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Symmetry Groups, Conservation Laws
and Group-Invariant Solutions of the
Marguerre-von K¶arm¶an Equations1

1 Introduction

Marguerre's theory for large de°ection of thin isotropic elastic shells [1] leads to the
following system of two coupled nonlinear fourth-order partial di®erential equations

D¢2w ¡ "®¹"¯ºw;®¯©;¹º ¡ "®¹"¯ºb®¯©;¹º = p;
(1=Eh)¢2© + (1=2)"®¹"¯ºw;®¯w;¹º + "

®¹"¯ºb®¯w;¹º = q;
(1)

in two independent variables { the coordinates on the shell middle-surface F , and
two dependent variables { the transversal displacement function w, and Airy's stress
function ©, with right-hand sides appearing when the shell is subjected to an external
transversal load and nonuniform heating. Here and throughout: "®¯ is the alternating
tensor of F ; b®¯ is the curvature tensor of F ; D, E and h are the bending rigidity,
Young's modulus and thickness of the shell, respectively, which are supposed to be
given constants; a semicolon is used for covariant di®erentiation with respect to the
metric tensor a®¯ of the surface F ; ¢ is the Laplace-Beltrami operator on F ; Greek
(Latin) indices range over 1, 2 (1, 2, 3), unless explicitly stated otherwise; the usual
summation convention over a repeated index (one subscript and one superscript) is
used.
This theory assumes that the intrinsic geometry of the shell middle-surface F should

be Euclidean or approximately Euclidean in the following sense. Let (x1; x2; z) be
a ¯xed right-handed rectangular Cartesian coordinate system in the 3-dimensional
Euclidean space in which the middle-surface F of a shell is embedded, and let this
surface be given by the equation

F : z = f(x1; x2); (x1; x2) 2 £ ½ R2;

where f : R2 ! R is a single-valued smooth function possessing as many derivatives
as may be required on a certain domain of interest £. Let us take x1; x2 to serve as
coordinates on the surface F . Then, relative to this coordinate system, the components
of the fundamental tensors and the alternating tensor of F are given by the expressions:

a®¯ = ±®¯ + f;®f;¯; b®¯ = a
¡1=2f;®¯; "®¯ = a¡1=2e®¯; (2)

where a = det(a®¯) = 1 + (f;1)
2 + (f;2)

2; ±®¯ = ±
®¯ is the Kronecker delta symbol; e®¯

is the alternating symbol; subscripts after a comma at a certain function f denote its
partial derivatives with respect to the coordinates on F . If the inequalities

jf;®j jf;¯j · "2 ¿ 1; " = const;

1This work was partly supported by Contract No. MM 517/1995 with NSF, Bulgaria.
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hold for every point (x1; x2) 2 £ (such a shell is said to be shallow on the domain £),
then the quadratic terms in the right-hand sides of expressions (2) are small compared
to unity, they may be neglected, and thus allowing for a relative error of order O ("2)
one may regard the intrinsic geometry of the shell middle-surface F as Euclidean and
(x1; x2) may be thought of as an Euclidean coordinate system on F , in which:

a®¯ = ±®¯; b®¯ = f;®¯; "
®¯ = e®¯;

and the mean curvature H of the surface F and its Gaussian curvature K read

H = (1=2)a®¯b®¯ = (1=2)±
®¯f;®¯; K = (1=2)"®¹"¯ºb®¯b¹º = (1=2)e

®¹e¯ºf;®¯f;¹º

(note that the latter is not necessarily equal to zero within the allowed relative error).
Equations (1) are often referred to as Marguerre{von K¶arm¶an (MvK) equations to

re°ect the fact that they are an extension of the von K¶arm¶an equations for large bend-
ing of plates [2] (including the latter as a special case corresponding to b®¯ = 0) to the
shallow shells. Actually (1) describe the state of equilibrium of the shell, but introduc-
ing, according to d'Alembert principle, the inertia force¡½w;33 in the right-hand side of
the ¯rst MvK equation, w;33 being the second derivative of the displacement ¯eld with
respect to the time t ´ x3 and ½ { the mass per unit area of the shell middle-surface,
one can extend (1) to describe the dynamic behaviour of shallow shells.
Applying the equivalence transformation (x1; x2; w;©) 7! (x1; x2;W;©),W = w+f ,

to the time-independent MvK equations and (x1; x2; x3; w;©) 7! (x1; x2; x3;W;©) { to
the time-dependent ones one can map, see [3], the MvK equations to the von K¶arm¶an
equations

D¢2W ¡ "®¹"¯ºW;®¯©;¹º = P;
(1=Eh)¢2© + (1=2) "®¹"¯ºW;®¯W;¹º = Q;

(3)

and
D¢2W ¡ "®¹"¯ºW;®¯©;¹º + ½W;33 = P;
(1=Eh)¢2© + (1=2) "®¹"¯ºW;®¯W;¹º = Q;

(4)

respectively, where
P = 2Da¹ºH;¹º + p; Q = K + q:

Hereafter (3) and (4) will be referred to as the time-independent and time-dependent
MvK equations respectively. In both cases, the moment tensor M®¯, membrane stress
tensor N®¯, and shear-force vectorQ® are given in terms ofW and © by the expressions

M®¯ = D
n
(1¡ º)a®¹a¯º + ºa®¯a¹º

o
fW;¹º ¡ f;¹ºg ;

N®¯ = "®¹"¯º©;¹º ; Q
® =M®¹

;¹ +N
®¹ fW;¹ ¡ f;¹g ;

and the in-plane displacements v® can be found solving the overdetermined system

v®;¯ + v¯;® = (2=Eh)
n
(1 + º)" ¹® "

º
¯ ¡ ºa®¯a¹º

o
©;¹º ¡ fW;® ¡ f;®g fW;¯ ¡ f;¯g ;

the second one of the MvK equations being its compatibility condition.
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2 Symmetry groups1

The following is known [5] for the symmetry groups of the homogeneous MvK equations.
Proposition 1 The homogeneous time-independent MvK equations (3) admit the group
G(S) generated by the basic vector ¯eld (operators):

Y1 =
@

@W
; Y2 =

@

@x1
; Y3 =

@

@x2
; Y4 = x

2 @

@x1
¡ x1 @

@x2
; Y5 = x

1 @

@©
;

Y6 = x
2 @

@©
; Y7 =

@

@©
; Y8 = x

1 @

@W
; Y9 = x

2 @

@W
; Y10 = x

1 @

@x1
+ x2

@

@x2
:

Proposition 2 The homogeneous time-dependent MvK equations (4) admit the group
G(D) generated by the basic vector ¯eld:

X1 =
@

@W
; X2 =

@

@x1
; X3 =

@

@x2
; X4 =

@

@x3
; X5 = x

1 @

@x1
+ x2

@

@x2
+ 2x3

@

@x3
;

X6 = x
2 @

@x1
¡ x1 @

@x2
; X7 = x

1 @

@W
; X8 = x

2 @

@W
; X9 = x

3 @

@W
; X10 = x

1x3
@

@W
;

X11 = x
2x3

@

@W
; X12 = x

1f(x3)
@

@©
; X13 = x

2g(x3)
@

@©
; X14 = h(x

3)
@

@©
;

where f; g; and h are arbitrary functions depending on the time only.

As for the symmetries of the nonhomogeneous MvK equations, we proved that:
Proposition 3 A nonhomogeneous time-independent MvK system is invariant under
a vector ¯eld Y i® Y = cjYj (j = 1; : : : ; 10), where c

j are real constants, and

2P»¹;¹ + »
¹P;¹ = 0; 2Q»

¹
;¹ + »

¹Q;¹ = 0; (5)

for »® = Y (x®), Y being regarded as an operator acting on the functions ³ : £ ! R;
£ ½ R2.

Proposition 4 A nonhomogeneous time-dependent MvK system is invariant under a
vector ¯eld X i® X = CjXj (j = 1; : : : ; 14), where C

j are real constants, and

P»i;i + »
iP;i = 0; Q»

i
;i + »

iQ;i = 0; (6)

for »i = X(xi), X being regarded as an operator acting on the functions Â : ££T ! R,
£ ½ R2, T ½ R.

The above Propositions imply the following group classi¯cation results.
Theorem 1 The time-independent MvK equations (3) admit a group G i® G is gen-
erated by a vector ¯eld Y = cjYj (j = 1; : : : ; 10) and the right-hand sides P and Q are
invariants of G (when c10 = 0) or eigenfunctions (when c10 6= 0) of its generator Y .
Theorem 2 The time-dependent MvK equations (4) admit a group G i® G is generated
by a vector ¯eld X = CjXj (j = 1; : : : ; 14) and the right-hand sides P and Q are
invariants of G (when C5 = 0) or eigenfunctions (when C5 6= 0) of its generator X.

1For the basic notions, statements and techniques used in the group analysis of di®erential equations
and variational problems see, e.g., the book by Olver [4].
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3 Conservation laws

Both the time-independent and the time-dependent MvK equations constitute self-
adjoint systems and are the Euler-Lagrange equations associated with the functionals

I(S)[W;F ] =
Z Z Z

L(S) dx1dx2; L(S) = ¦;

and
I(D)[W;F ] =

Z Z Z
L(D)dx1dx2dx3; L(D) = (T¡ ¦);

respectively, where

¦ = (D=2)
n
(¢W )2 ¡ (1¡ º)e®¹e¯°W;®¯W;¹º

o

¡ (1=2Eh)
n
(¢©)2 ¡ (1 + º)e®¹e¯º©;®¯©;¹º

o
+ (1=2) e®¹e¯º©;®¯W;¹W;º

¡ PW ¡Q©;
is the strain energy per unit area of the shell middle-surface and

T = (½=2) (W;3)
2 ;

is the kinetic energy per unit area of the shell middle-surface.
In [6], the variational symmetries of the above functionals with P = Q = 0 are

established and all Noether's conservation laws admitted by the smooth solutions of
the homogeneous MvK equations are presented (see also Table 1 in [7] where the
conservation laws associated with the time-dependent MvK equations are listed). The
following statements hold for the nonhomogeneous MvK equations.
Proposition 5 A conservation law of °ux A®(j) and characteristic ¤

®
(j) (j = 1; :::; 9)

admitted by the smooth solutions of the homogeneous time-independent MvK equations
takes the form

A¹(j);¹ + S(j) = 0; S(j) = ¡¤1(j)P ¡ ¤2(j)Q; (7)

on the smooth solutions of the non-homogeneous time-independent MvK equations;

S(j) = eA¹(j);¹;

i® (5) hold, and then (7) can be written as a divergence free expression (i.e. it becomes
a proper conservation law in the sense appropriated in the group analysis of di®erential
equations, see e.g. [4]), otherwise it has supply (production) S(j).

Proposition 6 Each conservation law of density ª(i), °ux P
®
(i) and characteristic ¤

®
(i)

(i = 1; :::; 14) admitted by the smooth solutions of the homogeneous time-dependent
MvK equations takes the form

ª(i);3 + P
¹
(i);¹ + S(i) = 0; S(i) = ¡¤1(i)P ¡ ¤2(i)Q; (8)

on the smooth solutions of the non-homogeneous time-dependent MvK equations;

S(i) = fª(i);3 + eP ¹(i);¹;

i® (6) hold, and in this case (8) becomes a proper conservation, otherwise it has supply
(production) S(i).

Note that the source therms in (7) and (8) appear due to the curvature of the shell.
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4 Balance laws

Given a region £ in the shell middle-surface with su±ciently smooth boundary § of
outward unit normal n®, a balance law

Z

§

A®(j)n®d§ +
Z

£

S(j)dx
1dx2 = 0; (9)

corresponds to each of the nine basic conservation laws of °uxes A®(j) characteristic ¤
®
(j)

(j = 1; :::; 9) admitted by the smooth solutions of the homogeneous time-independent
MvK equations (these conservation laws are listed in Appendix B [6]).
The same holds true for the fourteen basic conservation laws of densities ª(i), °uxes

P®(i) and characteristics ¤
®
(i) (i = 1; :::; 14) admitted by the smooth solutions of the

homogeneous time-dependent MvK equations (see Appendix A [6] and Table 1 [7]).
Namely, to each of them it corresponds a balance low

d

dt

Z

£

ª(i)dx
1dx2 +

Z

§

P®(i)n®d§ +
Z

£

Z

T

S(i)dx
1dx2dx3 = 0; (10)

where T is a certain time interval.
Both (9) and (10) hold, just as the respective conservation laws, for every smooth

solution of the nonhomogeneous MvK equations.
In the static case the balance laws (9) provide a set of path-independent integrals

inherent to Marguerre's shell theory. Among them are the counterparts of the well-
known and widely used in fracture mechanics J-, L- andM -integrals. The applicability
of the latter integrals in the analysis of cracked plates is discussed in [8] (see also the
references therein). In the similar way, the path-independent integrals corresponding
to the balance laws (9) can be used in the analysis of equilibrium and stability of shells
undergoing stress concentrations near the tips of cracks and notches since they allow to
compute the stress intensity factors and energy release rates, the former characterizing
the distribution of the stress ¯eld in a vicinity of a certain singular point, say the crack
tip, and the latter characterizing the propagation of the crack through the shell.
In the dynamic case, the balance laws (10) provide the theoretical background

for studying the propagation of waves of discontinuity in shallow shells since they
are applicable in the domains where some important physical quantities su®er jump
discontinuities at a certain curve. Using the balance laws (10) one can extend the
\continuous\ Marguerre's shell theory in the same manner as it is done in [7] for the
\continuous\ von K¶arm¶an plate theory. At that De¯nition 1 [7] should be changed by
supplying the integrals (4) with right-hand sides

Z

£

Z

T

Pdx1dx2dx3;
Z

£

Z

T

Qdx1dx2dx3:

Then, De¯nition 1, Propositions 1 to 4 and the jump conditions listed in Table 2 remain
the same under the assumption that P and Q are smooth functions.

5

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com


5 Group-invariant solutions

In the cases when the MvK equations (3) or (4) admit a curtain subgroup of G(S) or
G(D), respectively, it is worth looking for the corresponding group-invariant solutions.
To obtain such solution one should follow the procedure described in details in [4]. Here,
we would like only to notice that the group-invariant solutions to the homogeneous
time-dependent MvK equations obtained in [6] and shown to determine acceleration
waves in plates can be used for the same purpose in Marguerre's shell theory provided
(according to Theorem 2) that P and Q are at the same time invariants of the group
generated by X6 and eigentfunctions of X5. In this case the reduced system reads

D(u00 ¡ 4u0 + 4u)00 + (De4s=4¡ '0)u00 + (De4s=2¡ '00 + 2'0)u0 = P;

('00 ¡ 4'0 + 4')00 + Eh(u00 ¡ u0)u0 = Q;

where s = (1=2) ln(
q
½=Dr2=t), r2 = (x1)

2
+ (x2)

2
, u(s) and '(s) are the new dependent

variables, and the prime denotes di®erentiation with respect to the argument s.
As for the group-invariant solutions describing traveling waves in plates discussed

in Section 5 [7], now, according to Theorem 1, P and Q are to be joined invariants of
the group generated by X3 and X2 + (1=c)X4.
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