
Product
Description

Application
Note

Rev. xxxxA–02/99
AVR360: XmodemCRC Receive Utility for the AVR

Features
• Programmable Baud Rate
• Half Duplex
• 128 Byte Data Packets
• CRC Data Verification
• Framing Error Detection
• Overrun Detection
• Less than 1k Bytes of Code Space
• C High Level Language Code

Introduction
The Xmodem protocol was created
years ago as a simple means of having
two computers talk to each other. With
its half duplex mode of operation, 128
byte packets, ACK/NACK responses and
CRC data checking, the Xmodem proto-
co l has f ound i t s way in to many
applications. In fact most communication
packages found on the PC today have a
Xmodem protocol available to the user.

Theory of Operation
Xmodem is a half-duplex communication
protocol. The receiver, after receiving a
packet, will either acknowledge (ACK) or
not acknowledge (NACK) the packet.
The original Xmodem protocol used a
standard checksum method to verify the
128-byte data packet. The CRC exten-
sion to the original protocol uses a more
robust 16 bit CRC to validate the data
block and is used here. Xmodem can be
considered to be receiver driven. That is,
the receiver sends an initial character 'C'
to the sender indicating that it's ready to
receive data in CRC mode. The sender
then sends a 133-byte packet , the
receiver validates it and responds with
an ACK or a NACK at which time the
sender will either send the next packet or
re-send the last packet. This process is
continued until an EOT is received at the
receiver side and is properly ACK'ed to
the sender. After the initial handshake
the receiver controls the flow of data
through ACKing and NAKing the sender.

Table 1. XmodemCRC Packet Format

Byte 1 Byte 2 Byte 3 Bytes 4-131 Bytes 132-133

Start of Header Packet Number ~(Packet Number) Packet Data 16 bit CRC
1

Definitions
The following defines are used for protocol flow control.

Byte 1 of the XmodemCRC packet can only have a value of
SOH or EOT, anything else is an error. Bytes 2 and 3 form
a packet number with checksum, add the two bytes
together and they should always equal 0xff. Please note
that the packet number starts out at 1 and rolls over to 0 if
there are more than 255 packets to be received. Bytes 4-
131 form the data packet and can be anything. Bytes 132
and 133 form the 16 bit CRC. The high byte of the CRC is
located in byte 132.

Synchronization
The receiver starts by sending an Ascii 'C' (0x43) character
to the sender indicating it wishes to use the CRC method of
block validating. After sending the initial 'C' the receiver
waits for either a 3-second time out or until a buffer full flag

is set. If the receiver is timed out then another 'C' is sent to
the sender and the 3 second time out starts again. This
process continues until the receiver receives a complete
133-byte packet.

Receiver Considerations
This protocol NACKs the following conditions.

1. Framing Error on any byte

2. Overrun Error on any byte

3. Duplicate Packet

4. CRC error

5. Receiver timed out (didn't receive packet within 1
second)

On any NAK the sender will re-transmit the last packet.
Items 1 and 2 should be considered serious hardware fail-
ures. Verify that sender and receiver are using the same

baud rate, start bits and stop bits. Item 3 is usually the
sender getting an ACK garbled and re-transmitting the
packet. Item 4 is found in noisy environments. And the last
issue should be self-correcting after the receiver NAK's the
sender.

DataFlow Diagram
The data flow diagram below simulates a 5-packet file
being sent.

Table 2. Protocol Flow Control

Symbol Description Value

SOH Start of Header 0x01

EOT End of Transmission 0x04

ACK Acknowledge 0x06

NAK Not Acknowledge 0x15

C Ascii 'C' 0x43

Table 3. XmodemCRC DataFlow with Errors

Sender Receiver

<---- “C”

Times out after 3 seconds

<---- “C”

SOH 0x01 0xFE data CRC ----> Packet OK

<---- ack

SOH 0x02 0xFD data CRC ----> (Line hit during data transmission)

<---- nack

SOH 0x02 0xFD data CRC ----> Packet OK

<---- ack

SOH 0x03 0xFC data CRC ----> Packet OK

(ack gets garbled) <---- ack

SOH 0x03 0xFC data CRC ----> Duplicate packet

<---- nack

SOH 0x04 0xFB data CRC ----> (UART framing error on any byte)
AVR3602

AVR360
Modifications to receive protocol
Users may wish to count how many 'C's were sent during
synchronization and after 'n' number of tries abort the
receive attempt.

For embedded applications it's not mandatory to have a
128-byte packet. You could have 64, 32 or even a 16-byte
packet. The sender of course would have to comprehend
this. For those users that may want to migrate to Atmel's
MegaAVR series there is a version of Xmodem that uses a
1k-byte packet. Or you can use an external SRAM with an
AT90S4414 or an AT90S8515 to allow the increase in
packet size.

If users do not wish to use the CRC method of data verifi-
cation, simply replace sending a 'C' for synchronization with
a NAK instead. The sender will then send only the simple
checksum of the data packet. Of course, the buffer size
decreases by 1 and you may get data errors. This modifica-
tion would allow communication with equipment that
supports only the checksum method of data verification.

Software
Routines were compiled using IAR's C Compiler Version
1.30a with the Size optimization set to nine. Software was
tested using ProComm, DynaComm, WinComm, and
Hyperterminal at baud rates up to 115.2 kbps. The receiver
expects 8 start bits, 1 stop bit, and no parity bits.

The STK200 starter kit is used as a test platform with
minor, optional, modifications. A baud rate friendly crystal
was used for this code. Replace the 4.0 MHz crystal on the
STK200 starter kit with a 7.3728 MHz crystal for proper
operation. If users wish to use the default crystal then mod-
ify the init routine to properly set up the uart baud rate
register UBRR. Wait loops in the sendc and the recv_wait
routines would also need modification.

To verify proper operation of this code, the STK200 jump-
ers should be set for RS-232 operation and PORTD bit 2
should be connected to the switches on the starter kit.
Refer to the STK200 user manual for jumper locations and
definitions. Connect a 9 pin serial cable from a PC to the
starter kit, turn on power and use pushbutton 2 as a start of
recep t ion s igna l . Use an ICEPRO emula to r , an
AT90S4414-8PC, or an AT90S8515-8PC to execute the
code.

<---- nack

SOH 0x04 0xFB data CRC ----> Packet OK

<---- ack

SOH 0x05 0xFA data CRC ----> (UART overrun error on any byte)

<---- nack

SOH 0x05 0xFA data CRC ----> Packet OK

<---- ack

EOT ----> Packet OK

(ack gets garbled) <---- ack

EOT ----> Packet OK

Finished <---- ack

Table 3. XmodemCRC DataFlow with Errors (Continued)

Sender Receiver

Table 4. Routines

Name Size in Bytes Function

calcrc 66 Calculates 16 bit CRC

init 30 Low level hardware initialization

main 30 Main

purge 36 Reads uart data register for 1 second
3

Total memory space consumed is 942 bytes of CODE memory and 187 bytes of DATA memory.

Pseudo-Code

purge.c
initialize timer1 counter for a 1 second delay read uart for 1 second

receive.c
send a 'C' character to sender until receive buffer is full validate received packet send an ack or a nak to
sender

if packet was bad then wait for new good packet

while not end of transmission

wait for buffer to fill

validate the packet

send an ack or a nak to sender

recv_wait.c
initialize timer1 counter for a 1 second delay wait till buffer is full or timeout

respond.c
clear error flags

if packet was good a duplicate packet or end of transmission then

send an ack

else

purge senders uart transmit buffer

send a nack

sendc.c
initialize timer1 counter for a 3 second delay

clear error flags

while buffer is not full

send 'C' character to sender, signaling CRC mode

enable timer counter

wait for buffer full or timeout

if timed out clear error flags

restart timer

receive 66 main receive routine

recv_wait 40 waits until buffer full flag is set or 1 second timeout

respond 44 sends an ack or a nak to the sender

sendc 88 sends an ascii 'C' character to the sender until the buffer full flag is set

timer1 28 timer1 interrupt

uart 102 uart receive interrupt

validate_packet 166 validates senders packet

Table 4. Routines (Continued)

Name Size in Bytes Function
AVR3604

AVR360
uart.c
check uart for framing or overrun errors

read byte from uart

verify first byte in receive buffer is valid

if buffer is full set buffer full flag

validate_packet.c
if not timed out then

if no uart framing or overrun errors then

if first character in buffer is SOH then

if second character in buffer is the next packet number

then

if second character in buffer plus the third character in buffer = 0xff

then

compute CRC on packet data

if CRC ok

then

increment packet number

packet = good

else

packet = bad

else

bad packet number checksum

else

duplicate packet number

else

if first character in buffer is EOT then

end of transmission

else

at least 1 byte had a framing or overrun error, packet is bad

else

timed-out without receiving all characters, packet is bad
5

© Atmel Corporation 1999.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686677
FAX (44) 1276-686697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East
Kowloon, Hong Kong
TEL (852) 27219778
FAX (852) 27221369

Japan
Atmel Japan K.K.
Tonetsu Shinkawa Bldg., 9F
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4 42 53 60 00
FAX (33) 4 42 53 60 01

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

xxxxA–02/99/xM

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

	Features
	Introduction
	Theory of Operation
	Definitions
	Synchronization
	Receiver Considerations
	DataFlow Diagram
	Modifications to receive protocol
	Software
	Pseudo-Code

