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Abstract. The membrane shape equation [7, 8] describes the equilibrium
shapes of a biomembrane, assumed as a bilayer of amphiphilicmolecules,
in terms of the mean and Gaussian curvatures of its middle-surface. In the
present work, a new class of translationally-invariant solutions to this equa-
tion in elliptic functions is presented which completes thesolutions obtained
earlier in [4, 5, 9, 10, 11]. With this, all translationally-invariant solutions
to the membrane shape equation are determined. Special attention is paid to
those translationally-invariant solutions of the membrane shape equation that
determine closed cylindrical (tube-like) surfaces (membrane shapes). Several
examples of such surfaces are presented.

1. Introduction

Within the framework of the Helfrich spontaneous curvature model [3], theequi-
librium shapes of a biomembrane, assumed as a bilayer of amphiphilic molecules
(phospholipids, for instance), are described in terms of the meanH and Gaussian
K curvatures of its middle-surfaceS by the membrane shape equation [7, 8]

2kc∆H + kc (2H + Ih) (2H2 − IhH − 2K) − 2λH + p = 0 (1)

wherekc, Ih andλ are real constants representing the bending rigidity, spontaneous
curvature and tensile stress of the membrane, respectively, whilep is the osmotic
pressure difference between the outer and inner media assumed to be a real constant
too. Here,∆ is the Laplace-Beltrami operator on the surfaceS.
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In a previous study by the present authors (see [10]), it is establishedthat the
six-parameter group of motions in the three dimensional Euclidean space is the
largest group of point transformations admitted by the membrane shape equation
in Mongé representation. In that work, all types of non-equivalent group-invariant
solutions of this equation are identified via an optimal system of one-dimensional
subalgebras of the symmetry algebra and the corresponding reduced equations are
derived. In [10], special attention is paid to the translationally-invariant solutions
of the membrane shape equation assuming that the osmotic pressure difference
p 6= 0 since the casep = 0 is thoroughly studied elsewhere (see [4, 5, 9, 11]).
All translationally-invariant solutions of the membrane shape equation that are ex-
pressed in elementary functions as well as a class of such solutions that are given
in terms of elliptic functions are obtained in [10]. The aim of this study is to deter-
mine all other translationally-invariant solutions of the membrane shape equation
in Mongé representation.

2. Translationally-Invariant Solutions

In [10], it is shown that the translationally-invariant solutions of the membrane
shape equation (1) in Mongé representation correspond to cylindrical surfaces in
R

3 whose directrices are plane curvesΓ of curvatureIk(s) = 2H(s) that satisfies
the equation

2
d2Ik

ds2
+ Ik3 − µIk − σ = 0 (2)

where

µ = Ih2 +
2λ

kc

, σ = −2p

kc

s being the arc length of the respective curveΓ. The generatrices of the foregoing
cylindrical surfaces are perpendicular to the plane the directricesΓ lie in. Once a
solutionIk(s) of equation (2) is known in an explicit form, it is possible to recover
the embeddings 7−→ (x(s), y(s)) of corresponding curveΓ in the planeR2(x, y)
(up to a rigid motion) by solving the system

dx (s)

ds

d2y (s)

ds2
− d2x (s)

ds2

dy (s)

ds
= Ik(s)

(3)
(

dx (s)

ds

)2

+

(

dy (s)

ds

)2

= 1.

Thus, the main problem to solve is to find the solutions of equation (2).

This equation is studied by Arreagaet al [1] with the aim to determine the equilib-
ria of an elastic loop in the plane subject to the constraints of fixed length and fixed
enclosed area. In the three dimensional case considered here, each such loop will
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determine a directrixΓ of a cylindrical surface that corresponds to a translationally-
invariant solution of the membrane shape equation. In [1], the determination of the
curvatureIk at equilibrium is reduced to the study of the motion of a particle in a
quartic potential. Indeed, equation (2) is the Euler-Lagrange equation associated
with the functional

F (Ik) =

∫

(T − U) ds, T =
1

2

(

dIk

ds

)2

, U =
1

8
Ik4 − 1

4
µIk2 − 1

2
σIk

in which Ik, T andU can be thought of as the displacement, kinetic energy and
potential energy, respectively, of some fictitious particle. In this setting,s plays
the role of the time. Using this analogy, the authors succeeded in obtaining a
purely geometric construction for determination of the curvature of the loop pass-
ing through a given point of the plane without a reference to explicit expressions
for the solutions of equation (2).

However, in our opinion, the knowledge of the solutions of this equation in an
explicit form is an important and powerful tool in determination of the surfaces
that are translationally-invariant solutions of the membrane shape equation.For
this reason, the authors determined some explicit solutions in the previous study
[10] and complete this problem here.

Evidently, equation (2) admits the one-parameter group of translations of theinde-
pendent variables as a variational symmetry group. Hence, by virtue of Noether’s
theorem, there is a conservation law of densityE = T + U , further referred to as
the total energy, that is a first integral

dE

ds
= 0 (4)

that holds on its smooth solutions. In characteristic form (see [6]), the above con-
servation law reads

dE

ds
=

1

2

dIk

ds

(

2
d2Ik

ds2
+ Ik3 − µIk − σ

)

.

Therefore, each solutionIk = Ik(s) of an equation of form (2), which is not iden-
tically a constant, corresponds to a certain real value of the total energyE, and
satisfies the equation

(

dIk

ds

)2

− P (Ik) = 0, P (Ik) = 2E − 1

4
Ik4 +

1

2
µIk2 + σIk. (5)

Evidently, bearing in mind that the coefficients of the polynomialP (Ik) are real
numbers, the foregoing value of the total energyE is such that the polynomial
P (Ik) has et least two different real roots, otherwise the functionP (Ik(s)) could not
take non-negative values as required by relation (5). In the light of the above, there
are only two possibilities for the roots of the polynomialP (Ik), namely: (I) the
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four roots are real; (II) two of the roots are real and the other two are acomplex
conjugate pair. Now, denoting byα, β, γ andδ the roots of the polynomialP (Ik)
and specializing to the cases, in whichP (Ik) has simple roots, without loss of
generality, in the first case one may considerα < β < γ < δ and in the second
one –α, β ∈ R, α < β andγ, δ ∈ C\R, δ = γ̄. Thus, the polynomialP (Ik) is
nonnegative in the intervalsα ≤ Ik ≤ β andγ ≤ Ik ≤ δ, in case (I), and in the
intervalα ≤ Ik ≤ β, in case (II).

All solutions of equation (2) corresponding to multiple roots of the polynomial
P (Ik) are expressed in elementary functions and presented in [10]. That is why,
only the cases, in whichP (Ik) has simple roots are considered here.

It should be noted that the rootsα, β, γ and δ of the polynomialP (k) can be
expressed through its coefficientsµ, σ andE as follows

α =
√

Ω
2 +

√

µ + σ
√

2
Ω − Ω

2

β =
√

Ω
2 −

√

µ + σ
√

2
Ω − Ω

2

γ = −
√

Ω
2 +

√

µ − σ
√

2
Ω − Ω

2

δ = −
√

Ω
2 −

√

µ − σ
√

2
Ω − Ω

2

where

Ω =
(µ + 3

√
κ)

2 − 233E

3 3
√

κ

κ = 3
(

32σ2 +
√

χ
)

− µ
(

µ2 + 2332E
)

χ = 3

(

23E

(

(

µ2 + 8E
)2

− 322µσ2
)

− σ2
(

2µ3 − 33σ2
)

)

.

By Vieta’s formulas we also have

µ = −1

2
(αβ + αγ + αδ + βγ + βδ + γδ)

σ =
1

4
(αβγ + αβδ + αγδ + βγδ) (6)

E = −1

8
αβγδ.

and
α + β + γ + δ = 0. (7)

due to the absence of a term withIk3 in the polynomialP (Ik). The conditionσ 6= 0
implies

α + β 6= 0, α + γ 6= 0, β + γ 6= 0. (8)
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3. New Explicit Solutions

Explicit expressions for the solutions of equation (2) are given in Lemma 1 and
Lemma 2 for cases (I) and (II), respectively. Lemma 3 shows that any other peri-
odic solution to equation (2) coincides (up to a shift of the independent variable)
with one of these solutions.

Lemma 1. Givenµ andσ, let E be such that the rootsα, β, γ andδ of the corre-
sponding polynomialP (Ik) are real numbers ordered as follows:α < β < γ < δ.
Consider the functions

Ik (s) = δ − (δ − α) (δ − β)

(δ − β) + (β − α) sn (us, k)2
(9)

Ik (s) = β +
(γ − β) (δ − β)

(δ − β) − (δ − γ) sn (us, k)2
(10)

of the real variables in which the parameteru and the elliptic modulek are given
by the formulae

u =
1

4

√

(γ − α) (δ − β), k =

√

(β − α) (δ − γ)

(γ − α) (δ − β)
. (11)

Then, both functions (9) and (10) are real-valued, they are periodic withperiod
(2/u) K (k) and satisfy equation (2).

Proof. It is easy to see that the conditionα < β < γ < δ ∈ R and expressions
(11) imply u ∈ R and0 < k < 1. Therefor, both functions (9) and (10) are
real-valued. Evidently, these functions are periodic due to the fact that the function
sn (us, k)2 is periodic with period(2/u)K (k). Finally, substituting each of the
above functions into equation (2), one can easily verify that they satisfy it.

Lemma 2. Givenµ and σ, let E be such that two roots,α and β, of the corre-
sponding polynomialP (Ik) are real numbers ordered as follows:α < β, and the
other two roots,γ andδ, are a complex conjugate pair, that isδ = γ̄. Consider the
function

Ik (s) =
(Aβ + Bα) + (Aβ − Bα) cn(us, k)

(A + B) + (A − B) cn(us, k)
(12)

of the real variables in which the parametersA, B, u and the elliptic modulek
are given by the formulae

A =
√

4η2 + (3α + β)2, B =
√

4η2 + (α + 3β)2. (13)

u =
1

4

√
AB, k =

√

1

2
− 4η2 + (3α + β) (α + 3β)

2AB
(14)
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whereη = (γ − γ̄)/2i. Then, this function takes real values, it is periodic with
period(4/u) K (k) and satisfies equation (2).

Proof. Evidently, in this case, the conditionα < β ∈ R and expressions (14) and
(13) implyu ∈ R and0 < k < 1. Hence, function (12) is real-valued. Obviously,
this function is periodic because the functioncn (us, k) is periodic with period
(4/u) K (k). Finally, substituting the above function into equation (2), one can
easily verify that the latter equation is satisfied.

Lemma 3. Givenµ, σ and E, let Iki (s) (i = 1, 2) be two periodic real-valued
functions of the real variables with periodsTi, respectively. Let

dIki(s)

ds
=
√

P (Iki(s)), s ∈ Ii ≡
[

0,
Ti

2

]

anda = Ik1(0) = Ik2(0) is the minimum value of both functions. Then,

Ik1(s) = Ik2(s).

Proof. Obviously the functionsIki (s) are invertible fors ∈ Ii, respectively. Let us
denote the corresponding inverse functions byIk−1

i
(Ik). Then, differentiating the

relations
s = Ik−1

i
(Ik) = Ik−1

i
(Iki (s))

one can see that for eachIk ∈ (a, b) whereb = min(Ik1(
T1

2 ), Ik2(
T2

2 ))

dIk−1
i

(Ik)

dIk
=

1
√

P (Ik)
.

Thus, forIk ∈ (a, b)
d

dIk
(Ik−1

1 (Ik) − Ik−1
2 (Ik)) = 0

and therefore there exists a real constants0 such that

Ik−1
2 (Ik) = Ik−1

1 (Ik) + s0.

So,
Ik−1

2 (Ik1(s)) = Ik−1
1 (Ik1(s)) + s0 = s + s0, s ∈ min(I1, I2)

and hence
Ik1(s) = Ik2(s + s0), s ∈ min(I1, I2).

For s = 0 this impliesIk2 (s0) = Ik1(0) = Ik2 (0) which means thats0 is a period
of the functionIk2(s) and hence the above relation reads

Ik1(s) = Ik2(s), s ∈ R

which completes the proof.
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4. Curves and Membrane Shapes

Now, having obtained the solutions of equation (2) in explicit form, one can pro-
ceed with constructing the corresponding curvesΓ in the planeR2(x, y) by solving
system (3). Thus, givenµ, σ and a solutionIk = Ik (s) of the corresponding equa-
tion (2), without loss of generality, one can represent system (3) in the form

ϕ (s) =

∫

Ik(s)ds,
dx (s)

ds
= cos (ϕ (s)) ,

dy (s)

ds
= sin (ϕ (s)) . (15)

Then, using the results presented in [1, 2], which can be cast in the form

x (s)
dx (s)

ds
+ y (s)

dy (s)

ds
=

2

σ

dIk (s)

ds

x (s)
dy (s)

ds
− y (s)

dx (s)

ds
=

1

σ

(

Ik (s)2 − µ
)

and taking into account relations (15), to write down the explicit expressions

x (s) =
2

σ

dIk (s)

ds
cos (ϕ (s)) +

1

σ

(

Ik (s)2 − µ
)

sin (ϕ (s)) (16)

y (s) =
2

σ

dIk (s)

ds
sin (ϕ (s)) − 1

σ

(

Ik (s)2 − µ
)

cos (ϕ (s))

for the components of the position vector of the corresponding curveΓ. Computing
the integral in (15) one obtains

ϕ (s) = δs − δ − α

u
Π

(

β − α

β − δ
, am(us, k), k

)

(17)

ϕ (s) = βs − β − γ

u
Π

(

δ − γ

δ − β
, am(us, k), k

)

(18)

ϕ (s) =
Aβ − Bα

A − B
s +

(A + B) (α − β)

2u (A − B)
Π

(

−(A − B)2

4AB
, am (us, k) , k

)

−

− α − β

2u
√

k + (A−B)2

4AB

arctan





√

k +
(A − B)2

4AB

sn (us, k)

dn (us, k)



 (19)

for the solutions of form (9), (10) and (12), respectively. Thus, given a solution of
form (9) or (10), one can draw the corresponding curve substituting the respective
angle (17) or (18) in the expressions for the components of the position vector (16).
Closed curves are achieved if there exist integersm andn such that

δ

u
K (k) +

α − δ

u
Π

(

α − β

δ − β
, k

)

=
πm

n

β

u
K (k) +

γ − β

u
Π

(

γ − δ

β − δ
, k

)

=
πm

n
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Figure 1. Closed self-intersecting curves and cylindrical surfacesob-
tained by the solution (9) corresponding toµ = 11.82, σ = −13.3.

2 (Aβ − Bα)

u (A − B)
K (k) +

(A + B) (α − β)

u (A − B)
Π

(

−(A − B)2

4AB
, k

)

=
πm

n

for the solutions of form (9), (10) and (12), respectively.

Several examples of closed curvesΓ corresponding to solutions of form (9) and
(10) of equation (2) with coefficientsµ = 11.82 andσ = −13.3 are presented in
Fig. 1 and Fig. 2. It is worthy to underline that in this case, two distinct curves
correspond to the same value of the total energyE.

Other examples of closed curvesΓ corresponding to solutions of form (12) of
equation (2) with coefficientsµ = −1 andσ = 1/2 are presented in Fig. 3.
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