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The present notes are concerned with the infinitesimal divergence symmetries of functionals arising in plate theory.
The results obtained may be regarded as a first step towards the derivation of conservation laws admitted by the
solutions of the associated Euler-Lagrange equations, the latter being the equations of motion for thin elastic plates.

Within the framework of the linear plate theory, a fourth-order linear partial differential equation of the form

∆[D(x1, x2)∆w] − [(1 − ν)ǫαµǫβνD(x1, x2),αβ − Nµν(x1, x2)]wµν + k(x1, x2)w + ρ(x1, x2)w33 = 0, (1)

in three independent variables – the coordinates of the plate middle plane x1, x2 and the time x3, and one dependent
variable – the transversal displacement field w, describes the motion of a thin elastic plate of bending rigidity D, mass
density ρ, resting on an elastic foundation with modulus k, and subjected to edge loadings leading to appearance of
membrane stresses Nαβ = Nβα, Nαµ

,µ = 0. Here: ∆ ≡ δαβ∂2/∂xα∂xβ ; δαβ is the Kronecker delta symbol; ǫαβ is the
alternating symbol; Greek and Latin indices range over 1, 2 and 1, 2, 3, respectively, and the usual summation rule
is employed; ν is Poison’s ratio; wi1...ik

≡ ∂kw/∂xi1 ...∂xik ; if F = F
(

x1, x2, x3
)

, then F,i1...ik
≡ ∂kF/∂xi1 ...∂xik .

It is easy to see that (1) is the Euler-Lagrange equation associated with the variation functional

A[w] =
1

2

∫ ∫ ∫

Ldx1dx2dx3, L =
1

2
{D[δαβδµν − (1 − ν)ǫαµǫβν ]wαβwµν − Nαβwαwβ − ρw2

3 + kw2}. (2)

In order to verify this, it suffices to apply the Euler operator E = ∂/∂w − Di∂/∂wi + DiDj∂/∂wij − ... to the
Lagrangian density function L. Here Di = ∂/∂xi + wi∂/∂w + wij∂/∂wj + ... is the total derivative operator.

The aim of the work is to study, following [1] (see also [2, 3]), the (classical) infinitesimal (i.) divergence (d.)
symmetries of the functional A[w]. There are at least two reasons for wanting to find these symmetries. First: in
virtue of Noether’s theorem, a conservation law admitted by the solutions of the associated Euler-Lagrange equation
(1) corresponds to each such symmetry. Second: every i.d. symmetry of A[w] is a Lie symmetry of (1).

By definition (see 4.43 [1]), an i.d. symmetry of the functional A[w] is a vector field

v = ξj
(

x1, x2, x3, w
)

∂/∂xj + η
(

x1, x2, x3, w
)

∂/∂w, (3)

on R4(x1, x2, x3, w) such that the following infinitesimal criterion of invariance (up to a divergence term)

pr(2) v (L) +
(

Diξ
i
)

L = DiB
i (4)

holds for some set of differential functions Bi (i.e., functions of the independent and dependent variables and
derivatives of the dependent variable). Here pr(2) v is the 2nd prolongation of the vector field v. On the other hand,
taking into account Theorem 4.7 [1] we observe the following:

T h.e invariance criterion (4) is equivalent to the following relation

E
[

pr(2) v (L) +
(

Diξ
i
)

L
]

= 0. (5)

Thus, in order to find the system of determining equations for the i.d. symmetries of the functional A[w], we should
let the coefficients ξj and η of the vector field (3) be unknown functions of x1, x2, x3 and w, then write out in full
the left-hand side of (5) by using (2) and the prolongation formulae (2.38) and (2.39) given in [1], and finally we
should equate the coefficients of w and it derivatives to zero. In this way, we arrive at the following result.

(i) E.ach i.d. symmetry of the functional A[w] has the form

v = ξµ
(

x1, x2
)

∂/∂xµ +
(

2C1x
3 + C2

)

∂/∂x3 +
[

C3w + u
(

x1, x2, x3
)]

∂/∂w, (6)

where C1, C2 and C3 are real constants, u
(

x1, x2, x3
)

is a solution of the equation (1), and

δαµξβ
,µ + δµβξα

,µ = δαβξµ
,µ ; (7)



(ii) A[w] possesses i.d. symmetries of the form (6) if and only if the functions D,Nαβ , k and ρ are such that

ξµD,µ − Dξµ
,µ = −2D(C1 + C3), (8)

ξµk,µ + kξµ
,µ = −2k(C1 + C3), (9)

ξµρ,µ + ρξµ
,µ = −2ρ(C1 − C3), (10)

ξµNαβ
,µ − Nαµξβ

,µ − Nµβξα
,µ − Nαβ

[

ξµ
,µ − 2(C1 − C3)

]

= Hαβ , (11)

Hαβ = (1 − ν) D,µ

[

ǫλµǫτβξα
,λτ + ǫλµǫταξβ

,λτ − ǫλαǫτβξµ
,λτ

]

. (12)

Note that (7) is the determining equation of the (pseudo) group of conformal transformations of the Euclidean plain.
Equations (8) – (12) show that the space of solutions to the whole system of determining equations (7) – (12), i.e.,
the Lie algebra of i.d. symmetries of A[w], will depend on the form of the functions D, Nαβ , k and ρ. At this
juncture, we face a rather complicated group classification problem. Its solution will be the topic of another paper.

1. Conservation laws and group-invariant solutions

Let v be an i.d. symmetry of A[w], i.e., (4) holds for a set of differential functions Bi. Then a conservation law

DiA
i = 0, Ai = ξiL +

(

C3w + u − wjξ
j
)

[

∂L

∂wi

− Dk

∂L

∂wik

]

+
[

Dk

(

C3w + u − wjξ
j
)] ∂L

∂wik

− Bi, (13)

admitted by the solutions of equation (1) may be derived via Noether’s theorem (see [1, Sec. 4.4]). A group-invariant
solution of (1) may be also found out as v will be a Lie symmetry of this equation (see Theorem 4.34 [1]).

G i.ven the equation D∆∆w + kw + ρwtt = 0, where D, k and ρ are constants, t ≡ x3, and taken u to denote an
arbitrary solution to this equation, Theorem 1 implies that the Lie algebra of i.d. symmetries of the corresponding
variational functional (2) is spanned over the following five linearly independent vector fields:

v1 = ∂/∂t, v2 = ∂/∂x1, v3 = ∂/∂x2, v4 = x2∂/∂x1 − x1∂/∂x2, v5 = u∂/∂w. (14)

Hence, using (2), (13) and (14) we can derive five linearly independent conservation laws related to v1, ...,v5. The
conserved densities corresponding to v1, ...,v4 have clear physical meaning; these are the energy, the wave momentum,
and the moment of the wave momentum, respectively. The conservation law associated with v5 is an analog of Betti’s
reciprocal theorem. If k = 0, then two more linearly independent i.d. symmetries appear:

v6 = ∂/∂w, v7 = x1∂/∂x1 + x2∂/∂x2 + w∂/∂w. (15)

In this case, some combinations of the vector fields (14) and (15) lead to interesting group-invariant solutions.
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