
ON THE INVARIANCE OF TIMOSHENKO BEAM EQUATIONS 
 

Peter A. Djondjorov, Vassil M. Vassilev 
Institute of Mechanics, Bulgarian Academy of Sciences 
Acad. G. Bonchev Street, Block 4, 1113 Sofia, Bulgaria 
e-mails: padjon@imbm.bas.bg, vasilvas@imbm.bas.bg  

 
ABSTRACT  
This study is concerned with the group-invariance properties of a fourth-order linear partial differential equation, arising 
in the dynamics of Timoshenko beams. All variational symmetries admitted by this equation are obtained and the 
conservation laws associated with Noether’s theorem are constructed. It is shown, that these conservation laws being 
derived for the single fourth-order differential equation under consideration are also valid for the system of two second-
order partial differential equations governing the dynamics of Timoshenko beams (known as Timoshenko beam 
equations). 
 
INTRODUCTION 
The differential equations governing the small vibration of homogeneous Timoshenko beams are [1]: 
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where ρ is the constant mass density, G and E are the shear and Young's moduli of the beam material, A and J are the 
cross section area and inertia moment, respectively, and k is the shear correction factor. The dependent variables are ϕ – 
the angle between the deformed and reference states of the beam cross section, and w – the transverse displacement of 
the beam axis. The subscripts at a dependent variable denote partial derivatives with respect to the independent 
variables x1 and x2 – the coordinate along the beam axis and time, respectively. Eliminating ϕ from this system, we 
obtain an equation for w of form 
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where the relation )1(2 ν+= GE  is taken into account, ν being Poisson's ratio. 
It is well known (see [1]) that (1) admits an exact variational formulation. The same holds for the single equation 

(2) as well, and in the present study the action functional  
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is considered whose Euler-Lagrange equation coincides with (2). 
The invariance properties of (1) with respect to local Lie groups of point transformations are established in [2]. The 

aim of the present study is to explore the invariance properties of equation (2). 
 
LIE POINT SYMMETRIES 
The infinitesimal generator of a local one-parameter Lie group of local point transformations acting on some open 
subset Ω of the space R3 representing the independent and dependent variables 1x , 2x  and w involved in our basic 
equation (2) is a vector field X on R3 of form 
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whose components ),,( 21 wxxµξ  and ),,( 21 wxxη  are supposed to be functions of class C∞ on Ω. Applying the 
standard computational procedure (see, e.g. [3,4]) and omitting the details, one could obtain that the equation (2) admits 
the point Lie groups generated by the vector fields 
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where ),( 21 xxu  is an arbitrary solution of the equation considered. It is well known that having obtained the Lie point 
symmetries of a certain equation, the determination of its variational symmetries is straightforward (see [3,4]). 
Applying the respective procedure [3,4] to the Lie point symmetries (4) of the equation under consideration, one obtains 
that the variational (point) symmetries of (2) are linear combinations of the vector fields 
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CONSERVATION LAWS 
In this Section we intend to derive conservation laws, that are relations of form 
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valid on the smooth solutions of equation (2). Here, αD  are the total derivatives, and Ψ and P are functions of the 
independent and dependent variables involved in equation (2) as well as of the derivatives of the dependent variable. 

Following [3,4], the densities and fluxes of the conservation laws associated through Noether’s theorem with the 
variational symmetries (5) are obtained to be 
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These conservation laws correspond to fundamental physical principles. The conservation law with density and flux 
),( )1()1( PΨ  is a representation of the wave momentum conservation law. Its validity is a consequence of the assumption 

that the beam material is homogeneous (all quantities, associated with the beam properties does not depend on the 
independent variable. The conservation law associated with ),( )2()2( PΨ  represents the energy conservation law for the 
equation (2). Here, )2(Ψ  is the energy density function and )2(P  is the flux. The validity of the energy conservation law 
for the equation (2) is a result from the basic assumption that neither of the quantities associated with beam properties 
and involved in this equation depends on the time. Finally, the linearity of the equation under consideration (see [3,4]) 
leads to the validity of the conservation law with density and flux ),( )()( uu PΨ . This conservation law is a particular 
representation of the reciprocity relation 
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associated with equation (2) which is valid for an arbitrary couple of smooth functions (u,w). If u is a solution of (2), 
this identity reduces to the conservation law with density and flux ),( )()( uu PΨ . The foregoing reciprocity relation is of 
the same nature as the Betti reciprocal theorem in elasticity, both relations being associated with the linearity of the 
respective governing equations (see [3,4]). 



CHARACTERISTIC FORM OF THE CONSERVATION LAWS 
It is well known (see [4]) that given a system in m independent and n dependent variables: 

 ,,,2,1,0 nE K== µµ  

each conservation law for its solutions is equivalent to a conservation law in characteristic form  

,µ
µα
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where ),,,( 21 mPPPP K=  is the conserved current and ),,,( 21 nQQQQ K=  is the characteristic of the conservation 
law in question. The characteristic forms of the conservation laws with densities and fluxes ),( )1()1( PΨ , ),( )2()2( PΨ  
and ),( )()( uu PΨ  established in the previous Section are 
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Using the obvious identity 
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one could easily eliminate 0E  from (7) and to obtain  
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where 
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Observing (8) one can deduce that ),( )1()1( PΨ , ),( )2()2( PΨ  and ),( )()( uu PΨ  are densities and fluxes of conservation 

laws for the solutions of (1) because µ
α )(R  and µ

)(uR  are currents of trivial conservation laws [4], vanishing identically 
on the solutions of the Timoshenko beam equations (1). 
 
CONCLUDING REMARKS 
The obtained conservation laws could be successfully used in analysis of various problems of engineering interest. 
Indeed, integrating (6) over a certain interval ),( ba of the beam span, a balance law of form 
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is obtained. Balance laws, derived in this manner, hold for every interval ),( ba  where the dependent variable is a 
smooth function. In such intervals, they are equivalent to the respective conservation laws. However, if such a balance 
law is supposed to hold for an interval ),( ba  where the dependent variable or some of its derivatives suffer jump 

discontinuities at a point ),(1 bax j ∈ , then Kochin’s theorem [5] provides a relationship for the limit values of 

discontinuous quantities on both sides of 1
jx . In such a manner, one could obtain nontrivial relations useful in analysis 

of shock and acceleration waves. 
The conservation laws obtained above could also be applied in particular Timoshenko beam problems in the 

following sense. Suppose the beam ends are ax =1  and bx =1 , and the boundary conditions are such that 0=− ba PP  
for certain conservation law. Then, the respective balance law (10) implies that the integral over the span of the 
associated density is a conserved quantity of form 
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whatever motion this Timoshenko beam undergoes. 
Finally, it is to be underlined that balance laws similar to (10) or (11) are widely applied in analysis of bodies with 

cracks, notches, etc., (see [6], where such relations, known as J- L- and M- integrals, are derived within plate theories). 
We emphasize that each solution of the system (1) is a solution of the equation (2) as well. Hence, each 

conservation law for the solutions of (2) holds for the solutions of (1) also, which in particular is valid for conservation 
laws with densities and fluxes ),( )1()1( PΨ , ),( )2()2( PΨ  and ),( )()( uu PΨ . 

The invariance properties of Timoshenko beam equations (1) are studied in [2]. In that paper, the vector fields 1X  
and 2X  are identified to be infinitesimal variational symmetries of the system (1) and the conservation laws for wave 
momentum (associated with 1X ) and energy (associated with 2X ) are derived therein. The conservation laws with 
densities and fluxes ),( )1()1( PΨ , ),( )2()2( PΨ  and ),( )()( uu PΨ  which hold for the solutions of the system (1) are 
different from the conservation laws in [2], because the latter correspond to geometric symmetries while observation of 
(9) implies that the conservation laws presented here correspond to generalized symmetries of (1). Consequently, the 
conservation laws derived here for (2) are new conservation laws for Timoshenko beam equations (1) as well. 
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