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Abstract. The membrane shape equation [7, 8] describes the equitibriu
shapes of a biomembrane, assumed as a bilayer of amphiptalecules,

in terms of the mean and Gaussian curvatures of its middfeei In the
present work, a new class of translationally-invariantisohs to this equa-
tion in elliptic functions is presented which completes sb&utions obtained
earlier in [4, 5, 9, 10, 11]. With this, all translationaligvariant solutions
to the membrane shape equation are determined. Specigti@ttés paid to
those translationally-invariant solutions of the memierahape equation that
determine closed cylindrical (tube-like) surfaces (meanlershapes). Several
examples of such surfaces are presented.

1. Introduction

Within the framework of the Helfrich spontaneous curvature model [3]ethe-
librium shapes of a biomembrane, assumed as a bilayer of amphiphilic molecules
(phospholipids, for instance), are described in terms of the niBand Gaussian

K curvatures of its middle-surfacg by the membrane shape equation [7, 8]

2k AH + k. (2H +Th) (2H> —ThH —2K) —2)\H +p =0 (1)

wherek,., Th and ) are real constants representing the bending rigidity, spontaneous
curvature and tensile stress of the membrane, respectively, wtilthe osmotic
pressure difference between the outer and inner media assumed t@bemstant

too. Here A is the Laplace-Beltrami operator on the surface
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In a previous study by the present authors (see [10]), it is establigtzdhe
six-parameter group of motions in the three dimensional Euclidean space is the
largest group of point transformations admitted by the membrane shapioequa
in Mongé representation. In that work, all types of non-equivalemtigpinvariant
solutions of this equation are identified via an optimal system of one-dimethsiona
subalgebras of the symmetry algebra and the corresponding reductibaq are
derived. In [10], special attention is paid to the translationally-invariahit®ns

of the membrane shape equation assuming that the osmotic pressure cifferen
p # 0 since the casp = 0 is thoroughly studied elsewhere (see [4, 5, 9, 11]).
All translationally-invariant solutions of the membrane shape equation thaixar
pressed in elementary functions as well as a class of such solutionsetgiven

in terms of elliptic functions are obtained in [10]. The aim of this study is to deter-
mine all other translationally-invariant solutions of the membrane shape eguatio
in Mongé representation.

2. Translationally-Invariant Solutions

In [10], it is shown that the translationally-invariant solutions of the menmdran
shape equation (1) in Mongé representation correspond to cylindridakes in
R? whose directrices are plane cuniésf curvaturelk(s) = 2H (s) that satisfies
the equation

d?k

2@%—]1(3—#]1{—0:0 (2)
where o) )
H Y T

s being the arc length of the respective cufueThe generatrices of the foregoing
cylindrical surfaces are perpendicular to the plane the directfidesin. Once a
solutionlk(s) of equation (2) is known in an explicit form, it is possible to recover
the embedding — (x(s), y(s)) of corresponding curvg in the planeR?(z, )

(up to a rigid motion) by solving the system

dr(s) Py(s)  Pa(s)dy(s)
ds dsz2  ds?  ds = K(s)

(S} ()

Thus, the main problem to solve is to find the solutions of equation (2).

This equation is studied by Arreagaal [1] with the aim to determine the equilib-
ria of an elastic loop in the plane subject to the constraints of fixed lengthya fi
enclosed area. In the three dimensional case considered herepehadbap will

®3)
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determine a directriX of a cylindrical surface that corresponds to a translationally-
invariant solution of the membrane shape equation. In [1], the determindtibe o
curvaturek at equilibrium is reduced to the study of the motion of a particle in a
quartic potential. Indeed, equation (2) is the Euler-Lagrange equatsarciated
with the functional

1 /dk\? 1., 1 _5 1

F(]k)_/(T—U)ds, = (ds) LU= K e ok
in which k, T"andU can be thought of as the displacement, kinetic energy and
potential energy, respectively, of some fictitious particle. In this settingays
the role of the time. Using this analogy, the authors succeeded in obtaining a
purely geometric construction for determination of the curvature of the lasp-p
ing through a given point of the plane without a reference to explicitesgons
for the solutions of equation (2).
However, in our opinion, the knowledge of the solutions of this equation in an
explicit form is an important and powerful tool in determination of the s@sac
that are translationally-invariant solutions of the membrane shape equé&iion.
this reason, the authors determined some explicit solutions in the previoys stud
[10] and complete this problem here.
Evidently, equation (2) admits the one-parameter group of translations inid&e
pendent variable as a variational symmetry group. Hence, by virtue of Noether’s
theorem, there is a conservation law of dendity= 7" + U, further referred to as
the total energy, that is a first integral

dE

o
that holds on its smooth solutions. In characteristic form (see [6]), theeatm-
servation law reads

dE  1dk [ d*k
L (G e o),

0 (4)

ds  2ds \ds?

Therefore, each solutiok = k(s) of an equation of form (2), which is not iden-
tically a constant, corresponds to a certain real value of the total edergyd
satisfies the equation

k2 1 1
<i> — P(k) =0, P(k) =2E — Z]k4 + §MII<2 + ok. )
S

Evidently, bearing in mind that the coefficients of the polynonitdlk) are real
numbers, the foregoing value of the total enefgys such that the polynomial
P(k) has et least two different real roots, otherwise the funci¢R(s)) could not
take non-negative values as required by relation (5). In the light ofibeea there
are only two possibilities for the roots of the polynomfa(k), namely: (I) the
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four roots are real; (1) two of the roots are real and the other two a@naplex
conjugate pair. Now, denoting hy, 3, v andé the roots of the polynomiaP(Ik)

and specializing to the cases, in whié{k) has simple roots, without loss of
generality, in the first case one may considex 3 < v < § and in the second
one —a, 5 € R, a < fandv,d € C\R, § = 4. Thus, the polynomiaP (k) is
nonnegative in the intervals < k < g andvy < k < 4, in case (), and in the
intervala < k < 3, in case (II).

All solutions of equation (2) corresponding to multiple roots of the polynomial
P(k) are expressed in elementary functions and presented in [10]. Thatjs wh
only the cases, in whick (k) has simple roots are considered here.

It should be noted that the roots 3, andd of the polynomialP(k) can be
expressed through its coefficientss and E as follows

\/7—1— u+a\/% %

where
(1+ ¢R)° - 23E
33/k
ko= 3(8%0% + yx) — (42 + 2%3°E)
X =::3<23£:((u2+-8E)2-322u02> —-02(2u3——3302))-

By Vieta’s formulas we also have

QO =

1
u:—i(aﬁ+a7+a5+ﬁv+ﬁ5+’y§)

1
o=7 (afBy + afBd + ayd + (579) (6)
E= —éaﬁyé.
and
a+pB+y+6=0. @)

due to the absence of a term wikfi in the polynomialP(Ik). The conditiornr # 0
implies
at+B#0, a+v#0, [B+v#0. (8)
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3. New Explicit Solutions

Explicit expressions for the solutions of equation (2) are given in Lemmadl a
Lemma 2 for cases (I) and (1), respectively. Lemma 3 shows that amy ptri-
odic solution to equation (2) coincides (up to a shift of the independerzhla)
with one of these solutions.

Lemma 1. Givenu ando, let E be such that the roots, 3, v and ¢ of the corre-
sponding polynomiaP (k) are real numbers ordered as followa: < 3 < v < 6.
Consider the functions

R (6 —a)(0—0)
k(s) =0 (6 —3) + (3 — ) sn (us, k)* ©
K (s) = B+ (y—08)(6 —B) (10)

(6 —B) — (5 —7)sn (us, k)*
of the real variables in which the parametet and the elliptic modulé: are given
by the formulae

_ §—
u= /-G B, k:\/w (11)
Then, both functions (9) and (10) are real-valued, they are periodic pettod
(2/u) K (k) and satisfy equation (2).

Proof. It is easy to see that the conditiean< 8 < v < é € R and expressions
(11) imply v € R and0 < k& < 1. Therefor, both functions (9) and (10) are
real-valued. Evidently, these functions are periodic due to the fact thaatiction
sn (us, k)? is periodic with period2/u) K (k). Finally, substituting each of the
above functions into equation (2), one can easily verify that they satisfy it.

Lemma 2. Giveny and o, let E be such that two rootsy and 3, of the corre-
sponding polynomiaP (k) are real numbers ordered as followa: < 3, and the
other two roots;y andd, are a complex conjugate pair, thatds= 7. Consider the
function

(A + Ba) + (AB — Ba) en(us, k)

(A+ B) + (A — B)cn(us, k)

of the real variables in which the parametersl, B, « and the elliptic modulé:
are given by the formulae

k(s)= (12)

A= a2+ (Ba+8)° B=1/1n2+(a+38) (13)

1 1 A2+ (3a+ B) (a+3P)
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wheren = (v — 7)/2i. Then, this function takes real values, it is periodic with
period (4/u) K (k) and satisfies equation (2).

Proof. Evidently, in this case, the conditian < 5 € R and expressions (14) and
(13) implyu € R and0 < k£ < 1. Hence, function (12) is real-valued. Obviously,
this function is periodic because the functiom(us, k) is periodic with period
(4/u) K (k). Finally, substituting the above function into equation (2), one can
easily verify that the latter equation is satisfied.

Lemma 3. Giveny, o and E, letk; (s) (i = 1,2) be two periodic real-valued
functions of the real variable with periodsT;, respectively. Let

4 = P(k;(s)), sel;= [O, J;]

anda = k;(0) = ky(0) is the minimum value of both functions. Then,
ki (s) = ka(s).

Proof. Obviously the function; (s) are invertible fors € I;, respectively. Let us
denote the corresponding inverse functiondiyy (k). Then, differentiating the
relations

s =15 (1) = k! (K (s))

K3 K3

one can see that for eathe (a, b) whereb = min(k; (1), ko(22))

Thus, fork € (a, b)

S (1)~ g (1)) = 0

and therefore there exists a real constgrguch that
Iyt (k) = Tt (Ik) + so.
So,
Iy (kq(s) = kit (I (s)) + s = s + 50, s € min(ly, I)
and hence
ki(s) =ko(s + so), s € min(ly, ).

For s = 0 this impliesks (sg) = ki (0) = ks (0) which means that, is a period
of the functionk,(s) and hence the above relation reads

ki(s) = ka(s), seR

which completes the proof.
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4. Curves and Membrane Shapes

Now, having obtained the solutions of equation (2) in explicit form, one can p
ceed with constructing the corresponding cuiVés the planeR?(z, y) by solving
system (3). Thus, given, ¢ and a solutiork = Ik (s) of the corresponding equa-
tion (2), without loss of generality, one can represent system (3) irotine f

= /]k(s)ds, da(;f) = cos (¢ (s)), d‘%f) =sin(p(s)). (15)

Then, using the results presented in [1, 2], which can be cast in the form
dz (s) dy(s) _ 2dk(s)

v g5 ds +y(s) ds o ds
dy(s) . dz(s) 1 2
w(s) =g v~ = o (k(s)* — n)
and taking into account relations (15), to write down the explicit expression
2dk (s 1 .
2(5) = 280 g (o) + = (k(9)? —p)sin(p(s)  (16)
o ds o

y(s) = 2 (g () — L (B () — ) eos (o ()

for the components of the position vector of the corresponding dur@mputing
the integral in (15) one obtains

v (s) =ds — (5;041_[ (g:?,am(us,k),k) a7)
p(s) = s = 0 (57 s, ), 1) (19

_ AB-Ba  (A+B)(a-p) (A — B)?
p(s) = 15 °F 2u(A—B) H<—4AB,am(us,k‘),k)—

a—p (A— B)? sn(us,k‘)) (19)

2ur/k + (A B)2 4AB  dn(us,k)

for the solutions of form (9), (10) and (12), respectively. Thugegia solution of
form (9) or (10), one can draw the corresponding curve substitutmgetspective
angle (17) or (18) in the expressions for the components of the positibor(a6).
Closed curves are achieved if there exist intege@ndn such that

ZK(k)+a;6H<a_ﬁ,k> _mm

arctan ( k+

06— 0 n
p Y=B(y=90  \_mm
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Figure 1. Closed self-intersecting curves and cylindrical surfauges
tained by the solution (9) correspondinguce= 11.82, 0 = —13.3.

2(AS — Ba) (A+ B) (a—p) (A— B)? ™m
u(A— B) K (k) u(A— B) H<_ 41AB k)
for the solutions of form (9), (10) and (12), respectively.

Several examples of closed cundésorresponding to solutions of form (9) and
(10) of equation (2) with coefficients = 11.82 ando = —13.3 are presented in
Fig. 1 and Fig. 2. It is worthy to underline that in this case, two distinct curve
correspond to the same value of the total endtgy

Other examples of closed curv&scorresponding to solutions of form (12) of
equation (2) with coefficients = —1 ando = 1/2 are presented in Fig. 3.
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