance criterion

pr(2)v (L) + (Dµξ
µ)L = DµB

µ

where Bα are certain di¤erential functions. Then using their characteristics (19) to
�nd, from equality (18), explicit expressions for the corresponding conserved currents
P α. It is well-known (see [19]), that the Willmore functional (1) is invariant under
the conformal transformations of a closed surface S. This follows from the invariance
of the functional

(21)
Z

S

¡
H2 ¡ K

¢
dA

under the group of conformal transformations (see [17], [3]) and the Gauss-Bonnet
theorem which states that the area-integral over the Gaussian curvature is a topo-
logical invariant. All vector �elds vj, j = 1, . . . , 10 are variational symmetries of the
Willmore equation (2) and hence, ten linearly independent conservation laws

DαPα
j = 0, j = 1, . . . , 10

exist that hold on its smooth solutions. The corresponding conserved currents are

Pα
j = Nα

j L, j = 1, . . . , 7

Pα
8 = Nα

8 L ¡ Qα1, Pα
9 = Nα

9 L ¡ Qα2, Pα
10 = Nα

10L+
2p
g
δαµwµ

where

Nα
j = ξα

j ¡
1

2
QjDµ

∂

∂wαµ

¡ 1
2
QjDµ

∂

∂wµα

+
1

2
(DµQj)

∂

∂wαµ

+
1

2
(DµQj)

∂

∂wµα

are the so-called Noether operators (cf. [7]), corresponding to the vector �elds vj

with characteristics Qj , j = 1, . . . , 10, and

Qαβ = ¡ 2p
g
eαµeβνgµν.
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Note that

H = Dα

µ
1

2
p

g
δαµwµ

¶
, 4Hδαµwµ = DµQ

αµ.

5. Group-invariant solutions

Once a group G is found to be a symmetry group of a given di¤erential equation,
it is possible to look for the so-called group-invariant (G-invariant) solutions of
the equation � the solutions, which are invariant under the transformations of the
symmetry group G (see [12], [13]). The main advantage that one can gain when
looking for this kind of particular solutions of the given di¤erential equation consists
in the fact that each group-invariant solution is determined by a reduced equation
obtained by a symmetry reduction of the original one and involving less independent
variables than the latter. Let G (v) be a one parameter group generated by a vector
�eld v belonging to the Lie algebra LSCT , that is v is a linear combination of the
vector �elds vj, j = 1 . . . 10,

(22) v =
10X

j=1

cjvj

where cj, j = 1 . . . 10, are real numbers � the components of the vector �eld v
with respect to the basic vector �elds vj. Then, G (v) is a symmetry group of
the Willmore equation (2) and so one can seek the G (v)-invariant solutions of this
equation. For that purpose, �rst one should �nd a complete set of functionally
independent invariants of the group G (v). In the present case this is a set of two
functionally independent functions Iα (x

1, x2, w) such that

vIα = 0

the vector �eld v being regarded as an operator acting on the functions ζ : R3 ! R.
Then, if the necessary condition for the existence of group invariant solutions is
satis�ed, which in the present case means

(23) rank

µ
∂Iα

∂w

¶
= 1

one can seek the G (v)-invariant solutions in the form

(24) U = U (s) , U = I1, s = I2

where it is assumed that ∂I1/∂w 6= 0.
The complete sets of functionally independent invariants of the one-parameter groups
G (vj), generated by the basic vector �elds vj , j = 1 . . . 10, are given in Table 3.
Evidently, only the invariants of the group G (v3) do not satisfy the necessary con-
dition (23) for the existence of group-invariant solutions. The invariants of the rest
of the groups G (vj) can be used to construct the corresponding group-invariant
solutions.
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On the other hand, each vector �eld v of the form (22), i.e. v 2 LSCT , can be
mapped by a suitable inner automorphism (adjoint map) of the algebra LSCT (whose
adjoint representation is given in Table 4) to one of the following representatives of
conjugacy classes of one-dimensional subalgebras of the algebra LSCT :

hv1i , hv4i , hv4§v3i , hv7i , hv7 + a1v4i , hv7 + a2v4§v1i(25)

hv10i , hv10 + a3v4i , hv10 + a4v4§v3i , hv10 + a5v4 + a6v3§v1i

where a1 . . . a6 are real numbers.
In other words, the vector �elds (25) constitute an optimal system of one-dimensional
subalgebras and therefore the essentially di¤erent group-invariant solutions corre-
spond to the groups generated by the vector �elds (25). The invariants of the
groups generated by the vector �elds v1, v4, v7 and v10 are given in Table 3. In
Table 5 one can �nd the invariants of the groups generated by the rest of the vector
�elds of the optimal system (25) except for those corresponding to the vector �elds
v10 + a5v4 + a6v3§v1. These remain to be found.

Table 4. Adjoint representation. Here, the (i, j)-th entry gives the adjoint action
Ad(exp (εivi)) vj.

Ad% v1 v2 v3
v1 v1 v2 v3
v2 v1 v2 v3
v3 v1 v2 v3
v4 v1 cos ε+ v2 sin ε v2 cos ε ¡ v1 sin ε v3
v5 v1 cos ε+ v3 sin ε v2 v3 cos ε ¡ v1 sin ε

v6 v1 v2 cos ε+ v3 sin ε v3 cos ε ¡ v2 sin ε

v7 v1e
ε v2e

ε v3e
ε

v8 v1 + 2εv7 + ε2v8 v2 + 2εv4 ¡ ε2v9 v3 + 2εv5 ¡ ε2v10
v9 v1 ¡ 2εv4 ¡ ε2v8 v2 + 2εv7 + ε2v9 v3 + 2εv6 ¡ ε2v10
v10 v1 ¡ 2εv5 ¡ ε2v8 v2 ¡ 2εv6 ¡ ε2v9 v3 + ε2v7 + ε2v10

Ad% v4 v5 v6
v1 v4 ¡ εv2 v5 ¡ εv3 v6
v2 v4 + εv1 v5 v6 ¡ εv3
v3 v4 v5 + εv1 v6 + εv2
v4 v4 v5 cos ε+ v6 sin ε v6 cos ε ¡ v5 sin ε

v5 v4 cos ε ¡ v6 sin ε v5 v6 cos ε+ v4 sin ε

v6 v4 cos ε+ v5 sin ε v5 cos ε ¡ v4 sin ε v6
v7 v4 v5 v6
v8 v4 ¡ εv9 v5 ¡ εv10 v6
v9 v4 + εv8 v5 v6 ¡ εv10
v10 v4 v5 + εv8 v6 + εv9
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Ad% v7 v8 v9 v10
v1 v7 ¡ εv1 v8 ¡ 2εv7 + ε2v1 v9 + 2εv4 ¡ ε2v2 v10 + 2εv5 ¡ ε2v3
v2 v7 ¡ εv2 v8 ¡ 2εv4 ¡ ε2v1 v9 ¡ 2εv7 + ε2v2 v10 + 2εv6 ¡ ε2v3
v3 v7 ¡ εv3 v8 ¡ 2εv5 ¡ ε2v1 v9 ¡ 2εv6 ¡ 2ε2v2 v10 ¡ 2εv7 + ε2v3
v4 v7 v8 cos ε+ v9 sin ε v9 cos ε ¡ v8 sin ε v10
v5 v7 v8 cos ε+ v10 sin ε v9 v10 cos ε ¡ v8 sin ε

v6 v7 v8 v9 cos ε+ v10 sin ε v10 cos ε ¡ v9 sin ε

v7 v7 v8e
¡ε v9e

¡ε v10e
¡ε

v8 v7 + εv8 v8 v9 v10
v9 v7 + εv9 v8 v9 v10
v10 v7 + εv10 v8 v9 v10

Table 5. Functionally independent invariants.

Generator Sets of Functionally Independent Invariants fI1, I2g

v4§v3
I1 = w¨arctan

³
x2

x1

´

I2 = r

v7 + a1v4

I1 = we¡J2

I2 = arctan
³

a1x1+x2

x1¡a1x2

´
¡ a1 ln r

J2 =
1

1+a21

³
a1 arctan

³
a1x1+x2
x1¡a1x2

´
+ ln r

´

v7 + a2v4§v1

I1 = we¡J2

I2 = arctan
³

a2x1+x2

x1¡a2x2§1

´
¡

¡ a2 ln
p
(1 + a22) r

2§2 (x1 ¡ a2x2) + 1

J2 =
a2
1+a22

arctan
³

a2x1+x2

x1¡a2x2§1

´
+

+ 1
1+a22

ln
p
(1 + a22) r

2§2 (x1 ¡ a2x2) + 1

v10 + a3v4
I1 =

w
r2+w2

¡ 1
a3
arctan

³
x2

x1

´

I2 =
r

r2+w2

v10 + a4v4 + v3
I1 =

1
2
arctan

¡
2w

r2+w2¡1
¢
¡ 1

a4
arctan

³
x2

x1

´

I2 =
r

r2+w2+1

v10 + a4v4 ¡ v3
I1 =

1
2
arctanh

¡
2w

r2+w2+1

¢
¡ 1

a4
arctan

³
x2

x1

´

I2 =
r

r2+w2¡1

6. Willmore surfaces in revolution

In this Section we are looking for the rotationally-invariant solutions to the Willmore
equation (2), i.e. for its solutions of the form

w = w(r), r =
p
(x1)2 + (x2)2.
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Note that r and w are two functionally independent invariants of the operator v4
generating the one-parameter group of rotations admitted by the equation consid-
ered. After such a symmetry reduction, the Willmore equation (2) takes the form

R ´ (2 r3 + 4 r3 w2
r + 2 r3w4

r)wrrrr + (4 r2 + 8 r2w2
r + 4 r2w4

r ¡ 20 r3wrwrr

¡ 20 r3w3
rwrr)wrrr ¡ 5r2 (3wr + 3w3

r + r wrr ¡ 6 r w2
rwrr)w

2
rr(26)

+(r w6
r ¡ 2 r ¡ 3 r w2

r)wrr + 2wr + 7w
3
r + 9w5

r + 5w7
r + w9

r = 0

where

wr =
dw

dr
, wrr =

d2w

dr2
, wrrr =

d3w

dr3
, wrrrr =

d4w

dr4
.

At the same time, expressions (12) for the mean and Gaussian curvatures take the
form

(27) H =
1

2r

rwrr + w3
r + wr

(1 + w2
r)
3/2

, K =
1

r

wrrwr

(1 + w2
r)
2 .

The reduced Willmore equation (26) is the Euler-Lagrange equation for the func-
tional with Lagrangian density

LR =
1

4r

(rwrr + w3
r + wr)

2

(1 + w2
r)
5/2

.

Indeed, applying the Euler operator, which in this case reads

E =
∂

∂ w
¡ Dr

∂

∂ wr

+DrDr
∂

∂ wrr

¡ ¢¢¢

where

Dr =
∂

∂ r
+ wr

∂

∂ w
+ wrr

∂

∂ wr
+ wrrr

∂

∂ wrr
+ wrrrr

∂

∂ wrrr
+ ¢¢¢

to the di¤erential function LR one can easily check that E[LR] = R. The above
Lagrangian LR is independent of the variable w and so one can reduce its order by
one introducing the new dependent variable v = wr along vr = dv/dr and therefore

(28) ~LR =
1

4r

(rvr + v3 + v)
2

(1 + v2)5/2
.

The Euler-Lagrange equation for the functional with Lagrangian density (28) is

(29) E[ ~LR] =
G
r

¡
1 + v2

¢¡7/2
= 0

where

G = ¡ 2r2
¡
v2 + 1

¢
vrr + 5r

2vv2r ¡ 2r
¡
v2 + 1

¢
vr + v7 + 4v5 + 5v3 + 2v

and vrr = d2v/dr2. Then, every solution w(r) to the reduced Willmore equation
(26) corresponds to a solution v(r) of the second-order equation

(30) E[ ~LR] = λ, λ = constant
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and can be recovered by the quadrature

w(r) =

Z
v(r, λ)dr + C, C = constant.

In this sense, the fourth-order equation (26) is relegated to a second-order one.
In the special case λ = 0, equation (30) coincides with (29) and may be written in
the form

(31) G = ¡ 2r2
¡
v2 + 1

¢
vrr + 5r

2vv2r ¡ 2r
¡
v2 + 1

¢
vr + v7 + 4v5 + 5v3 + 2v = 0

since (1/r) (1 + v2)
¡7/2 6= 0. Equation (31) is scaling-invariant and hence under the

change of the variables

v = y, ρ = ln r, Y =
dρ

dy
transforms into the �rst order equation

dY

dy
+
1

2

y7 + 4y5 + 5y3 + 2y

y2 + 1
Y 3 +

5

2

y

y2 + 1
Y = 0.

This is a Bernoulli-type equation which can be integrated by quadratures and its
general solution is

(32) Y (y) =§ 1

(y2 + 1)
q

y2 + A
p

y2 + 1
, A = constant.

Now, going back to the variables r and v we can express the general solution of the
equation E[~LR] = 0 in terms of the relation

(33) r = R exp

Ã
§

Z
dv

(v2 + 1)
p

v2 +A
p

v2 + 1

!
, R = constant > 0.

In the case A = 0, we get spheres

v =§ rp
R2 ¡ r2

, w =¨
p

R2 ¡ r2 + C, H =¨1
R

, K =
1

R2

and catenoids

v =§ Rp
r2 ¡ R2

, w = R ln
³
r§

p
r2 ¡ R2

´
+ C, H = 0, K = ¡ R2

r4
.

The integral in (33) can be written in terms of the Jacobian elliptic functions and
the elliptic integral of the third kind ¦ (ϕ, n, k) as follows (for more details cf. [6]
and the Appendix) Z

dv

(v2 + 1)
p

v2 +A
p

v2 + 1
=

(
I+ (v) when A = +4/a2 > 0, jvj < 2

p
2 +

p
a2 + 4/a2

I¡ (v) when A = ¡ 4/a2 < 0, jvj > 2
p
2 +

p
a2 + 4/a2

where

I+ (v) =
a

(a2 + 4)1/4

"
u+ ¡

4p
a4 + 4 + a2 + 2

¦

Ã
am(u+, k),

p
a4 + 4 + a2p

a4 + 4 + a2 + 2
, k

!#
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I¡ (v) =
a

(a2 + 4)1/4

"
u¡ ¡

2 (
p
4 + a4 ¡ a2)p

a4 + 4 ¡ a2 + 2
¦

µ
am(u¡ , k),

2p
a4 + 4 ¡ a2 + 2

, k

¶#

u+ = cn
¡1
Ã
(
p
1 + v2 ¡ 1)

p
2

v
pp

a4 + 4 + a2
, k

!
, u¡ = cn

¡1
Ã

v
pp

a4 + 4 ¡ a2

(
p
1 + v2 ¡ 1)

p
2
, k

!

and

k =

s
a2 +

p
a4 + 4

2
p

a4 + 4
.

Then, relation (33) becomes

(34) r(v) =

(
R exp f§I+ (v)g if A = +4/a2 > 0, jvj < 2

p
2 +

p
a2 + 4/a2

R exp f§I¡ (v)g if A = ¡ 4/a2 < 0, jvj > 2
p
2 +

p
a2 + 4/a2.

The above results can be formulated in another form. Consider the following normal
system of two ordinary di¤erential equations

dw

dr
= v(35)

dv

dr
= §1

r

¡
v2 + 1

¢q
v2 +A

p
v2 + 1

which is equivalent to the single second-order equation

(36)
d2w

dr2
§1

r

"µ
dw

dr

¶2
+ 1

# vuut
µ
dw

dr

¶2
+A

sµ
dw

dr

¶2
+ 1 = 0.

The substitution (35) into the expression R leads to R = 0 and thus shows that
each solution of system (35) or equation (36) is a solution of the reduced Willmore
equation (26). In this way, we have obtained a special class of solutions to equation
(26), i.e. a special class of Willmore surfaces. Substituting (35) into expressions
(27) one can see that the mean and Gaussian curvatures of a surface belonging to
this special class are given as follows

(37) H =
1

2r

v§
p

v2 +A
p

v2 + 1p
v2 + 1

, K =§1
r2

v

v2 + 1

q
v2 +A

p
v2 + 1

where v is any solution of system (35). These functions are depicted in Fig.1 using
the explicit expressions (34). Various branches shown there correspond to the di¤er-
ent choices of the signs of A (sub-index) and that ones in (37) (upper-index). The
above curves are obtained with R = a = 1. Integrating (numerically) the system
(35) one can �nd the pro�le curves of the Willmore surfaces shown in Fig.2. Again,
various branches correspond to the di¤erent choices of the signs of A (sub-index)
and the exponent (upper-index) in (33) which are coherent with the respective signs
in (35) and (37). The concrete curves are obtained with the same values of the
parameters R and a chosen to produce Fig.1.
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Figure 1: The mean H and Gaussian K curvatures as functions of r. Various
branches correspond to the di¤erent choices of signs of A (sub-index) and that ones
in (37) (upper-index). The above curves are obtained with R = a = 1

Figure 2: Pro�le curves (on the left) and their slopes (on the right). Various branches
correspond to the di¤erent choices of signs of A (sub-index) and the exponent (upper-
index) in (33) which are in agreement with the signs in (35) and (37). Curves are
drawn with R = a = 1

7. Concluding remarks

In this paper, Lie transformation group methods have been applied to the class of
nonlinear fourth-order partial di¤erential equations (15). This class of equations is
of interest in di¤erential geometry, mathematical biophysics and string theory since
it comprises, for instance, the Willmore equation, the Helfrich�s membrane shape
equation, the �eld equations associated with the Polyakov-Kleinert rigid string ac-
tion and their generalizations. The standard computational procedure shows that
the 10-parameter Lie group GSCT of special conformal transformations in R3 is the
largest group of geometric transformations of the involved independent and depen-
dent variables that a generic equation of form (15) could admit. In this way, the
group GSCT , which in known to be the symmetry group of the Willmore functional,
is recognized to be the largest group of geometric transformations admitted by the
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Willmore equation (2) in Mongé representation. These results are presented in Sec-
tion 2. In Section 3, the conserved currents of ten linearly independent conservation
laws, which correspond (by virtue of Bessel-Hagen�s extension of Noether�s theorem)
to the symmetries of the Willmore equation, are derived in explicit form. In Section
4, a classi�cation of the group-invariant solutions of the Willmore equation provided
by an optimal system of one-dimension subalgebras of the symmetry algebra LSCT

is presented. The invariants of the corresponding one-parameter groups are found
(up to one exception) and listed so as to be readily applicable for constructing the
respective group-invariant solutions of the Willmore equation.

Appendix A. Elliptic Functions and Integrals

Standard integration techniques allow us to �nd closed form expressions (in terms
of trigonometric functions, exponentials and logarithms) for any integral of the form

(38)
Z

R(z,w)dz, w2 = P (z)

where R(z, w) is a rational function and P (z) is a linear or quadratic polynomial.
However, if we wish to handle polynomials of higher degree and in particular, when
P (z) is cubic or quartic, then the required functions are called elliptic functions. It
is easy to prove that every integral of the form (38), where P (z) is a third or a fourth
degree polynomial, can be reduced to a linear combination of integrals leading to
elementary functions and the following three integrals which are called respectively
elliptic integrals of the �rst, second, and third kind

Z
dzp

(1 ¡ z2)(1 ¡ k2z2)
,

Z p
1 ¡ k2z2p
1 ¡ z2

dz,

Z
dz

(1 ¡ nz2)
p
(1 ¡ z2)(1 ¡ k2z2)

.

Here the number k is called the modulus of these integrals and the number n is
called the parameter of the integral of the third kind. By means of the substitution
z = sinϕ, the above elliptic integrals can be reduced to their normal trigonometric
form

Z
dϕp

1 ¡ k2 sin2 ϕ
,

Z q
1 ¡ k2 sin2 ϕdϕ,

Z
dϕ

(1 ¡ n sin2 ϕ)
p
1 ¡ k2 sin2 ϕ

.

The corresponding de�nite elliptic integrals (when the lower limit of integration is
taken to be zero) are denoted respectively as

(39)

sinϕZ

0

dzp
(1 ¡ z2)(1 ¡ k2z2)

=

ϕZ

0

dαp
1 ¡ k2 sin2 α

= F (ϕ, k)

(40)

sinϕZ

0

p
1 ¡ k2z2p
1 ¡ z2

dz =

ϕZ

0

p
1 ¡ k2 sin2 αdα = E(ϕ, k)
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and

sinϕZ

0

dz

(1 ¡ nz2)
p
(1 ¡ z2)(1 ¡ k2z2)

=

ϕZ

0

dα

(1 ¡ n sin2 α)
p
1 ¡ k2 sin2 α

= ¦ (ϕ, n, k).

These integrals are called also incomplete elliptic integrals of the �rst, second and
third kind respectively. When the upper limit of integration ϕ for the integrals in
(39) and (40) is chosen to be π/2 they are called complete elliptic integrals of the
�rst, second and third kind and are denoted as

(41) K(k) = F (π/2, k) E(k) = E(π/2, k)and ¦ (n, k) = ¦ (π/2, n, k).

The inverse functions of the elliptic integrals are called elliptic functions. E.g., if

(42) u = F (ϕ, k) =

ϕZ

0

dαp
1 ¡ k2 sin2 α

is the incomplete elliptic integral of the �rst kind, then ϕ is called the amplitude of
u and denoted (following Jacobi) as

(43) ϕ = am(u, k).

The Jacobian elliptic functions are introduced via (43) and the following formulas

sn(u, k) = sinϕ = sin am(u, k)

cn(u, k) = cosϕ = cos am(u, k)(44)

dn(u, k) =

q
1 ¡ k2 sin2 ϕ =

p
1 ¡ k2sn2(u, k).

It should be noted that while am(u, k) is the inverse function of u = F (ϕ, k), the
inversion of

(45) u = F (z, k) =

zZ

0

dζq
(1 ¡ ζ2)(1 ¡ k2ζ2)

is furnished by sn(u, k), i.e., one has F (sn(u, k), k) = u.
More details about elliptic integrals and functions can be found in [6] and [2] and
references therein.
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