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Abstract 

Color correcting images of unknown origin (e.g. 
downloaded from the Internet) adds additional 
challenges to the already difficult problem of color 
correction, because neither the pre-processing the 
image was subjected to, nor the camera sensors or 
camera balance are known. In this paper, we propose 
a framework of dealing with some aspects of this 
type of image. In particular, we discuss the issue of 
color correction of images where an unknown 
‘gamma’ non-linearity may be present. We show that 
the diagonal model, used for color correcting linear 
images, also works in the case of gamma corrected 
images. We also discuss the influence that unknown 
sensors and unknown camera balance has on color 
constancy algorithms. 
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Introduction 

Color constancy is an under-determined problem 
and is thus impossible to solve in the most general 
case. Among the many constraints that have been 
implicitly introduced by various color constancy 
algorithms[1-5], the sensor calibration and image 
linearity are the most common.  

The color of a surface appearing in an image is 
determined in part by its surface reflectance and in 
part by the spectral power distribution of the light 
illuminating it. Thus, as is well known, a variation in 
the scene illumination changes the color of the 
surface as it appears in an image. This creates 
problems for computer vision systems, such as color-
based object recognition[6] and digital cameras[7]. 
For a human observer, however, the perceived color 

shifts due to changes in illumination are relatively 
small. In other words, humans exhibit a relatively 
high degree of color constancy[8]. 

From a computational perspective, we define as 
the goal of color constancy the computation of an 
image with the same colors as would have been 
obtained by the same camera for the same scene 
under a standard ‘canonical’ illuminant. We see this 
as a two-stage process: estimate the chromaticity of 
the illumination; and correct the image colors based 
on this estimate. 

One way to estimate the illumination is to have a 
white patch in the image, the chromaticity of which 
will then be the chromaticity of the illuminant. 
Alternatively, a more sophisticated color constancy 
method can be employed[1-5]. After estimating the 
illuminant’s chromaticity, the scene can then be color 
corrected[9] based on a diagonal, or coefficient-rule, 
transformation. In this paper we will use the term 
‘color correction’ to denote the diagonal transfor-
mation of an image, based on the coefficients 
computed from the estimation of the color of the 
illuminant given by a color constancy algorithm.  

In general, existing color constancy algorithms 
[1-5] which estimate the incident scene illumination 
rely in one way or another on knowing something 
about the camera being used as well as on 
assumptions about the statistical properties of the 
expected illuminants and surface reflectances. 
Estimating the chromaticity of the illumination in an 
image of unknown origin poses new set of 
challenges. First of all, not knowing the sensor 
sensitivity curves of the camera means that even for 
known surface under known illuminant, we will not 
be able to predict its RGB value.  

Figure 1 shows how much the chromaticities in 
the rg-chromaticity space (defined as r=R/[R+G+B] 



  

and g=G/[R+G+B]) can vary between cameras. It 
shows the rg chromaticities of the Macbeth 
Colorchecker patches that would be obtained by a 
SONY DXC-930 and a Kodak DCS460 camera, both 
color balanced for the same illuminant. The data for 
Figure 1 was synthesized from the known camera 
response curves to avoid the values being disrupted 
by noise or other artifacts[10]. Although the white 
values coincide—as they must, given that cameras 
were balanced identically—there is a substantial 
chromaticity difference between the chromaticities 
from the two cameras for many of the other patches. 

Figure 1 – Variation in chromaticity response of two 
digital cameras. 

A further problem for color constancy on images 
of unknown origin, is that we do not know the 
illuminant for which the camera was balanced. Even 
if two images are taken with the same camera, the 
output will be different for different color balance 
settings.  

Yet another unknown is the camera’s response as 
a function of intensity. Cameras often have a non-
linear response, the main parameter of which is often 
known as the camera’s gamma. For a variety of 
reasons[11], different cameras may have different 
gamma values or alternatively may produce linear 
output (gamma=1). In this paper, we will use the 
following definition of camera gamma: 

(1) I=SDγγ,  

where I is the resulting luminance, S is the camera 
gain, D is a pixel value in the 0..1 range. A typical 

value of γ is 0.45, however, the results below apply 
for any reasonable value of γ. 

Although the chromaticity of white or gray 
(R=G=B) is preserved, a change in γγ will distort most 
other chromaticities with the general effect being to 
desaturate colors: 

(2) 
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Usually gammagamma ggandrr ≠≠ . 
In the following sections we present a framework 

for dealing with each of the above issues related to 
illumination estimation and color correction created 
by lack of knowledge about a camera’s sensitivity 
functions and its γ..  

The effect of γγ on color correction 

In terms of the effect of γ on color correction, a 
crucial question is whether or not the diagonal model, 
which has been shown to work well on linear image 
data[9], still holds once the non-linearity of γ is 
introduced? We address this question both 
empirically and theoretically. 

Consider a n by 3 matrix Q1 of RGB values of 
pixels from an image seen under illuminant E1 and a 
similar matrix Q2 containing RGB values from the 
same image, but seen under illuminant E2. According 
to the diagonal model of illumination change, there 
exists a diagonal matrix M such that 

(3) 21 QMQ =⋅  

It must be noticed that M depends only on 
illuminants E1 and E2 and does not depend on the 
pixel values in the images. In particular, if (R1, G1, 
B1)wh are the RGB values of white under illuminant 
E1 and (R2, G2, B2)wh are the RGB values of white 
under illuminant E2, then M is given by 

(4) 
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For the purpose of this paper, let Mγ denote 
element-by-element exponentiation of the elements of 
matrix M. In the case where the diagonal model M 
holds exactly for linear images, then for images to 
which a non-linear γ factor has been applied, the 
diagonal transformation matrix will become Mγ: 

(5) γγγ
21

QMQ =⋅  

In general, the diagonal model does not hold 
exactly due to broad or overlapping camera sensors, 
so the transformation matrix will also contains small 
off-diagonal terms[12]. These off-diagonal terms are 
amplified by the introduction of γ. To explore the 
effects of γ on the off-diagonal terms, we will 
evaluate the diagonal transformation between two 
synthesized images generated using spectral 
reflectances of the 24 patches of the Macbeth 
Colorchecker. One image is synthesized relative to 
CIE illuminant A and the other one relative to D65. 
We used the spectral sensitivities of the SONY DXC-
930 camera and scaled the resulting RGBs to [0...1].  

If A is the matrix of synthesized RGBs under 
illuminant A and D is the matrix of RGBs under 
illuminant D65, the transformation from matrix D to 
A is given by: 

(6) AMD =⋅  

For linear image data, the best (non-diagonal) 
transformation matrix M and the best diagonal matrix 
MD (in the least square errors sense) are found to be 

(7) 
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These transformation matrices are computed to 
minimize the mean square error using the pseudo-
inverse: 

(8) ADM ⋅= *   

where “*” denotes the pseudo-inverse of the 
matrix. 

The error of the transformation is computed 
between the estimated effect of the illuminant 
change, E=DM, and the actual RGB values under A. 
For the non-diagonal case, the RMS error 
Elinear=0.0106, the average error µlinear=0.0088 and the 
standard deviation σlinear=0.0061. In the perceptually 
uniform CIE Lab space the average error µLab=2.14 
and the standard deviation σLab=1.56.  

The diagonal elements of MD are close to those of 
M, but not equal to them. The difference compensates 
for the effect of constraining the non-diagonal terms 
to 0. We can expect the errors for the diagonal 
transformation to be somewhat higher. Using the 
diagonal transformation MD, the RMS error in RGB 
space E’linear= 0.0229, the average error µ’linear=0.0192 
and the standard deviation σ’linear=0.0128. In CIE Lab 
space the average error µ’Lab=3.36 and standard 
deviation σ’Lab=2.30. Although these errors are 
almost twice as large as for the full non-diagonal 
linear transformation, they are still quite small and 
show that a diagonal transformation provides a good 
model of illumination change. 

To determine the effect of γ on the effectiveness 
of the diagonal model, we took the previously 
synthesized data and applied γ of 1/2.2. In this case 
the best transformation Mγ and the best diagonal 
transformation MDγ  are 

(9) 
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The RMS error using Mγ is Egamma=0.0076 with 
average error µgamma=0.0067 and standard deviation 
σgamma=0.0037. In CIE Lab space the average error is 
µγLab=1.06 with standard deviation σγLab=0.69. 

For MDγ, the RMS error in RGB space E’gamma= 
0.0206, the average error µ’gamma=0.0180 and the 
standard deviation σ’gamma=0.0103. In CIE Lab space 
the average error µγ’Lab=2.04 with standard deviation 
σγ’Lab=1.39. These errors are comparable to the linear 
case above. 



  

These results indicate that the diagonal model still 
holds in the case of images to which a non-linear 
γ has been applied even in the case where the 
diagonal model in the linear case provides only an 
approximate model of illumination change. 

 
Another issue in terms of color correction of 

image of unknown γ has to do with the effects of 
brightness scaling of the form (R,G,B) to (kR,kG,kB). 
A brightness scaling may result either from a change 
in incident illumination or camera exposure settings, 
or it may be applied as a normalization step during 
color correction. In either case, it turns out that a 
brightness change does not affect a pixel’s 
chromaticity even when γ has been applied. 

Consider a pixel (R,G,B) from a linear image with 
red chromaticity of B)GR/(Rr ++= . After γ, its 
red chromaticity will be  

(10) ( )γγγγ BGRRr gamma ++=  

In the linear case, any brightness scaling leaves 
the chromaticity unchanged. In the non-linear γ case, 
the red chromaticity of a pixel will be 

(11) 
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Similar results hold for other chromaticity 
channels, so brightness changes do not effect the 
chromaticities in γ images. Note, however, that this 
does not mean that the chromaticity of a pixel is the 
same before and after the application of γ. 

Color correction on non-linear images 

We have shown thus far that, whether or not γ has 
been applied, the diagonal model works and the 
brightness of the original image does not affect the 
resulting chromaticities. In what follows, we will 
discuss the commutativity of γ and color correction. 
Given an image I, represented as an n-by-3 matrix of 
RGBs, we define two operators on this image. Γ(I) 
denotes the application of γ and C(I,M) denotes the 
color correction operator: 

(12) ( ) γII =Γ   

where γ  is considered constant, and: 

(13) ( ) MIMIC ⋅=,  

We wish to find out if the two operators commute, 
i.e. if: 

(14) ( )( ) ( )( )MICMIC ,, Γ=Γ  

The diagonal transformation matrix M depends on 
the image I and the illuminant under which it was 
taken. This transformation maps pixels belonging to a 
white surface in the image into achromatic RGB 
pixels (N,N,N).  

The problem is that applying γ affects the image 
chromaticities so a color constancy algorithm will 
receive a different set of input chromaticities, 
depending on whether or not the image has had 
γ applied. Moreover, the diagonal color correction 
transformation needs to be different. 

If (Rwh, Gwh, Bwh) is the color of the illuminant 
(i.e., the camera’s response to an ideal white surface 
under that illuminant) for image I and (R, G, B) is an 
arbitrary pixel in I, then 

(15) 
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where Mγ is the transformation to be used on the 
image with γ applied: 

(16) 
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If we know the color of the illuminant, the 

diagonal elements of Mγ can be computed from the 
following equation: 
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Thus, the transformation matrix becomes: 

(18) 
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We can rewrite equation 15, as a function of 
(R,G,B) and (Rwh, Gwh, Bwh): 

(19) 
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The right hand side of equation 14 can be written 

as: 

(20) ( )( ) [ ]( )BmGmRmMIC BGR ,,, Γ=Γ  

where mx are the diagonal elements of matrix M. 
Since M maps a white surface into white, we can 

write M as: 

(21) 
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Thus, equation 20 can be rewritten as: 

(22) 
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From equations 19 and 22 it follows that equation 
14 is true for any pixel in I, i.e. that color correction 
and γ application are commutative. Thus, we can 
perform color correction on γ affected images in the 
same way as on linear images. 

In the equations above we assumed that there is a 
perfect white surface in the image I or, equivalently, 
that the color of the illuminant is known. However, 

because γ affects the chromaticities of the pixels in 
the image, it will also affect their statistical 
distribution. This is because γ has a general tendency 
to desaturate colors. This change in the distribution of 
chromaticities can adversely affect the color 
constancy algorithms that rely on a priori knowledge 
about the statistics of the world. 

Color Correcting Images from  
Unknown Sensors 

There are two aspects related to unknown sensors: 
the color balance of the camera and the sensor 
sensitivity curves. In most cases, the color balance is 
determined by scaling the three color channels, 
according to some predetermined settings. The goal 
of the color balance is to obtain equal RGB values for 
a white patch under a canonical light. In this case, we 
say that the camera is calibrated for that particular 
illuminant. Color correcting images taken with an 
unknown balance does not pose a problem, since the 
calibrating coefficients can be absorbed in the 
diagonal transformation that performs the color 
correction.  

However, finding the diagonal transformation 
might prove difficult for stochastic algorithms[3;4;5] 
that can have difficulties in generalizing their 
estimates if they fall outside the illumination gamut 
for which they were trained. 

In the most general case, where the sensors of 
camera that took an image are unknown, it is difficult 
to estimate the scene illumination, due to the various 
sensors responses to even the same surfaces under 
identical lighting (see Fig. 1). In this case, using a 
color constancy algorithm that has been trained in a 
self-supervised manner on such uncalibrated images 
can provide a simple and effective solution. This type 
of algorithm, such as the one described in [13], uses a 
neural network that is trained to estimate the 
chromaticity of the incident scene illumination 
without having exact knowledge of the illumination 
chromaticity in the training set. The network ‘learns’ 
to make a better estimate than the simple grayworld 
algorithm used in initially training it.  



  

Conclusion 

We presented a framework for dealing with a 
quite general case of color correction; namely, that of 
the images taken with a digital camera for which both 
the spectral sensitivity of its sensors and its γ setting 
are unknown. One conclusion is that for images to 
which γ has been applied, it is possible to perform 
color correction by a diagonal transformation without 
first linearizing the image data.  

The off-diagonal elements of the general image 
transformation are larger when γ has been applied and 
thus the average error of a diagonal transformation 
(which ignores the off-diagonal terms) will increase. 
However, the perceptual error is still very small and 
the diagonal transformation thus remains a good 
model of illumination change. 

In the case of unknown sensors, there are large 
differences in sensor response, even for cameras 
calibrated for the same illuminant. This variation in 
the distribution of sensor responses can adversely 
affect color constancy algorithms that rely on 
assumed distributions of sensor responses. Future 
work will focus on refining a self-supervised neural 
network approach to estimating the illumination in 
images of unknown origin. 
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