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Abstract

A connectionist-inspired, parallel processing network is presented which learns, on the basis of (relevantly) sparse input, to assign meaning
interpretations tonovel test sentences in both active and passive voice. Training and test sentences are generated from a simple recursive
grammar, but once trained, the network successfully processes thousands of sentences containing deeply embedded clauses. All training is
unsupervised with regard to error feedback – only Hebbian and self-organizing forms of training are employed. In addition, the active–
passive distinction is acquired without any supervised provision of cues or flags (in the output layer) that indicate whether the input sentence
is in active or passive sentence. In more detail: (1) The model learns on the basis of a corpus of about 1000 sentences while the set of potential
test sentences contains over 100 million sentences. (2) The model generalizes its capacity to interpret active and passive sentences to
substantially deeper levels of clausal embedding. (3) After training, the model satisfies criteria for strong syntactic and strong semantic
systematicitythat humans also satisfy. (4) Symbolic message passing occurs within the model’s output layer. This symbolic aspect reflects
certain priorlanguage acquistionassumptions.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Children do not learn language in a vacuum. Frequently, a
child encounters linguistic data in the context of situations
that the child can, to some degree, perceive and conceptua-
lize. The situational contexts in which linguistic utterances
are encountered are widely thought to provide powerful
semantic constraints on the learning process (see Pinker,
1984). Indeed, there is significant evidence that humans
cannot learn even moderately simple context-free languages
in the absence of accompanying semantic information (cf.
Moeser and Bregman, 1973). For these reasons, researchers
in language acquisition have often assumed that the learning
agent (whether human or artificial) frequently manages
to guess the speaker’s intended meaning, thereby
ensuring that some semantic information is available.
Examples of systems which embody this assumption
can be found in Anderson (1977), Pinker (1984), and
St. John and McClelland (1990).

Now, although perceived semantic information certainly
assists the learning process, acquisition of the active/passive
voice distinction poses an interesting challenge. For, the
distinction itself is not to be found in the external situations
which a child perceives. The very same situation can be
described by an active–voice sentence (‘cats chase mice’)
or by a passive–voice sentence (‘mice are chased by cats’).
Moreover, the complexity of the learning process is

compounded by the fact (stressed by Chomsky and others)
that children learn language under conditions ofsparse
linguistic input. An important aspect ofsparse input is
that the set of sentences which a child encounters does not
present all words in all syntactically legal positions. Indeed,
it seems likely that most words the child encounters arenot
presented in all legal positions. (See Pinker, 1989, and
Hadley, 1994a for ‘field’ examples of children understand-
ing sentences containing words in positions which arenovel
to the child).

In Hadley (1994b) a definition ofstrong semantic
systematicityis introduced. According to this definition, a
cognitive agent or model exhibits strong semantic systema-
ticity only if it can learn to assign appropriate meaning
representations to sentences containing words innovel
syntactic positions. In this context, a word is considered to
occupy a novel position (e.g., grammatical subject) only if
the agent has not encountered that word in that syntactic
position atany level of sentential embedding.As shown in
Hadley (1994a), humansdo in factsatisfy this conception of
semantic systematicity. Moreover, examples given in Pinker
(1989) establish that humans display this property in the
production and comprehension of both active and passive
sentences.

Now, there do exist high-level symbolic algorithms for
language acquisition which, at first blush, appear to satisfy
the requirements of strong semantic systematicity, and
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otherwise cope with conditions of sparse input. However,
these algorithms typically require that words in the input (or
training) corpus be labelled or ‘‘tagged’’ in some way. For
example, the algorithms presented in Wexler and Culicover
(1980), Pinker (1984), and Berwick (1985) all require that
lexical items be tagged with a syntactic role (e.g., as in
Berwick) or with an argument position (relative to the
verb, as in Pinker). This ‘‘tagging approach’’ is entirely
reasonable provided we bear in mind that the algorithms
in question are incomplete – they presuppose some prior
learning on the agent’s part. One goal of our present
research is to provide indications as at how this ‘‘syntactic
tagging’’ might occur. Thus, results presented here could be
viewed as supplementing traditional symbolic approaches
towards language acquisition (more on this below).

It is noteworthy that some (AI-inspired) symbolic models
of language learning do not attempt to accommodate sparse
input. For example, the methods described in (Berwick and
Pilato, 1985) assume that the input corpus is ‘‘positionally
exhaustive’’, i.e., during learning, virtually all words are
presented in every legal syntactic position. (Bear in mind
that if the word ‘cat’, say, has previously been presented as
direct object only in a simple sentence, then a later presen-
tation of ‘cat’ as direct object in a relative clause wouldnot,
on the present usage, constitute appearance in a novel
syntactic position. Cf. Hadley, 1994a.) Although symbolic
models which require exhaustive input of this kind may
provide certain valuable insights, it seems clear that they
cannot approximate the input–output behaviour of human
learners. The same difficulty arises in most connectionist
work on language learning, however. Indeed, as argued in
Hadley (1994a), several prominent connectionist systems
appear to employ, in the relevant sense, positionally exhaus-
tive training corpora. These systems include those of: Elman
(1990), St. John and McClelland (1990), Chalmers (1990),
and Pollack (1990).

Since 1994, several connectionists have designed systems
tailored to satisfy the criterion of strongsyntacticsystema-
ticity. One of these, owing to Phillips (1994), is restricted in
scope to simple sentences (containing no relative clauses).
Another (Niklasson and van Gelder, 1994) does not address
language learning, but confines itself to a very narrow range
of logic formulae with at most one level of embedding. By
contrast, Christiansen and Chater (1994) have extended the
work of Elman (1993) on predicting grammatical cate-
gories. They employ a (relevantly) restricted training corpus
containing sentences generated from a moderately complex,
context-free grammar. Like Elman, they augment their
network’s memory during training by increasing the number
of hidden-layer units. Christiansen and Chater acknowledge
that their network exhibits ‘‘strong generalization’’ only in a
few syntactic contexts, however. In addition, Hadley has
argued Hadley (1994b) that their network does not succeed
at its primary task (prediction) in the relevant sense.

Miikkulainen (1996) suggests that his recent model satis-
fies the criteria for strong systematicity. However, based on

his remarks, it appears that his system can successfully
process words in novel positions only when they are precise
synonyms of other words which the network has previously
encountered in those same positions. This restriction would
certainly violate the spirit of the definition of strong
systematicity given in Hadley (1994a,b). Apart from that,
Miikkulainen himself notes that his network could not be
viewed as alearning model, since his training regime
presupposes crucial prior syntactic knowledge. For exam-
ple, the network mustalready knowwhere clausal bound-
aries occur in the input sentences. It must also know,
prior to training, the internal, distributed representations
of embedded clauses as distinct from main clauses.

One connectionist system, owing to Hadley and Hayward
(1997), clearlydoessatisfy the criterion of strong semantic
systematicity and learns from a sparse input set. In contrast
with the networks cited above, the Hadley–Hayward model
does not employ any form of error-feedback, but learns by
purely Hebbian methods. During training, only one-third of
the nouns are presented in all syntactic positions. Despite
this, the network generalizes its capacity to interpretall
nouns in novel positions, and generalizes to novel levels
of clausal embedding. However, the Hadley–Hayward
model can succeed only in the presence of active-voice
sentences. The model which we offer below incorporates
several techniques employed by Hadley and Hayward, but
augments the network architecture in significant respects.
These modifications enable the acquisition of a broader
range of syntax. Notably, the new model learns to assign
meaning representations to both active-voice and passive-
voice sentences,and can generalize this capacity to novel
levels of embedding.

Acquisition (or in some casesprocessing) of the active-
passive distinction has previously been addressed by some
connectionists (Chalmers, 1990; Miyata et al., 1993; St.
John and McClelland, 1990). However, their work did not
address the ‘sparse input’ requirement, and did not satisfy
the criteria for strong semantic systematicity. Moreover, in
the case of St. John and McClelland, the training of the
connectionist networks involved explicit cues indicating
whether each of thetraining sentenceswas in active or
passive-voice1. As noted above, such indications are not
present when a pre-school child encounters active and
passive sentences in the course of language learning. Setting
aside this aspect, though, I wish to stress that these connec-
tionist systems were not intended to address sparse input or
to satisfy strong systematicity.

In what follows, we present a ‘‘connectionist-inspired’’
system which both learns to assign meaning representations
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1 St. John and McClelland (1990) employ a specialbit within their target
meaningrepresentations to indicate whether that meaning is expressed by
an active or passive sentence. As they also employ an intensive form of
error feedback during training (namely, backpropagation), this target bit
value functions as an explicit cue, reflecting the voice of the input sentence.
In all backpropagation trained networks, target output values function as
one source of input to the training algorithm.



to active and passive sentencesandaddresses the difficulties
just mentioned. It should be noted, however, that our model
employs certain classical techniques (such as ‘‘message
passing’’ between nodes). It also assumes the existence of
certain innate language acquisitionmechanisms. Thus, in
some crucial respects, our model conforms to the classical
symbolic paradigm of language acquisition. The design of
our model owes much, though, to priorconnectionistwork.
Thus, our approach could be described as ‘‘hybrid-connec-
tionist’’, but this might suggest to some readers that our
system employs separate connectionist and classical
modules. A better description, we think, would be to say
that we employconnectionist-inspired functionalism.We
use connectionist methods to implement high-level, abstract
functions, but these functions were partly inspired by prior
connectionist work on language acquisition and parsing.

Before proceeding to describe the details of our approach,
it may be useful to summarize some of the goals achieved
and results obtained. In particular,

• The model learns on the basis of sparse input. During
testing, when clausal embedding can be as deep as level
three, the number of possible sentences is well above 100
million. Yet, the network is successfully trained on a
corpus of about one thousand sentences, where clausal
embedding is restricted to at most level one. Thus, the
training corpus isfar from exhaustive.

• During training, two-thirds of all nouns arenotpresented
in all legal positions. However, during testing, those
nouns are each presented in positions novel to those
words. The resulting novel sentences are each processed
with complete accuracy. Over 16 thousand sentences
have been tested.

• The model exhibits strong syntactic and strong semantic
systematicity.Although sentences in the trainingcorpusare
generated from a simple grammar, the grammar is recur-
sive. Following training, the system successfully processes
substantially deeper levels of sentence embedding than
occur during training (thus attaining level 4 in Niklasson
and van Gelder (1994) generalization hierarchy).

• The network learns to assign meaning representations to
both active and passive sentences (in simplified syntactic
form). The active–passive distinction is acquired without
external cues (or flags) that signal whether a given

‘‘target meaning’’ belongs to an active or passive
sentence.

• Network learning involves both self-organizing (Gross-
berg, 1976) and Hebbian-inspired training2. It is widely
believed that these are both closer to biological reality
than the commonly used method of backpropagation of
error. Also, in an important respect, the training
employed is unsupervised. For the network is never
provided with any form of ‘error feedback’.

• Once training is complete, the network not only displays
strong semantic systematicity, but a straightforward
explanation of this fact exists.

As should be apparent from the points just cited, we have
aimed for cognitive plausibility in some important respects.
However, we emphasize that our model is not intended to be
a full-fledged, complete model of language learning in
humans. Our hope is that the approach presented here may
provide certainclues and techniqueswhich will be of value
in the general study of language acquisition. As previously
mentioned, our model might be used to augment those clas-
sical, symbolic, language-acquisition algorithms which
require that input words be tagged with labels or ‘‘argument
positions’’. Alternatively, the ‘‘semantic parse’’ structures
which comprise the output of our fully trained network
might serve as input for other connectionist language
learning networks.

2. System task and goals

A multi-layer connectionist network (hereafter known
simply as the ‘network’) is given the task oflearning to
produce ‘‘semantic parses’’ (or meaning representations)
for both simple and complex sentences. The project consists
of a training phase and a test phase. During each of these
phases, both simple (main) clauses and embedded (relative)
clauses may contain either active or passive verb forms.

Distinct training and test corpora are generated using the
grammar of L (see Fig. 1). Note that in adopting this
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2 A variety of connectionist learning algorithms now exploit Hebb’s
basic proposal Hebb (1949) that the strength on a connection between
two network units should be strengthened only when those two units are
simultaneously active.

Fig. 1. The Grammar of L.



grammar, we follow the example of St. John and McClelland
(1990) and Chalmers (1990) in that we employ a simplified
syntax; we have not addressed the acquisition of past tense
endings during passivization.

During the training phase, sentences are presented to an
input layer one word at a time, and as training progresses,
associations are learned between word (or lexical) nodes in
the input layer and semantic nodes in the top-level, output
layer. (see Fig. 2.) As will emerge in later sections, other
associations must also be learned. In order for this learning
to occur, we have assumed that, during training, the learning
agent manages toguessthe target meaning representations
for the comparatively simple sentences in the training
corpus.

Target (or ‘‘guessed’’) meaning representations include
connectionist nodes representing bothconceptsand the

roles which those concepts can play (such as agent or
patient). These appear in theoutput layer, which also
contains binding nodes and sequence position nodes. The
latter enter into complex structures with concept and role
nodes. Complete details are presented in the following
sections, but for the present let us note that the learning
agent’s ‘‘guessed representation’’ requires only that the
agent guess which concepts are bound (or attached) to
certain thematic roles. The learner’s ‘‘guess’’,per se, does
not involve sequence position nodes. Eventually, sequence
nodes are prompted to form bindings with other nodes.
However, this occurs through unsupervised spreading acti-
vation, and makes no demands on the learner’s capacity to
guess meanings.

Now, as noted in our introduction, the assumption that
‘target meaning representations’ are available to a learning
agent figures prominently in several existing language
acquisition models. Admittedly, the assumption is an idea-
lization, but a good case can be made (Pinker, 1984) that
children often, at least, manage to divine their parents’
intended meaning.

3. Overview of network representations, architecture,
and strategy

As previously mentioned, our system involves two major
phases – a training phase and a test phase. Both phases
assume the prior existence of representational structure
within the output layer (see Fig. 2). Thus, we have assumed
(as others have, including Pinker, 1984; McClelland and
Kawamoto, 1986; St. John and McClelland, 1990), that
the agent possesses at least a primitive ability to conceptua-
lize external situations. In our model, this ability involves
conceptnodes (that can represent objects or actions) and
role nodes (that can represent agent, action, or patient roles).

During the training phase, a sequence of sentences is
presented, seriatum, to the network’s input layer. As each
sentence is presented (one word at a time), the target mean-
ing representation for theentire sentence remains active
within the output layer. This entire meaning representation
is active throughout the processing of the given sentence.
An example representation, for ‘cats see mice’, is shown in
Fig. 3. Further details will emerge below, but for the
moment, observe that nodes labelled ‘cats’, ‘see’, ‘mice’
are representations of the concepts involved, and nodes
labelleda , b , andg represent the roles ‘agent’, ‘action’,
and ‘patient’, respectively. The dark, diamond-shaped
nodes are ‘binding nodes’ (cf. Cottrell, 1985; Smolensky,
1990; Stevenson, 1994). Binding nodes are used tobind
nodes together into a unified representation. Thus, the fact
that ‘see’ is bound tob indicates that the ‘see’ concept plays
the action role in the entire proposition being represented.
The node labelled ‘core’ serves as a focal point for the entire
proposition being represented, and binds together the
various role nodes that belong to a single proposition.

R.F. Hadley, V.C. Cardei / Neural Networks 12 (1999) 217–235220

Fig. 2. Overview of Network Architecture. Arrows between layers corre-
spond to entire sets of links. Within the output layer, there are concept
nodes (e.g., ‘girls’ and ‘love’), conceptual role nodes (a , b , g ) and
sequence nodes (s1, s2 and s3). The blackened diamonds are nodes
which serve to bind together pairs of attached nodes. There are many
other links and nodes that occur within the semantic layer, but are not
shown here. Further details will emerge in discussions which follow.

Fig. 3. A partial representation for the internal meaning of ‘cats see mice’.
Bindings to the nodes S1, S2 and S3 result later, from spreading activation.



Nodes labelled ‘S1’, ‘S2’ and ‘S3’ aresequencenodes
which eventually record the order in which other nodes
become activated and bound. Note that in Fig. 3, the
sequence nodes have not entered into bindings with other
nodes. This is because, within the learner’s initial guess at
the intended meaning, nothing is known about the sequence
of activation that will emerge.

By contrast with the training phase, thetestphase for a
given sentence initially contains no active concept, role, or
binding nodes. However, as successive words are presented
to the input layer, activation propagates to the output layer,
where the activation continues to spread, causing nodes to
become active and bindings to occur. As various concept,
role, and sequence nodes enter into bindings,a semantic
parse results. This parsing process relies strongly upon
proper training of four sets of links, viz., links between
the input and output layers, between the input layer and
SOM (the Self-Organizing Map), between the feature
layer and SOM, and between SOM and the output layer
(see Fig. 2). In addition, the parsing process relies upon
certain principles of message passing and node-typing
that, for present purposes, may be regarded as innately
endowed. These principles arenot specific to a particular

language, and might well be intrinsic to the pre-existing
conceptualizing ability that permits the learner to guess
intended meanings during the training phase. These
message passing principlesare explained in Section 8.

3.1. Representations in the input layer

The input layer is a simple, one dimensional array of 25
units. Each unit represents a unique lexical item (word of
vocabulary). As the words of a given sentence are fed to the
input layer in sequence, the lexical unit corresponding to
that word is activated and remains active just until it fires to
the higher layers. Only one lexical unit is active at any given
time. Further details are given in Section 4.

3.2. Representations in the output layer

In order to gain an understanding of the overall functional
roles of various layers within our network, it is necessary to
understand more fully the representations that reside within
the output layer. Referring again to Fig. 3, we see that the
core node has direct links to the threeconceptual rolenodes
(a , b , andg ) and to the three sequence nodes (S1, S2, and
S3). These links are bi-directional. The entire cluster,
consisting of the core, links, three role nodes and three
sequence nodes, is described as a ‘pnode’, which is our
abbreviation forpropositional node constellation.Between
each role node and each sequence node, there exists a bind-
ing node, which may or may not be active. If active, we say
that the given role (say, agent) isbound to a certain
sequence position.

Within the output layer, there are a total of four pnode
constellations. Usually, not all of these pnodes will be active
when a sentence is assigned a ‘semantic parse’. However,
during the test phase, when deeply embedded clauses may
be present, it can happen that all four pnodes become active
during the parsing of a single sentence. The function of a
single pnode is to represent the meaning of a single, simple
proposition, in which concepts are bound to each of the
three conceptual roles (a , b , andg ).

As previously mentioned, the output layer also contains
nodes that (locally) represent concepts of objects and
actions. These concept nodes are activated, during the train-
ing and test phases, in response to activation flowing from
the input layer. All concept nodes belong to a single,
winner-take-all (WTA) network. For this reason, only one
winner is selected to become ‘‘newly active’’ at a given
time. Once activated however,concept nodes can remain
active (subject to decay)while other concept nodes are
made active during later ‘‘parsing’’ of a given sentence.
Any given concept node can potentially enter into a binding
with any given role node and any given sequence node. (See
Fig. 4). Corresponding to each of these potential bindings is
a binding node and links that connect the binding node to the
pair of nodes that can potentially bind. An actual (or active)
binding occurs only when the given binding node surpasses
its ‘firing threshold’ (see Section 5.4 for details). Fig. 4.
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Fig. 4. The concept node, ‘girls, is shown in active bindings with thea and
S3 nodes. Inactive, but potential bindings are also shown. Active bindings
are indicated by blackened diamonds.

Fig. 5. A semantic parse structure for the sentence ‘boys chase cats’. Only
active binding nodes are shown here.



Shows the concept node ‘girls’ in active bindings with thea
(agent) node and S3 (sequence-3) node of a given pnode.
Active binding nodes are indicated by blackened diamond-
shaped nodes. The remaining diamond nodes are inactive,
but represent potential bindings.

The function of sequence nodes at a given pnode is to
enter into bindings with both concept nodes and role nodes
in a particular sequence. We have assumed that all sequence
nodes in a given pnode are hard-wired to become active
in a particular sequence. (Note, however, that sequence
nodes might also betrained to activate in a particular
sequence. See Hadley and Hayward, 1995, for one such
example.)

Fig. 5 shows all the active bindings required for a parse of
‘boys chase cats’. Note that, conceptually speaking, ‘boys’,
‘chase’, and ‘cats’ have the respective roles of agent, action
and patient. Bindings between concept nodes and role nodes
reflect this fact. Moreover, active bindings between the three
concept nodes and the three sequence nodes reflect the
sequential positions that those constituents occupy in the
sentence ‘boys chase cats’. In addition, the active bindings
between role nodes and sequence nodes reflect the fact that
the constituent playing the agent role occupies first position
in the sentence that has been parsed. Analogously, the action
role node is bound to the sequence node for position two,
and similarly for the patient node and S3. If the original
sentence had been in passive voice, as in ‘cats are chased
by boys’, the agent node,a , would be bound to S3 instead of
S1, andg would be bound to S1 instead of S3. Bindings
between the concepts and sequence nodes would likewise be
switched, but bindings between concepts and role nodes
would be just as shown in Fig. 5.

Clearly, the task of setting bindings between role nodes
and sequence nodes is crucial to correct functioning of the
‘test phase’. During testing, many of these bindings are set
by activation that flows from the self-organizing map, while
other bindings are set via spreading activation within the
output layer. During training, all role-sequence bindings
are set via spreading activation just within the output
layer. This difference between training and test phases is
caused by the differences in acquired thresholds (full details
are given in Section 5.4).

Now, given that each pnode contains only three sequence
nodes, it may appearpuzzlingthat our fully trained network
is able to parse deeply embedded clauses. However, as will
emerge, entire pnode constellations can become attached (or
bound) to a single concept node. This concept node, in turn,
can be bound to a single sequence node in a given pnode.
Thus, our post-training network is capable of constructing
structures resembling deep trinary trees. The details of this
process are presented in Section 8, but we may now examine
how different pnodes canrepresentembedded propositions
within a complex meaning structure.

Recall that each of the four pnodes that reside within the
output layer can have bindings with various concept nodes,
and thereby represent entire propositions. When relative
clauses are present in a sentence, embedded propositions
modify one or more concepts. Thus, in the sentence ‘girls
see dogs that chase cats’, an embedded proposition ‘dogs
chase cats’ modifies the concept ‘dogs’ that occurs in the
main (top-level) proposition ‘girls see dogs’. Within our
output layer, one pnode (termed themaster pnode) is always
involved in representing the mainproposition that a
sentence expresses. The three remaining pnodes (called
mod-pnodes), can each, upon occasion, be involved in repre-
senting propositions that modify a concept in the main
proposition. Mod-pnodes have a structure identical to the
master pnode except that the core of each mod-pnode is
linked to binding nodes that connect to the concept nodes.
Thus, each mod-pnode core has a potential active binding
with any given concept. Fig. 6 shows a mod-pnode actively
bound to a concept node that occurs in another proposition.
Note that this concept is bound to sequence nodes and role
nodes in both the master pnode and the mod-pnode. (For
simplicity of display, bindings involving most of the
sequence nodes are not shown here, although they would
exist).

In Fig. 6, both the main and embedded clauses are in
active voice. If the embedded clause had been passive, as
in ‘girls see dogs that are seen (see) by cats’, then the ‘dogs’
concept node would be bound to the patient node (g ) in the
mod-pnode cluster, but would still (after parsing) be bound
to S1 in that same cluster. However, as mentioned, during
training, the learner’s ‘guess’ does not set any bindings
between concepts and sequence nodes. Rather, those bind-
ings are set indirectly by spreading activation. In addition,
training sentences never involve more than one relative
clause. So, at worst, the learner must sometimes guess that
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Fig. 6. A semantic parse structure for the sentence ‘girls see dogs that chase
cats’. Only active binding nodes are shown here. For simplicity, bindings to
most of the sequence nodes have been omitted from this figure.



one simple proposition modifies a concept in another simple
proposition.

Apart from pnode aspects that have already been
described, one other detail should now be noted. The core
of each pnode is linked to a unique satellite node, called the
focus of attentionnode. These focus nodes can become
active when a given core is prompted to fire by spreading
activation within the pnode cluster. Thus, focus nodes can
measure whether a given pnode is the currently the focus of
recent activity. As explained in later sections, active focus
nodes can ‘gate’ the flow of activation into a given pnode
from the self-organizing map (SOM).

3.3. Representations in the feature layer

As indicated in the foregoing discussion, our approach
assumes that the learner has already acquired concepts for
certain objects and actions (or relations). These concepts are
represented by local (atomic) nodes in the output layer, We
assume, however, that in the processes of acquiring these
concepts, the agent has tacitly discovered that certain
features typically characterize the objects or relations
being conceptualized. The functional role of thefeature
layer (Fig. 2) is to represent the agent’s knowledge of
features that characterize objects and relations. To this
end, the feature layer contains 35 nodes, each of which
represents a unique feature that is associated with a concept
node in the output layer. For example, the node for ‘cat’ in
the output layer has strongly weighted links to nodes repre-
senting the following features in the feature layer: [animate,
four-legs, meows, has-weight, has-size, has-shape, has-loca-
tion, furry, small, light, flat-face, flexible, small-nose]. In
fact, each concept node in the output layer has links to
every feature node in the feature layer. (A list of all features
is given in Appendix A.) We assume that weights on these
links were tuned during the process by which the learner
acquired all the concepts represented locally in the output
layer. For simplicity, we have pre-set each of these weights
to a value of one or zero, to reflect whether the correspond-
ing feature is strongly associated with the concept or not.
Admittedly, this is an over-simplification (as indeed is our
set of features). As frequently occurs in cognitive modeling,
we have chosen to explore certain complexities in our model
while simplifying others.

Now, each feature node in the feature layer has links to
each node within SOM. In the early stages of network train-
ing, particular lexical nodes in the input layer rapidly
become associated (i.e., weight-attuned) to particular
concept nodes in the output layer. Once this association
process stabilizes, a given input word will activate its proper
conceptual correlate (node) in the output layer. This newly
activated node, in turn, will send activation to the feature
layer, thereby activating the set of features which are
strongly correlated with the given concept node. Once this
set of feature nodes becomes active, they fire and spread

activation to SOM. This provides one source of learning
for SOM.

3.4. Representations in SOM

SOM is a one dimensional array consisting of 40 nodes
(anything in this range works well). It is fully connected, by
trainable links, to both the input layer and the feature layer.
During the training phase, both the input layer and the
feature layer send activation to SOM, but not simulta-
neously. In an unsupervised fashion, SOM forms distinct
neighborhoods that represent various activation patterns
that SOM receives from the input array and from the seman-
tic feature array. In consequence, SOM learns to reflect
either the most recentword of input, or salient semantic
properties of that word in the event that the word activates
some concept in the output layer.

Details of the self-organizing (S-O) training are presented
in Section 4. For now, we should note that input from the
semantic feature layer causes SOM to develop two major
representational neighborhoods, where each neighborhood
has fuzzy boundaries. These two neighborhoods are distrib-
uted activation patterns that represent, respectively, the
common features shared by object concepts and those
shared by relational concepts (including actions). In more
detail, concepts that share several semantic features (e.g.,
concepts of physical objects) will, upon separate occasions,
activate overlapping sets of features in thefeature layer.
These overlapping sets will eventually, via S-O training,
map into overlapping regions in SOM. The intersection of
these overlapping regions, in turn, forms a neighbor-hood
that comprises a distributed representation for the core prop-
erties of the semantically related set of concepts.

Of course, overlapping semantic regions can be found
within the featurelayer itself. As a consequence, one may
wonder whether SOM is strictly necessary. For example,
would it not be possible to create links directly from the
feature map to the output layer, and simply remove both
SOM and its incoming and outcoming links? The answer
is ‘‘perhaps, but not felicitously’’. We must remember that
SOM receives input both from the feature layer and from the
input layer. Importantly, information received from the
input layer isnot relayed upwards ifsemanticinformation
is soon received from the feature layer. The point of SOM is
that it has a dual role – on the majority of occasions, activa-
tion conveyed upwards from SOM reflects semantic infor-
mation only about core properties of the most recently
activated concept node. On other occasions SOM conveys
lexical information about the most recent input word. For
this reason we view SOM as a lexical/semantic layer.

3.5. Links between SOM and the output layer

As noted earlier, within the output layer, there exists a
unique binding node between each ordered pair of role
nodes and sequence nodes in a given pnode cluster. These
binding nodes (called ‘bind-RS nodes’ or simply ‘RS
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nodes’, for role-sequence binders) are grouped in separate
winner-take-all (WTA) clusters. In particular, the three
bind-RS nodes attached to any given role node form a
WTA cluster. This reflects the fact that a role node cannot
be actively bound to more than one sequence node at a time.

A major task of our network is to learn to activate the
bind-RS nodes in a manner that reflects the correct role that
a noun should play in a given sentence. For example, in the
passive sentence, ‘cats are chased by dogs’, the concept for
‘dogs’ occupies the third sequence position among concepts
that will be activated in a sequential reading of that
sentence. Thus, since ‘dogs’ plays the agent role in this
sentence, sequence node S3 should be bound to agent
node a . Importantly, representations developed in SOM
can assist in setting role-sequence bindings of this kind.
Indeed, the current function of SOM in our post-training
network is to set all such bind-RS nodes (though other func-
tions may be discovered). For this reason, each node in
SOM is connected to each of the bind-RS nodes. During
the training phase, appropriate bind-RS nodes are activated
via unsupervised activation flow. Simple Hebbian training
between SOM representations and active RS nodes then
permits the requisite associations to be learned for setting
active-voice and passive-voice RS binding nodes.

It it noteworthy that, once training is complete, activation
from SOM representations can cause several bindings to be
revised simultaneously. Moreover, SOM representations
can, in principle, reflect lexical information about word
suffixes, including ‘noun endings’ (declension). Conse-
quently, free word-order languages, which rely on noun
declension to determine case roles, should be amenable to
the approach adopted here.

3.6. Overall functionality

Now that the representational function of each layer has
been sketched, the overall functionality of our model can be
summarized as follows. (Please refer to Fig. 2).

1. Hebbian training of links between the input layer and the
output layer ensures that strongly weighted associations
are learned between referential words (the nouns and
verbs) and corresponding concepts in the output layer.
In addition, associations are discovered between the rela-
tive pronoun (‘that’) and the presence of mod-pnode
cores.

2. As the words of a sentence are presented to the input
layer, various concepts are activated within the output
layer, and activation spreads both within that layer and
to the feature layer. Spreading activation within the
output layer ensures that some bindings occur. Activa-
tion reaching the feature layer causes appropriate feature
nodes to fire into SOM.

3. Self-organizing training of links between the input layer
and SOM enables SOM to develop representations that
correspond to each of the vocabulary items. Similarly, S-
O training between the feature layer and SOM creates

distributed representations within SOM that roughly
encode core properties of physical objects, physical
actions, and some more abstract relations, such as
‘sees’ and ‘loves’.

4. Hebbian training of links between SOM and RS nodes
enables associations to be learned between certain self-
organized representations and particular role-sequence
binding patterns. The result is that very strong associa-
tions are discovered between those SOM representations
that encodepassive-voice lexical indicators(such as
‘are’ and ‘by’) and those role-sequence binding patterns
that correspond to passive-voice semantic parses.
Weaker associations are learned between SOM repre-
senttions of semantic feature clusters and those role-
sequence binding patterns that correspond to active-
voice semantic parses.

5. During the test phase, spreading activation from the
input layer activates concept nodes in the output
layer. These in turn spread activation in the output
layer, thereby triggering appropriate concept-
sequence bindings. Simultaneously, activation flows
from concept nodes to the feature layer and thence
to SOM. SOM then spreads activation to the output
layer, and activates relevant RS nodes. Further spread
of activation within the output layer results in appro-
priate concept-role bindings. The end result is that
relevant concepts are bound to appropriate sequence
nodes and appropriate role nodes.

4. The training corpus

Training and test data are generated using the grammar of
L (see Fig. 1). The training corpus consists of about 1000
sentences. In recognition of the fact that active voice
constructions are more common in ordinary dialogue than
passive voice, we have restricted the occurrence of passive
voice to roughly 24% of the training sentences. Within this
24%, passive constructions may occur either in the top-level
or in relative clauses (i.e., either in main or embedded
clauses).

In addition, less than 25% of the training sentences
contain relative clauses. As a result of this, opportunities
for training mod-pnode formations, which are central to
our meaning representations for relative clauses, are less
frequent than those for training the master pnode. Opportu-
nities for training passive-voice settings of RS nodes within
mod-pnodes are even less frequent.

Furthermore, and crucially, eight of the twelve nouns in
languageL are presented only in a single syntactic role
during training. Four of these nouns can occur only as gram-
matical subject and four only as grammatical object. These
eight nouns never appear, during training, as the head of a
relative clause, since that would often entail that the noun
plays one syntactic role within the main clause, and another
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role within the embedded clause. During the test phase,
however, all these restrictions are dropped.

5. Network training

Successful network training requires less than eight
complete passes through the corpus of approximately
1000 sentences. Each sentence of the training corpus is
presented to the input layer one word at a time. When a
given word is presented, its corresponding lexical unit is
activated (set to11) and remains active just until it fires.
By contrast, the entire target meaning representation of the
sentence being processed is active throughout the proces-
sing of a given input sentence. This means that all concept
nodes and pnode elements involved in this meaning repre-
sentation remain active during this time span. In particular,
the relevant concept nodes andpnode coresare set to their
maximum activation levels (13). Role nodes are also active
in this representation since the learner’s ‘guess’ is that
certain concepts are playing certain roles. These active
role nodes are set to12 initially, though they reach a higher
activation level when prompted by spreading activation. In
each complete propositional representation, the master
pnode is active. If a relative clause is present in the input
sentence, one of the three mod-pnodes will be chosen at
random to represent the embedded proposition that corre-
sponds to the meaning of the relative clause.

All links which enter concept nodes and pnode cores from
the input layer are trainable links. Indeed, all links between
layers are trainable, except the pre-weighted links that occur
between the output layer and the feature layer. Links that
occur between nodeswithin the output layer are not train-
able, but serve to spread activation and foster bindings. The
fact that not all links in our network are trainable reflects the
fact that we have employed connectionism to implement
higher-level functions. However, as previously noted,
some of these functions are themselves inspired by well-
known connectionist methods. The following subsection
presents an example of this.

5.1. Training between the input and output layers

Training of links between the input and output layers
employs the learning algorithm introduced in Hadley and
Hayward (1995). This algorithm incorporates the basic
Hebbian principle of incrementing weights on links that
connect any pair of simultaneously active nodes. In the
present case, simultaneous pairs of nodes occur each time
a word-unit is activated in the lexical layer. For, each such
unit is connected to every concept unit and every pnode core
in the output layer. (Concept nodes and pnodes cores are
collectively termed the ‘semantic nodes’). When a given
word-unit is activated, several semantic nodes are active
in the output layer, namely, all those involved in represent-
ing the entire target proposition. Each link from the active
word-unit to each active node in the output layer is incre-

mented by a simple competitive-Hebbian formula (details in
Appendix B).

A noteworthy point is that as these links are trained, their
terminus (semantic) node acquires a firing threshold. At any
given time, the terminus node is assigned a threshold equal
to.8 of the largest input surge the node has ever received. As
a result of this evolving threshold, after a few hundred input
sentences have been processed, only those input nodes
which are highly correlated with an active semantic node
can cause that node to fire.

By the time training is complete, links connecting lexical
input nodes to their correct, conceptual correlates within the
output layer have all acquired weights which reflect the
desired correlation. Indeed, weights on links connecting
referential word-units(the nouns and verbs) to their proper
conceptual counterparts are typically about 100 times stron-
ger than weights that reflect spurious co-occurrence. In the
case of ‘that’, which correlates strongly with mod-pnodes,
the ratio of correct weights to spurious weights is not as
dramatic, but it is more than sufficient to ensure that ‘that’
always (and only) excites modifier pnodes. (Recall that
there are three mod-pnodes. As these are randomly chosen
for inclusion in complex propositions, no single mod-pnode
is invariably present when ‘that’ is present).

Significantly, lexical units which represent the words
‘are’ and ‘by’ do not have conceptual correlates within the
output layer. For, it seems implausible that a learner would,
prior to training, already possess concepts that correspond to
the meanings of ‘are’ and ‘by’, which merely serve to indi-
cate the passive voice in our simplified language,L. Indeed,
the role of these passive indicators seems more syntactic
than referential.

5.2. Training of SOM

The training of SOM is somewhat unusual in that links
enter SOM from two separate layers, viz., the input layer
and the feature layer. We employ here a version of S-O
training owing to Kohonen (1984), and this requires that
all links entering SOM be tuned simultaneously. Thus,
each time activation spreads to SOM, whether from the
input layer or from the feature layer, the entire set of
weights, W, on links entering SOM is tuned. When an
input node is activated, it spreads activation to both SOM
and the output layer. At this precise time, nodes in the
feature layer all have an activation of zero, because the
feature layer is reset to zero each time a new word of
input is about to be processed. However, activation spread-
ing from the input layer to SOM triggers S-O learning, as
described in Appendix B.

As this occurs, activation reaching the output layer trig-
gers a WTA competition among just the concept nodes and
pnode cores (i.e., ‘the semantic nodes’). When a mod-pnode
core wins this competition, activation spreads within the
output layer, as detailed later in Section 5.3. As the mod-
pnode cores are not atomic concepts, and lack the semantic
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features of concepts, these core nodes are not connected to
the feature layer. Thus, the firing of a mod-pnode core does
not spread activation to the feature layer and does not
indirectly trigger S-O training. However, when aconcept
node wins the WTA competition, it fires, thereby spreading
activation both inside the output layer and to the feature
layer. Activation reaching the feature layer causes some
semantically relevant subset of feature nodes to become
active and to fire along links to SOM. This in turn triggers
S-O training on the entire set of weights, W, that enter SOM.
At this point, there are active nodes in the feature map, but
the input layer is no longer active. Thus, on separate occa-
sions, SOM has an opportunity to develop representations
corresponding to the semantic features of object concepts
and action concepts.

5.3. Activity within the output layer

Soon, we shall want to consider details of training on
links between SOM and active RS nodes in the output
layer. Before doing so, we need to understand how and
why particular RS nodes become active during training.
This, in turn, requires an understanding of spreading activa-
tion and binding processes within the output layer. These
processes are triggered as follows:

As each word is presented to the input layer, activation is
propagated upwards to semantic nodes in the output layer.
Each semantic node receives activation equal to the weight
on the link coming into that node from the active input node.
Upon receiving this input surge (or ‘boost’), all concept
nodes and mod-pnode cores enter into a WTA competition.
(The master pnode core does not compete. It will be active
in every proposition and does not play a semantic role in the
usual sense). That semantic node whose received boost is
largest will win the competition. We have assumed that
semantic nodes will spend their excess ‘boost’ when
competing, but not their initial level of activation. As the
maximumstableactivation level for semantic nodes is13,
any residual boost value is not retained once competition is
complete.

Now, the winning semantic node will be either a concept
node or a mod-core. When either of these wins, it fires, but
there are different ramifications in each case. We shall
consider each of these cases. However, first observe that
some activation will have reached the master pnode core
from the input layer. This activation causes the master
core to fire. This, in turn, activates the first sequence node,
S1, in the master pnode cluster.

5.3.1. When a concept node wins
When the winner of the WTA is aconceptnode, it fires,

thereby spreading activation to the feature layer. Concur-
rently, the firing of the concept node spreads activation
within the output layer. Recall that during training, all
concept nodes involved in the target proposition are already
active and are in active bindings with relevant role nodes.
These role nodes are also initially active (at12 activation).

Now, even in early stages of training, the winning
concept node will be among the initially active concept
nodes. (This is primarily as a result of the fact that no
concept node ever has the opportunity to accumulatemore
weight, on the relevant link, than the correct (appropriate)
concept node, and the latter is always active in the target
meaning representation). Also, given that a winning concept
nodefires, it spreads activation towards binding nodes. As a
consequence, the winning concept binds with the only avail-
able sequence node, S1. Moreover, activation will spread to
the binding node that already binds the concept to an active
role node. (See Fig. 3.) This active binding node is thereby
prompted to fire into the attached role node, which, as a
consequence, jumps from its current activation level (12)
to a higher level (13). We now have a highly active role
node and a highly active sequence node, S1. Each of
these will spread activation towards binding nodes. The
result is that they will bind, since they are the most
active (and currently available) role and sequence
nodes within the master pnode cluster. The bind-RS
node involved in this new binding attains an activation
level of 12. (Recall that role nodes can only be bound
to one concept node and one sequence node at a given
time — similarly for sequence nodes. Also, note that
during both training and test phases, activation levels
decay over time. More on this below).

Once the active sequence node, S1, has entered into bind-
ings with both a concept node and a role node, it is ‘‘fully
satisfied’’ and can enter into no other bindings unless some
existing binding is broken. (As things naturally occur, no
bindings are broken during the training phase). In general,
any new fully-satisfied sequence node will fire into the
pnode core, prompting the core to activate the next sequence
node, if any remain. Thus, once S1 is fully satisfied, it
prompts the core to activate the S2 sequence node.

Now, in certain cases (as in Fig. 7), a winning concept
node (e.g., ‘dog’) has active bindings to role nodes in both a
master pnode and a mod-pnode. In such cases, when the
winning node fires, it not only spreads activation within
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the master pnode, as described above, but it spreads activa-
tion directly to both the role node and mod-core that are
contained within the mod-pnode cluster. (See Fig. 7). When
activation reaches the mod-core, it prompts the core to fire
and activate the first sequence node, S1, within the mod-
pnode cluster. Once S1 becomes active, it will seek to bind
with the most active available concept node and the most
active role node within its own cluster. For this reason,
‘dogs’ would now bind with S1 in the mod-pnode cluster.
In addition, the recently ‘‘boosted’’ role node would now
bind with the most active sequence node, S1, just as
described above. Finally, once the S1 node in the mod-
pnode cluster is fully satisfied, it would prompt the mod-
core to activate a new sequence node, S2. Thus, the total net
effect of the firing of ‘dogs’ would be that ‘dogs’ binds with
a sequence node in the master pnode and also within the
mod-pnode. In addition, spreading activation causes role
nodes to bind with sequence nodes within both pnode

clusters, and S2 becomes active in the mod-pnode cluster,
as shown in Fig. 8.

5.3.2. When a mod-pnode core wins
Having examined the case where a concept node wins the

WTA competition, let us now consider what occurs when a
mod-core wins instead. Except in the earliest stages of train-
ing, a mod-core wins a WTA competition because a lexical
input node, corresponding to the relative pronoun ‘that’, has
just spread substantial activation to a mod-core. This is a
consequence of the fact that, early in network training,
correct associations between lexical nodes and semantic
nodes are learned.

Suppose for the moment, then, that a mod-core, which is
an active component of the complete target semantic repre-
sentation, has just ‘won’ and subsequently fired. Cores of
pnodes have ‘‘outgoing links’’ only into their own sequence
nodes and into their respective ‘‘focus of attention’’ nodes.
As our given mod-core has presumably just fired, it spreads
activation to its ‘‘focus node’’ and will also attempt to acti-
vate a sequence node,unless it has already activated a
sequence node that remains, as yet, not fully satisfied. Let
us assume that the mod-core fired as a response to a compe-
tition triggered by activation from the ‘that’ lexical node.
This means that the preceding word was a noun, which
should have caused a concept node to fire on the preceding
iteration. The firing of this concept node would have
reached the mod-core in the manner described in the preced-
ing subsection. Thus, the mod-core would already have acti-
vated both its S1 sequence node (which would now be fully
satisfied) and its S2 node, which remains unsatisfied.

5.3.3. The role of ‘‘focus nodes’’
In the foregoing, we have examined how various bindings

are set within the output layer during training. Especially
germane to our present concerns are the RS node settings.
The setting of RS nodes determines whether, say, sequence
position S1 is bound to an agent role or a patient role.
During the test (or parsing) phase, RS nodes are set by
activation flowing from active regions within SOM. Indeed,
this also occurs in the latter stages of training, when RS node
thresholds are surpassed by the sum of activation flowing
from SOM. (This latter aspect will be explored in the
following section). Our present concern is to stress that,
during both training and testing, activation usually flows
from SOM intoappropriate, active RS nodes. In particular,
flow of activation and weight training should occur on those
links entering active RS nodes which belong to the pnode
which is currently the center of activityin the sensethat the
core node is being stimulated by firing concepts or other
satellites within the pnode cluster (such as role or sequence
nodes). For, activity of this kind indicates that, cognitively
speaking, the proposition represented by that ‘‘most active’’
pnode is the current ‘‘focus of attention’’.

The focus of attention nodes, mentioned earlier, serve
the role of measuring which pnode within a complex
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Fig. 8. Here we see the result of bindings that occur after ‘dogs’ has fired
and spreading activation has triggered further bindings.

Fig. 9. A focus node is attached to each core node. Each of the virtual links
(the dotted lines) leaving a focus node makes a conjunctive connection at
the point that each link from SOM enters a RS node (i.e., any RS node that
exists within the pnode cluster that ‘‘owns’’ the focus node). Only when
activation flows along both of the conjoining links that enter a RS node can
the RS node actually receive activation from SOM and only then does
weight tuning occur on links from SOM to the RS node.



propositional representation is currently receiving the
most attention. This occurs as follows: Each time a
core node receives stimulus from within its own cluster
or, in the case of mod-cores, by winning a WTA
competition, the core fires into its own unique ‘‘focus
of attention’’ node (See Fig. 9). This focus node
receives and assumes an activation level equal to that
of the core node which just fired. In addition, all focus
nodes, which are collectively attached to the various
core nodes, belong to a single WTA network. As a
consequence, the most active focus node at any given
time will win a competition with all other focus nodes
in the competitive cluster. The winningfocus node
retains the activation level it possessed at the onset of
this competition, while the losing focus nodes are effec-
tively inhibited by the winner. It sometimes happens
that two focus nodes tie in this competition, in which
case they both function as winners.

Now, winning focus nodes are able togate activation
flow, from SOM, into all active RS nodes that exist within
the same pnode cluster as the winning focus node. Active
focus nodes remain able to do this as long as they continue
to win competitions. The actualgating processis implemen-
ted algorithmically in our current network because the
connectionists methods by which such gating can be
achieved are already well understood. However, the dotted
lines in Fig. 9 indicate possible links which could achieve
this gating process. These links may be regarded as
‘‘virtual’’ in our current implementation.

Now, it should be noted that the activation level of core
nodes, which supply activation to focus nodes, decays over
time. Thus, focus nodes attached tonewly activated mod-
cores will receive higher activation levels than focus nodes
attached to previously activated core nodes. In addition, let
us note that any active focus node becomesinactive if it
receives an inhibitory signal from its attached core node.
This always and only occurs when the core node receives a
‘‘termination signal’’ from thelast sequence nodewithin
the given pnode cluster. That is, when the last sequence
node (S3) in a pnode cluster becomesfully satisfied, it can
enter into no further bindings. In this case, it sends a signal
to the core, which then inhibits its own focus node. A focus
node which is thus inhibited drops to zero activation and
ceases to inhibit other focus nodes attached to other pnode
cores. The latter focus nodes are then, once again, able to
assume the activation levels of their attached core nodes,
which triggers a new WTA competition among the focus
nodes. In this way, another, less active pnode becomes the
focus of attention3.

5.4. Training between SOM and the RS nodes

All nodes within SOM are fully connected to each RS
node in the output layer. The initial weight on each of these
links is 0.001, which is appropriate given that Hebbian train-
ing is employed. During training, weights are incremented
on all of these links, provided (a) that the sending node (in
SOM) fires, (b) that the relevant focus node ‘‘gate’’ is open
(see Fig. 9), and (c) that the receiving RS node was already
active, or now becomes active because its currentthreshold
was surpassed by the sum of activation arriving at the RS
node. Let us consider conditions (a) and (c) in turn; (b) was
discussed in the preceding subsection.

(a). As previously mentioned, SOM receives activation
both from the input layer, and, on most occasions, from the
feature layer. The quantity and distribution of this received
activation always determines a winning node within SOM.
As each word of input is processed, SOM waits to see if acti-
vation will arrive from the feature layer. If it does arrive, a new
winner emerges in SOM. Otherwise, the winner selected by
the latest surge from the input layer is retained as thecurrent
winner. In either case, the current winner plays a special role,
in that its activation level determines which SOM nodes may
fire on the current iteration. In particular, any SOM node
whose received activation is at least half of the winner’s can
fire upwards to the output layer. This firing triggers Hebbian
training on links between SOM and the RS nodes.

(c). A ‘‘receiving’’ RS node may already be active because
it recently effected a binding (between a role and a sequence
node) as a result of spreading activation within the output
layer. In such cases, the RS node will have its maximum
activation level (12) or a slightly lower level, as a result of
decay. In addition, a RS node can become active if its current
activation threshold is surpassed by arriving input activation.
Thresholds of RS nodes vary over time, as a function of how
much training has occurred on links entering the RS node. At
any given time, a RS node’s threshold equals (2 minus the sum
of all weights entering the node). As each RS node has a
maximum weight limit of12 (i.e., the sum of weights entering
the node can never exceed12), a RS node’s threshold begins
near12 and, over time, diminishes towards zero.

It is important to note that a RS node may be onlyvery
briefly activated because, though it received a sum of acti-
vation from SOM that exceeded the RS node’s threshold, it
then entered a WTA competition with other RS nodes, one
of which had a higher activation level. Any RS node that
was activated by spreading activation from a role and a
sequence node (inside the output layer) would have a high
activation level and would inevitably win such a competi-
tion. RS nodes which lose such competitions are not
involved in the weight tuning process. Technical details of
this Hebbian process are given in Appendix B.

5.5. Training phase – a second pass

In Sections 5.1–5.4, we examined training processes that
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agent would possessneural wiringresembling the structures just described,
it does not seem wild to suppose that a cognitive agent would incorporate
the functionalityof the algorithm we have implemented.



occur in response to the processing of a single word of input.
(Appendix B presents a high-level, algorithmic summary of
these training processes.) In accord with conditions
described above, this training occurs in response to each
word in an input sentence. However, before another input
sentence is processed, an additional training pass is made
through the original sentence, while bindings in the output
layer are held constant. That is, after the original sentence
has been processed, all bindings in the output layer are
frozen, and another training pass occurs. On this second
pass, all weight increments are increased by a factor of
five. Thus, the second pass is really equivalent to five further
passes through the given sentence using normal increments.
For reasons of efficiency, we have compressed these five
passes into a single pass. Apart from increased efficiency,
the motivation for our second pass is that it occurs whenall
relevant bindings are in place, rather than just a subset of
relevant bindings.

6. The test corpus

The test corpus was intended to ensure that each of the
eight nouns that were restricted to a single syntactic position
during training would be tested in all other legal positions.
To this end, a test corpus of 17 000 sentences was created.
Of these, more than 16 000 contain relative clauses, both in
active and passive voice. Around 3000 of the test sentences
contain relative clauses at a deep level of embedding (level
3), and even more contain clauses at the second level of
embedding. Active and passive voice formations are equally
prevalent at all levels of embedding.

7. Results of testing

Our basic network was separately trained on five distinct
training corpora, where each (1000 sentence) corpus
conformed to the specifications described in Section 4. As
a result, five distinctly weighted networks were obtained.
Each of these five networks was then tested on the test
corpus described immediately above. Sentences in the test
corpus were presented,seriatum, to each of the five
networks and the output representations were examined
for correctness by a separate (classically symbolic)
program. A given output representation was judged to be
correct if (1) all appropriate nodes possessed activation
levels greater than their firing thresholds, (2) all appropriate
bindings were activated, (3) no inappropriate nodes were
active. Our testing of all five distinct networks yielded
100% accuracy in each case.

8. The test (or parsing) phase

As mentioned earlier, some of the binding processes that
occur during the test phase of our network are determined

solely by activation levels that result from spreading activa-
tion. This spread of activation is determined by acquired
weights (during training) and by the pre-existing link struc-
ture between layers and within the output layer. In addition,
however, binding processes in the output layer are also
influenced by certain general principles that are assumed
to govern the ‘‘message passing’’ behaviour of the parsing
processes that occur within the test phase. That is, in effect,
the output layer is partially governed by a pre-existing set of
parsing principles, which are not specific to any given
language and which operate in parallel. Whether this pre-
existing set of principles should be regarded as innate or as
the result of prior learning can be left an open question for
present purposes.

In order to understand our ‘‘minimal parser’’ and how it
interacts with spreading activation levels to form coherent
representations, we need first to understand that sequence,
role, binding and concept nodes in the output layer each
have a unique identity label, called an ‘‘id-tag’’. In our
implementation, each id-tag is a unique numeral, where a
portion of the numeral determines its ‘type’. However, for
expository purposes, and in terms of functionality, it is
easiest to imagine an id-tag as consisting of two parts: the
nodetypeand a numeral. For example, concept nodes have
the symbolic type ‘c’, whereas role nodes have the symbolic
type ‘r1’, ‘r2’, etc. The three role nodes at a given pnode,
then, might have the following id-tags: r2-1, r2-2, r2-3. Role
nodes at a different pnode might all have the symbolic type,
‘r3’. The situation is analogous for sequence nodes and also
for binding nodes. Thus, sequence nodes at different pnodes
have different symbolic types, but within a given pnode,
they all have the same symbolic type. All concept nodes
have the same symbolic type, ‘c’, but distinct numeral
components. Note that when the type and numeral for
each node is concatenated (as in s1-3), the result is a unique
id-tag for the node.

Now that id-tags have been introduced, we can state
certain general principles that govern the parsing process
during testing. We present these principles with annotation,
so that their motivation can emerge as appropriate. The
principles are:

P1. Whenever two nodes bind, they exchange id-tags (via
the connecting link) and retain a copy of the id-tag just
received in a list of such tags. This applies to binding
nodes as well: The result is that each role, sequence,
and concept node ‘‘knows’’ the identity of all nodes
they are bound to, including binding nodes.
P2. When two nodes bind, they not only exchange their
own id-tags, but they exchange the list of id-tags that they
currently have stored. Such lists are always short because
binding processes result in ‘‘triangles’’ in which a
concept, a role, and a sequence node are each bound to
each other.
P3. (A derived principle). As a consequence of P1 and P2,
binding nodes that create new bindings between two other

R.F. Hadley, V.C. Cardei / Neural Networks 12 (1999) 217–235 229



nodes will often ‘‘inherit’’ a list of id-tags. This list may
contain the id-tag of another binding node that has
already entered into a binding with one of the involved
nodes. In such cases, we call the earlier binding the
‘‘ancestor’’ binding. A newly activated binding node
which inherits the id-tag of an earlier binding is called
a ‘‘descendant’’ binding.
P4. A node cannot be in an active binding with more than
one other nodeof a given type. Recall, however, that role
(or sequence) nodes in different pnode clusters have
different types.
P5. A node does not bind, even indirectly, with two
distinct nodes of the same type. Specifically, if a node
(N1) ‘‘holds’’ within its list of id-tags the tag of a node
(N2) of a given type, T, then N1 is bound, either directly
or mediately, to N2. In such cases, N1 willnot bind with
another node, N3, which has within its list of id-tags the
tag of some node of that sametypeT (e.g., the role type),
but which possesses a different identity number from N2.
P6. Role and sequence nodes can only bind with each
other if they belong to the same pnode. However,
concepts can enter into bindings in more than one pnode.
P7. Other things being equal, nodes prefer to bind with
the most activenode of a given type, provided this is
permitted by principles P4, P5 and P6.
P8. When activation spreads from SOM to RS nodes, new
WTA competitions arise. This can cause a formerly
active binding node to become inactive. When this
occurs, that binding node spreads its id-tag, along with
a ‘‘delete’’ signal to the nodes it formerly joined. They
will then delete that binding node’s id-tag from their
current list, and continue to propagate the ‘‘delete-id-
tag’’ message so that other nodes may do the same.
P9. Whenever a descendant binding node, D, receives a
‘‘delete id-tag’’ signal from a binding node which D
recognizes as an ancestor binding (caused by the presence
of the id-tag in the descendant’s current list), then D
ceases to be an active binding. The motivation for this
is that, as things occur, the descendant binding only arises
as a side-effect of the ancestor binding, and conceptually,
should cease to exist when the ancestor binding is broken.
P10. In general, whenever a binding is broken between
any two nodes, they each delete the other’s id-tag from
their current list of tags.

It should be noted that when a binding is broken, the
‘‘terminal nodes’’ which were formerly bound are prompted
to fire, and will thus seek new bindings, where possible. In
general, a binding can occur only if (a) a binding node
receives sufficient activation from a firing node, or (b) the
binding node is already active. In the former case (a), the
node which fires into the binding node may be within the
output layer or within SOM. In cases when firing from SOM
causes a RS node to win a WTA competition, that RS node
can effect a binding between a role node and a sequence
node, provided they are both already active. If only one of

the pair is active, the RS node will bind with that active
node. If neither is active, the binding node becomes inac-
tive, since its role (like all binding nodes) is to effect bind-
ings with active nodes.

With principles 1-10 in hand, we are now in a position to
consider thegeneral cycleof activity that occurs as each
word of a test sentence is presented during the parsing (or
test) phase. In presenting this cycle, we assume what our
testing has already confirmed, viz., that inter-layer training
does produce the weight vectors we anticipated.

In the outline presented below, binding processes occur at
various points. Though we do not explicitly say this at every
relevant point, each of these bindings involves the id-tag
swapping processes, and binding preference principles
described above.

8.1. Outline of the basic test cycle

1. The first word of the sentence activates a node in the
input layer, which in turn sends activation to the output
layer. Some of this activation reaches the master pnode
core which now becomes highly active (13). (Recall that
the master core does not compete with other semantic
nodes). Activation from the master core causes the first
sequence node to become active (13). In addition, the
master core fires into its attached ‘‘focus of interest’’
node, which now assumes the activation level of the core.
2. Repeat while there are words left in the sentence

2.1 If the input word was a noun or verb, then we would
expect the following to happen:

Activation reaching the output layer is sufficient to
cause one or more concept nodes to surpass its (their)
firing threshold. When this occurs, a WTA competition
ensues among all such concept nodes, and one winner
emerges.
That winning concept node now fires into the feature
layer, with the result that some feature nodes become
active. These in turn fire into SOM, where some neigh-
borhood of nodes will become active.
Also, that same winning concept node now spreads
activation within the semantic layer. This spreading
activation reaches binding nodes. At this point, there
is already at least one active, available sequence node
connected to one of those binding nodes. A WTA
competition occurs among all viable binding nodes,
and a winner is chosen. This binding node remains
active, effectively binding the most active concept
node (our recent winner) to the most active sequence
node that is free to bind. Note that id-tags are
exchanged here and preference principles govern the
process.
At this point, the active neighborhood within SOM can
fire, thereby sending activation to all RS nodes that are
currently ‘‘enabled’’ by an active focus of attention
node.
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WTA competitions now occur among each set of RS
nodes that belong to each role site within the ‘‘currently
enabled’’ pnode. Winning RS nodes are picked for each
of these competitive sets.
Each winning RS node will retain the activation level
which it has just received from SOM,unless it already
has a higher level of activation.In general, active RS
nodes always retain the higher of these two levels.
Each of these winning RS nodes is connected to a
sequence node and a role node. If neither of these is
already active, the RS node ceases to be active.
However, if either the sequence or role node is already
active, the RS node will bind with it. Usually, this
means the RS node binds with an activesequence
node. If such a binding occurs, then the RS node fires
and sends activation towards any inactive role node to
which it is connected. Normally, some role node now
receives this activation, in which case the hitherto inac-
tive (role) node now assumes its highest activation level
(13). Id-tag and preference processes apply here.
The newly active role node will now spread activation
towards binding nodes that connect with concept nodes.
Usually, this triggers a binding between the newly
active role node and the most active concept node
that is not already bound to another role node within
the current pnode. (i.e., the role node binds with the
most activeavailable concept node.) Again, id-tag
and preference processes apply here.

2.2. If the input word was ‘that’, then, within the output
layer, we would expect the winner of the competition
among semantic nodes to be a mod-pnode core. In this
case, the mod-core will become highly active (13) and
fire, thereby activating its first sequence node (S1) and
activating its focus of attention node. Thisfocusnode
then enters a WTA competition with any other active
focus node and would win (since any other focus node
would have a lower activation, as a result of decay).
Following that:

The mod-core binds with the most active concept node.
The newly activated sequence node (within the mod-
pnode) will now bind with the most active,available
concept node.
The mod-pnode core has no connection to the feature
layer, and so cannot fire into it. However, SOM waits
for input from the feature layer. As none arrives, SOM
will fire into all RS nodes that belong to the current
mod-pnode. (This pnode is the current focus of interest,
and so its RS nodes are currently able to receive activa-
tion.) WTA competitions now occur within each
enabled cluster of RS nodes, and winners emerge, as
previously described. Winning RS nodes will be
selected, but since there is only one active sequence
node (S1) within the mod-pnode cluster, only one of
the winning RS nodes can now bind with a sequence
node. When this binding occurs, the RS node fires and

thereby activates a role node. Most often, this role node
will be ana node, but it will sometimes be ag node.
The newly active role node will now bind with the most
active, available concept node (which is the same
concept node that just bound to a sequence node). At
this point, no more bindings are possible, and the first
sequence node is fully satisfied.

2.3. If the input word is not a noun or verb and not a
relative pronoun (‘that’), then, given our restricted
vocabulary, it must be a passive voice indicator (either
‘are’ or ‘by’). In this case we would expect that no
semantic node wins a WTA competition because no
semantic node will exceed its firing threshold. As a
consequence, the feature layer will receive no input
from the semantic output layer and will not fire into
SOM. However, SOM still briefly waits for input
from the feature layer. Once it is clear that such input
will not arrive, SOM fires into the RS binding nodes.
The result is that WTA competitions occur among all
RS nodes that are currently enabled by an active ‘focus
of interest node’. If any RS node which now wins was
not already active, then some previously active RS
nodes may now become inactive. When this occurs,
bindings are broken, and this will often trigger the
breaking of descendant bindings, as previously
explained. In addition, all newly activated (winner)
RS nodes will fire, spreading activation towards role
nodes and sequence nodes. If such activation reaches
an active node, a new binding will occur. This in turn
will often cause an attached role node to become active,
as a result of the firing of the RS node when a binding
occurs.

When no further bindings can occur, a decay factor is
applied to all active concept, role, core, focus, and sequence
nodes.

Also, if a sequence node became fully satisfied during the
current cycle, then a new sequence node is activated at the
current pnode (provided there remains a sequence node to
activate).

If the last sequence node at a given pnode became fully
satisfied during the current cycle, then the ‘focus of interest’
node at that pnode will be de-activated. At this point, the
cycle ends, and a new input word is processed. Thus, we
return to step 2 above.

9. Discussion

We trust that, by now, it is clear that the approach adopted
here relies strongly upon techniques drawn both from the
classical symbolic paradigm and from the connectionist
school. The connectionist learning methods employed here
play a crucial role in our model’s success. Equally important
are the prior link structures inherent in the output layer and
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the general principles governing id-tag exchange and bind-
ing possibilities. These pre-existing structures and princi-
ples are consistent with the general tenets of the
Chomskian stance on language acquisition, viz., that
language learning is possible only when prior linguistic
universals and language acquisition mechanisms are
present. However, as far as we have discovered, nothing
in our approach precludes the possibility that these aspects
could be acquired by prior learning.

In future work, we plan to address certain limitations
of the present implementation. For example, our exist-
ing preference rules (P1-P10) collectively entail that a
given concept node can be bound only to one role node
within a given pnode. (Of course, the concept node may
have bindings to roles in more than one pnode.) We
believe this limitation could be removed through an
improved set of preference rules. Also, our current
implementation limits the maximum depth of clausal
embedding to level three. This limit could easily be
extended to level five by the addition of extra mod-
pnodes and further training. However, this modification
would not meet the concerns of those who maintain that
a language acquisition system should have the capacity
for unbounded recursion. To meet such concerns about
competence(as opposed to matchingperformance), one
could introduce a type-token distinction for mod-
pnodes, and generate new copies of trained mod-pnodes
as they are needed. This approach would also have the
advantage of allowing just a single mod-pnode to be
employed during training, with the result that training
would be considerably more rapid. Given that we are
not presently emulatingpure connectionism, such a
type-token strategy should present no obstacles. Further
details on this approach are given in Hadley and
Hayward (1997).

It is noteworthy that a type-token distinction among mod-
pnodes could bring another significant benefit. For example,
it would almost certainly mean that a significantly smaller
fraction of passive voice sentences and relative clauses
could be employed during training. As things now stand,
our percentages for passives and relative clauses (24% and
25%, respectively) are too high for cognitive fidelity.
Although we have not methodically investigated how
much lower these percentages could be set before our
model would fail, the fact that three separate mod-pnodes
require training probably requires that these percentages be
set above 10%. The difficulty at present is that, when only 1/
4 of all relative clauses are in passive voice, and only 1/4 of
training sentences contain relative clauses, then just 1/16 of
training sentences present the passive-relative combination.
When three separate mod-pnodes must be trained, there are
comparatively few opportunities for training an individual
mod-pnode in the passive-relative RS node configuration.
As an aside, it is interesting to note that both our current
model and the modification just outlined would predict
that children make considerably more errors in the

comprehension and production of passives within relative
clauses than within main clauses. For, in either case, mod-
pnodes have fewer opportunities for training in passive
voice than the master pnode.

Apart from the foregoing, we anticipate other modifica-
tions which would expand the range of languages learnable
by the our model. For example, we have performed related
experiments, involving multiple context layers that record
prior states of a different SOM, with encouraging results.
The inclusion of such context layers in our current model
could ensure that activation of RS nodes will reflect a larger
preceding context (within the input stream) than is currently
the case. This would render the setting of RS bindings more
context-sensitive, and extend the range of learnable
languages. In addition, we anticipate that the inclusion of
prepositional phrases within the target language could be
accommodated through the introduction of other kinds of
pnodes. Note that prepositional phrases modify concepts in
a fashion not unlike relative clauses.

Moreover, it should be noted that even the present imple-
mentation could learn a variety of word orders. Nothing in
the present model creates a bias towards a NP-V-NP (noun-
phrase, verb, noun-phrase) ordering. NP-NP-V and V-NP-
NP orders are equally learnable. Also, as previously
mentioned, it seems feasible that free word-order languages
are learnable. Provided the grammatical role of nouns,
within the input stream, is indicated by case markers
(such as noun suffixes), SOM could detect these markers
and correlate them with appropriate role-sequence bindings
in the output layer.

In passing, we should address a claim made in our intro-
duction, viz., that our model not only attains strong systema-
ticity but does so in an intelligible manner. We believe that
brief reflection revealshow the network attains systemati-
city. During the testing phase, at relevant steps, the most
active concept node will bind with the most active role node.
Moreover, the ability of a noun or verb to activate a new
concept node in no way depends upon that word’s syntactic
context. All that matters is the strength of connections
between the given input node and concept nodes in the
output layer. By contrast (again during testing), the activa-
tion of role nodes is sensitive to the preceding sentential
context, but not to the identity of particular nouns and
verbs. Rather, role nodes are indirectly activated by SOM
representations whichreflect very general semantic aspects
of nouns and verbs. Thus, role nodes can become active
when syntactically appropriate. Now, because a concept
node becomes active independently of surrounding context,
its ability to bind with an active role node is not affected by
restrictions on the syntactic positions during training, of any
wordwhich expresses that concept. The ability of a concept
node to bind with a sequence node is analogously unaffected
by the training phase. Consequently, the validity of semantic
parses created during testing is unaffected by our restrictions
on noun position during training. The upshot is strong
systematicity.
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10. Summary of results

We have presented a connectionist-inspired, parallel
processing model for the acquisition of the active-passive
distinction. Although the system has clear limitations, and
does not constitute a cognitively accurate model, we suggest
that the model’s contribution consists partially in the tech-
niques introduced, and the general direction of research
outlined. Apart from that, the system’s significance stems
from its simultaneous satisfaction of several goals which,
arguably, would need to be attained in a cognitively faithful
model of the acquisition of the active-passive distinction.
We know of no existing language learning system that satis-
fies even a majority of these goals.

These goals are:

• Meaning representations are accurately assigned to both
active and passive sentences (albeit in a simplified
syntax). The active–passive distinction is acquired with-
out supervised provision of cues or flags (in the output
layer) that indicate whether the internal ‘‘target mean-
ing’’ belongs to an active or passive sentence.

• Relative to a vast space of possible test sentences, the
model learns on the basis of sparse input.

• The model generalizes its capacity to interpret active and
passive sentences to deeper levels of clausal embedding.

• After training, the model satisfies criteria for strong
syntactic and strong semantic systematicity that humans
also satisfy (cf. Hadley, 1994b).

• Training of the model employs only error-unsupervised
learning methods. It is widely believed by psycholin-
guists that humans receive very little (if any) negative
feedback during pre-school language acquisition.

In passing, we should note that our connectionist-inspired
model is not intended either as a confirmation or as a coun-
ter-example to Fodor and Pylyshyn (1988) views on
systematicity and the limits of connectionist representa-
tions. We freely acknowledge that much of our network is
implementing higher levels of functionality. Indeed, this has
been a major focus of this article. We also believe, though,
that connectionist training methods contribute in essential
ways to the model’s success.
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Appendix A

Features assigned to concepts in our implementation are
admittedly incomplete and approximate. However, they
serve to convey the general approach we have adopted.

Features of concepts of physical objects are taken to be
subsets of the following: animate, inanimate, two-legs, four-
legs, talks, barks, meows, squeaks, has-weight, has-size,
has-shape, has-location, furry, large, small, heavy, light,
laughs, bites, long-snout, flat-face, small-nose, rigid, flex-
ible, tubular, round.

Note that concepts of all physical objects would have
certain of these features: e.g., has-weight, has-size, has-
shape, has-location.

Features of concepts of actions and relationships
(expressed by verbs) are taken to be subsets of the follow-
ing: physical-motion, involves-contact, involves-animate,
rapid, slow, emotive, feeling-nice, feeling-bad, involves-
perceiving.

Appendix B

B.1. High-level algorithm for the training phase

Repeat for each sentence in the training corpus;
Activate those concept nodes, role nodes and binding

nodes within the output layer which are required to repre-
sent the meaning of the given sentence;
Repeat for each word in the given sentence;
Reset all nodes in the input layer, feature layer, and

SOM to zero activation.
Activate the lexical input node corresponding to that

word;
Spread activation from the given input node to the

output layer and to SOM.
Apply Hebbian training (item B.2, below) to links

between the input layer and the output layer.
Apply S-O training (item B.3, below) to all links enter-

ing SOM.
If a semantic node within the output layer received

activation which surpassed its threshold, them choose
some winning semantic node within the output layer,
allow it to fire, and perform bindings as described in
Section 5.3.

If a winning node was selected in the previous step, it
spreads activation to the feature layer. Activation then
spreads to SOM.

Find the most active node within SOM and apply S-O
training (item B.3, below) to all links entering SOM.

The most active node within SOM also defines an
active neighborhood. This active neighborhood fires,
spreading activation to those RS nodes within the output
layer which are currently enabled by a focus of interest
node.
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Apply Hebbian training (item B.4, below) to links
between SOM and enabled RS nodes.
End Inner Cycle.
Without altering any bindings within the output layer,

repeat the above inner cycle once again for each word in
the given sentence, using five-fold increments (see
Section 5.5).
End Outer Cycle.

B.2. Hebbian training of links between the input and output
layers

Let Sbe any active concept or pnode core (i.e., semantic
node) in the output layer. Then the link (L) coming intoS
(from an active input node) is incremented as follows:

increment� 0:0005R

whereR is the ratio of the current weight onL to the current
average weight of links intoS. Note that the ratioR can
cause links with ‘above average’ weight to be rewarded
significantly. As learning proceeds, the learning on winning
links accelerates, and little weight is assigned to links which
reflect spurious co-occurrences.

Initially, the weight on each link,L, is 0.0014. All seman-
tic nodes,N, in the output layer have a fixed weight limit (of
11) on the sum of weights on links enteringN. As a result
of this, weight modification between the lexical layer and
the output layer must halt when all semantic nodes have
reached their weight maximums, i.e., when no concept
node or pnode core has any weight left to distribute
among its incoming links. This occurs well before other
network training has completed. Once the lexical-to-seman-
tic links have been fully trained, they continue to spread
activation to the output layer as other network training
progresses.

B.3. Self-organizing training of the SOM: technical details

We have obtained good results with both one-dimen-
sional and two-dimensional SOMs of various sizes. For
simplicity, our present network now employs a one-dimen-
sional map containing 40 nodes. Weights on links entering
SOM (the set W) are set to random values between zero and
0.01. Nodes within SOM are initialized to have equal
values; these sum to11.

As activation flows into SOM, some node within the map
receives the greatest activation. This node (the ‘winner’) is
used as an origin point for measuring Euclidean distances.
Weights in the set W are then updated according to the
following function:

Dw�k; j� � he2ra�I �j�2 w�k; j��
In the above,w(k,j) is the weight on the link from input node
j to nodek; h is the learning rate (1.0 in our case);r is the

Euclidean distance between nodek and the winner node;a is
the annealing factor; andI(j) is the value of input nodej. In
our application, the annealing factor, a, has an initial value
of 0.005 and increases linearly during training towards 1.0.
This causes eventual stabilization of SOM, as a result of the
fact that each winner’s neighborhood diminishes in size as
training progresses. By the time a few thousand sentences
are processed (about 2 epochs), the neighborhoods are effec-
tively stable and frozen.

B.4. Hebbian training of links between SOM and RS nodes

Weight modification is applied to every link connecting a
node within SOM (designated as node i) to a RS node
(denoted j) when conditions (a), (b) and (c) obtain. The
precise increment applied to each link is determined by
the Hebbian rule given below. This weight modification
occurs only after activity in the output layer has stabilized
(i.e., WTA competitions are complete and bindings in the
output layer have all been set).

D�i; j� � hR activation�i� activation�j�
whereD(i,j) represents the size of the increment;R is a user
determined learning rate (0.00005 in our implementation);
and h is an adaptive rate that increases over time once
neighborhoods in SOM have largely stabilized. Theh rate
begins near zero and increases gradually during the first
training epoch (around 1000 sentences). During each
succeeding epoch,h increases in increments of roughly
11 until it reaches a maximum of at most seven.
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