
Product
Description

Application
Note

Rev. xxxxA–02/99
AVR380: 8-bit Microcontroller,
Simple Serial Mouse Controller

Features
• Very Low Cost Solution
• Low Power Consumption
• Few External Components
• Efficient Code
• Interrupt Driven
• Uses the Economical AT90S1200
• Self-Powered from Serial Port

Introduction
This application note describes a simple
controller for a serial PC mouse. It takes
inputs from two pairs of quadrature
encoded infra-red sensors and up to
three buttons, converting movement and
switch data into serial data for PC con-
trol. The mouse uses the standard RS-
232 port of the host PC sending move-
men t and sw i tch da ta in “M ouse
Systems” format, and takes power from
a signal line.

The application can be used as the basis
for a more powerful mouse controller
with other protocols.

Theory of Operation
The mouse has become the major input
device for PCs, and various types can be
found in the market place. The mouse

may have its own dedicated port (Bus
mouse), or more commonly connect to
one of the serial ports (usually COM1).
The most common type o f mouse
encountered plugs into the 9-pin or 25-
pin D type serial port and derives its
power from the same port via signal
lines.

A serial mouse is made from several
functional blocks:
• Microcontroller Unit (MCU)

• Button detection

• Motion detection

• RS-232 signal generation

• 5v, or lower, DC supply circuit

A typical block diagram is shown in
Figure 1.

Basic Principle of
Operation
The serial port has no direct power con-
nections available, consequently the first
job is to derive these from a signal line.
This is usually achieved by keeping the
Request To Sent (RTS) line at a logic '1'
(-10v or so) and converting this to the
requisite positive supply rail by 'chop-
ping' techniques.

Figure 1. Functional Blocks of Seral Mouse

RS232
Port of

Host PC
Power Conversion

Circuit (-10V to +5V)

Micro-
controller

Unit

Quadrature Encoders
for X and Y movement

1, 2 or 3 Push Buttons
1

The current consumption must be kept low, typically 10
mA maximum. This places severe constraints on the elec-
t r on i cs , r equ i r ing very low power consum p t ion
components. The AVR is ideal for this application being
capable of high speed at low power.

The communication requirements for a simple serial mouse
are only one way (Simplex) so only the Received Data
(RXD) line is needed along with the Signal Ground.

The Baud rate is normally kept low at 1200 baud. The logic
signal from the MCU to the RXD line must first be con-
verted to RS-232 levels, i.e. 0v ('0') goes to approximately
+10v (7 to 15v) and +5v ('1') goes to approximately -10v (-7
to -15v). This usually employs a commercial chip such as
the MAX232 which only requires a +5v supply and a few
capacitors to do the conversion, or better still, the MAX233
which requires no capacitors. These provide for two chan-
nels of send and receive so the chip is underused and
relatively expensive. Another method can be seen
employed in appication note AVR910 and uses bipolar
transistors. The choice is largely one of economics and/or
board space.

The power conversion circuit can be done with a simple
(and cheap) 555 timer circuit and a few discrete compo-
nents to keep the cost down. A typical circuit for this is
shown in Figure 2. An alternative would be to use one of
the commercial chips designed for the purpose, again the
choice is one of economics.

Figure 2. Circuit Diagram of Typical Voltage Converter

The microcontroller accepts signals from the two pairs of
infra-red sensors for each axis, arranged about a small
slotted wheel. Each axis (X and Y) provides two signals in
quadrature, commonly called CLOCK and DATA, enabling
both direction and movement to be calculated by the micro-
control ler. Figure 3 shows how these quadrature
waveforms provide the necessary information.

Figure 3. Clock and Data Quadrature Signals

The movement is calculated using the CLOCK signal to
increment (or decrement) a counter and the direction is
deduced from the state of the DATA line.

If we assume the CLOCK is sensed on the falling edges
then we can see that if DATA is high the movement is posi-
tive (UP or RIGHT) and if low negative (DOWN or LEFT).

Sensing of each of these X or Y signals is achieved in one
of two fashions :

Interrupts

Each CLOCK signal generates an interrupt which looks at
the DATA line and computes the direction and amends the
counter accordingly.

Polling

The CLOCK signals are continously scanned and when a
change is noticed the appropriate action is taken.

The choice of which method to use is a matter of whether
the interrupts are available. Using interrupts usually
makes the program easier and shorter.

The mouse buttons (one, two or three) are usually simple
'micro-switch' types which pull-up a signal line normally
held low by a pull-down resistor. The component count is
reduced in this application by reversing the polarity and
using the self contained pull-up resistors provided by the
AVR port circuits for this purpose. (I.e. The switch pulls the
signal line low.)

The mouse buttons are polled in the usual fashion since
speed is not an important factor here. The button press
response has to be slowed anyway to avoid 'bounce'
problems.

This application uses the external interrupt line PD2 for X
CLOCK and the analog comparator input PB1 for Y
CLOCK, with PB0 taken to a half supply point, fixed by a
potential divider. This trick provides the necessary two
external interrupt inputs, since the AT90S1200 only has
one external interrupt line. Both external interrupt and
analog comparator inputs are set for falling edge trigger.

Having computed the movement and switch data it then
has to be sent to the host system in RS-232 Serial format.
The most common format, consequently used in this appli-
cation, is 1200 Baud, eight data bits, no parity and two stop

0V

RS232 Signal
Ground (7)

RS232
RTS (20)

4 8

7

6

2
1 5

3
555

+5v

0v

5V6
4k7

10
uF

10 nF

1N414810k

100k

1 nF

470 nF

Clock

Data

Right or UP Down or Left
AVR3802

AVR380
bits. The data is sent according to an agreed protocol.
Two common protocols are 'Mouse System' and 'Microsoft
Format'. These are illustrated in Table 1 and Table 2.

L, M, R refer to the Left, Middle and Right buttons respec-
tively and are active high, i.e. '1' = pressed and '0' =
released. X7-0 and Y7-0 are the X and Y movement data.

Bytes 2 and 4 are identical copies of the X movement and
bytes 3 and 5 are identical copies of the Y movement.

The application uses Mouse System format and has been
tested on a PC using a 'Logitech' driver and found working
satisfactory .

Figure 4. Port Allocation of AVR (AT90S1200)

The main program polls the buttons, sets flags to indicate
the change and then sends the data to the serial port, from
data registers, if a change is flagged up. The serial routine
is entered every time but data is sent only if a change has

occurred. The time taken is used as the bounce time. Mov-
ing the mouse generates an interrupt and updates the X
and Y data.

The diagram shown in figure 4 gives the port allocations for
the application. Circuit details are left to the user since you
will have your own preferred methods of interfacing to the
RS-232 port and for voltage generation.

A 4 Mhz resonator, with built-in capacitors, was used for
the clock source, giving an instruction cycle of 250 ns.

The application was tested using a 555 timer circuit for sup-
ply voltage derivation and a MAX 232 chip for serial level
conversion.

Implementation
The firmware comprises :
• An initialization/reset routine, which sets up ports and

interrupts, a continuous loop is then entered to run the
main program loop consisting of two sections:

- A pushbutton polling routine, which scans the push-
buttons and updates flags accordingly.

- A communication routine, which sends out data to the
host computer if any change has occurred.

• Two similar interrupt service routines which update X
and Y counters and set flags to tell the foreground
process that a change has occurred.

Reset/Initialization Function
This routine is entered once on power up or reset. Since it
is unusual for a mouse to have a reset button this will be
entered on power up. The port pins are set up as
inputs/outputs as required and the pull-ups turned on for
the push buttons and encoder inputs. Unused pins (6 free
I/O) are configured as outputs to reduce power consump-
tion and avoid noise pick-up. Timer 0 is set up as clock/64
to give 16 ms/count for the serial routine. The two interrupt
sources are then set up and enabled such that they inter-
rupt on the falling edge of the encoder CLOCK inputs.

For the external interrupt input line (PD2) this is done by
setting bit 1 (ISC01) of the MCUCR to set falling edge inter-
rupts and setting the INT0 bit in GIMSK to enable it.

For the analog comparator bit 1 (ACIS1) of ACSR is set to
trigger interrupts on the falling edge and enabled by setting
bit 3 (ACIE). Figure 5 illustrates the program flow.

Table 1. Mouse System Format

Bit 7 6 5 4 3 2 1 0

Byte 1 1 0 0 0 0 L M R

Byte 2 X7 X6 X5 X4 X3 X2 X1 X0

Byte 3 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Byte 4 X7 X6 X5 X4 X3 X2 X1 X0

Byte 5 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Table 2. Microsoft Format

Bit 7 6 5 4 3 2 1 0

Byte 1 1 1 L R Y7 Y6 X7 X6

Byte 2 0 0 X5 X4 X3 X2 X1 X0

Byte 3 0 0 Y5 Y4 Y3 Y2 Y1 Y0

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PD0
PD1
PD2
PD3
PD4
PD5
PD6

TXD to RS-232 circuit

R
M
L

clock
data Y optos

X optos

clock

data

0V

R2

R1 10K

10K
3

Figure 5. Flow chart for 'Reset' Routine

Main Program Loop
Global interrupts are now enabled to allow the mouse posi-
itons to be updated by the X and Y background functions.
These automatically update the coordinate bytes for the
foreground function to send and set the flags. The push-
buttons are now interrogated and, if one is pressed, the
appropriate bits in byte 1 of the word to be sent are
updated. It also sets a flag to indicate to the serial function
that a change has occurred.

The serial function is now entered for each byte. Since the
coordinate bytes are updated by the interrupt function
these will also be sent.

The flowchart in Figure 6 shows this flow.

Serial Function
The serial function organizes the 1200 baud timing using
timer 0 as a time reference by polling TCNT0. The byte of
data is only sent if the flag is set indicating that a change
has occurred. The time taken for this function is used as
the debounce time for the button press. Since the time ref-
erence is in hardware and the interrupt routines are very
quick, minimal error will be introduced in the serial timing
by moving the mouse. Timer 0 has the prescaler switched
in during the initialization stage to divide the clock by 64
giving 16 µs per count. For 1200 Baud the requisite 1/1200
second is thus achieved at a count of 52 in TCNT0 (52 * 16
µs= 832 µs a -0.2 % error).

Figure 7 shows the flow chart for the serial function. The
time taken around this loop, even with no flags set, is used
as the debounce time for the pushbuttons.

The send processes employ a small function called 'baud'
to generate the 1/1200S (833 µs). This function cleans
Timer0, starts it and waits until it reaches 52 counts.

Figure 6. Flowchart of Main Program Loop.

Interrupt Service Routines
These are two similar routines reacting to the external inter-
rupt input (INT0) for the Y clock and the analog comparator
interrupt for the X clock.

reset

Initialize PORTB
PORTD and T0

Set up and
enable external

interrupts

Set up and
enable comparator

interrupts

Enable global
interrupts

Main Program Loop

Set Flag

Y

N

Button

Action flag
set?

Data =
Button Byte

Serial

Data = X Byte

Serial

Data = Y Byte

Serial

Data = X Byte

Serial

Data = Y Byte

Serial

Clear Flags

N

Y

AVR3804

AVR380
They both interrogate the respective data inputs and incre-
ment or decrement the coordinate bytes accordingly and
then set the flag.

Figure 7 shows the program flow for one function. The
other is identical in structure, the coordinate byte effected is
the only difference.

Figure 7. Flow Chart of Serial Function

Figure 8. Flow Chart for Encoder Interrupt Service
Routines

Serial

Count = 8

Send Start

Shift Data
Right to Carry

Send Carry

Count = Count - 1

8 Bits ?

Return

Increment
Coordinate

Y

N

Clock

Preserve Status

Up/Left?

Decrement
Coordinate

Set Flag

Restore Status

Return

Table 3. Resources

Function Code Size Cycles Register Usage Interrupt Description

Reset 21 words 21 cycles R16, R18, R19, R20, R21 - Initialization

Main 18 words 29 typical R17, R18, R19, R20, R21, R23 - Main program loop

Serial 17 words 30 typical R17, R22, R23 - Sends serial data

Baud 6 words 3,332 cycles R16 - 833 us bit delay for serial

Xupdate 10 words 12 cycles R0, R18, R20, R23 ANA_COMP X encoder interrupt routine

Yupdate 10 words 12 cycles R0, R19, R21, R23 INT_0 Y encoder interrupt routine

Total 82 words - R0, R16, R17, R18, R19, R20, R21,
R22, R23

-

5

;**** A P P L I C A T I O N N O T E A V R 3 8 0 ***********************

;*

;* Title: Simple Serial Mouse Controller

;* Version: 1.0

;* Last Updated: 98.10.23

;* Target: AT90S1200

;*

;* Support E-mail: avr@atmel.com

;*

;* DESCRIPTION

;* This Application note covers a program to provide a simple serial

;* mouse controller powered from the RS-232 serial port of the host

;* computer and providing X, Y and three mouse buttons.

;* The quadrature encoders of the mouse mechanism are interrupt driven

;* to simplify programming and improve performance. The serial routine

;* runs at 1200 Baud and uses timer 0 for the reference frequency.

;* The application uses the economical AT90S1200 and shows how this

;* device, which has only one external interrupt line, can be adapted to

;* have two, using the analogue comparator inputs.

;* A 4 MHz clock (crystal or resonator) is assumed for the timing.

;***

;***** Registers used by all programs

;******Global variables used by routines

.def temp =r16 ;temporary store

.def data =r17 ;byte 1 storage for mouse buttons and data for serial

.def x_data =r18 ;X data

.def y_data =r19 ;Y data

.def x_datas =r20 ;X data to be transmited

.def y_datas =r21 ;Y data to be transmited

.def bitcnt =r22 ;bit counter for serial routine

.def flag =r23 ;flag byte for passing action to serial routine

;*****7 6 5 4 3 2 1 0

; Global X X X X L M R

; change unused bits Switch data

.equ action = 7 ;action flag is top bit

;Port B pins

Table 4. Peripheral Usage

Peripheral Description Interrupts

PD2 (INT0) Y encoder service routine External Interrupt 0 (falling edge triggered)

PB1 (ANA_COMP) X encoder service routine Analogue comparator interrupt (falling edge)

Port B 3 I/O pins X encoder opto. input -

Port D 6 I/O pins Y encoder opto input and pushbutton inputs -
AVR3806

AVR380
.equ xclock =1 ;X encoder clock input (ana.interrupt)

.equ xdata =2 ;X encoder data input

;Port D pins

.equ TXD =1 ;Transmit data line for serial output

.equ yclock =2 ;Y encoder clock input (ext. interrupt)

.equ ydata =3 ;Y encoder data input

.equ R =4 ;Right switch (active low)

.equ M =5 ;Middle switch (active low)

.equ L =6 ;Left switch (active low)

.include "1200def.inc"

;***** Registers used by interrupt service routines

.def status =r0 ;low register to preserve status register

;****Source code***

.cseg ;CODE segment

.org 0

rjmp reset ;Reset handler

rjmp yupdate ;ext. interrupt

reti ;unused timer counter overflow

rjmp xupdate ;analog interrupt

;*** Reset handler **

;*** to provide initial port, timer and interrupt setting up

reset:

; LDI R16,low(RAMEND); Initialization of Stack pointer

; OUT SPL,R16

; LDI R16,high(RAMEND); Commented out since 1200 has hardware stack

; OUT SPH,R16

ldi temp,0xF8;

out DDRB,temp ;initialize port B

ldi temp,0x03

out DDRD,temp ;initialize port D

ldi temp,0x06

out PORTB,temp ;turn on pull ups for X encoder opto

ldi temp,0x7f ;turn on pull ups for Y encoder opto

out PORTD,temp ;and mouse switches. TXD high (no start)

ldi temp,0x03 ;timer prescalar clock/64 (62.5 kHz)

out TCCR0,temp ;for serial baud rate

ldi temp,0x02 ;set falling edge trigger

out MCUCR,temp ;for Y encoder clock input

ldi temp,0x40 ;enable external interrupts
7

out GIMSK,temp

ldi temp,0x0A ;set up falling edge trigger on analog

out ACSR,temp ;and enable X encoder clock interrupt

clr x_data ;initialise data bytes

clr y_data

sei ;enable global interrupts

;*********Main program loop - with interrupts enabled************

main:

sbis PIND,L ;Left switch pressed?

sbr flag,0x84 ;yes set L flag and global

sbis PIND,M ;Middle switch pressed?

sbr flag,0x82 ;yes set M flag and global

sbis PIND,R ;Left switch pressed?

sbr flag,0x81 ;yes set R flag and global

sbrs flag,action ;Send data frame if required

rjmp main ;If not, check buttons again

mov data,flag ;Move flag to serial databuffer.

mov x_datas,x_data ;Make copys og Xdata and Ydata

mov y_datas,y_data ;to keep them form changing during serial-transmition

clr flag ;Clear flag

; Send frame

rcall serial ;send it

mov data,x_datas ;get X data

rcall serial ;and send it

mov data,y_datas ;get Y data

rcall serial ;and send it

mov data,x_datas ;get X data

rcall serial ;and send it

mov data,y_datas ;get Y data

rcall serial ;and send it

rjmp main ;repeat loop

;***

;*

;* "putchar" (from Atmel appnote AVR305)

;*

;* This subroutine transmits the byte stored in the "Txbyte" register

;* The number of stop bits used is set with the sb constant

;*

;* Number of words :14 including return

;* Number of cycles :Depens on bit rate

;* Low registers used :None
AVR3808

AVR380
;* High registers used :2 (bitcnt,data)

;* Pointers used :None

;*

;***

.equ sb =1 ;Number of stop bits (1, 2, ...)

serial:

putchar:

ldi bitcnt,9+sb ;1+8+sb (sb is # of stop bits)

com data ;Inverte everything

sec ;Start bit

putchar0:

brcc putchar1 ;If carry set

cbi PORTD,TxD ; send a '0'

rjmp putchar2 ;else

putchar1:

sbi PORTD,TxD ; send a '1'

nop

putchar2:

rcall baud ;One bit delay

lsr data ;Get next bit

dec bitcnt ;If not all bit sent

brne putchar0 ;send next

;else

ret ;return

;*********Baud rate timing routine********************************

;****generates 1/Baud rate delay (833 us for 1200 Baud)**********

baud:

clr temp ;clear timer 0

out TCNT0,temp ;and start counting

tagain:
in temp,TCNT0 ;read timer 0

cpi temp,52 ;is it 832 us?

brlo tagain ;no try again

ret ;yes return

;***********Analog comparator interrupt service routine **********

;***updates X coordinates when the mouse is moved left/right/down***

xupdate:

in status,SREG ;preserve status register

sbic PINB,xdata ;moving right?

rjmp right ;yes increase X coordinate

dec x_data ;no decrement X coordinate
9

xexit:

sbr flag,0x80 ;set global flag

out SREG,status ;restore status register

reti ;and return to main loop

right:
inc x_data ;increment Y coordinate

rjmp xexit ;and return

;***********External interrupt service routine ********************

;***updates Y coordinates when the mouse is moved up/down***********

yupdate:

in status,SREG ;preserve status register

sbic PIND,ydata ;Moving up?

rjmp up ;yes increase Y coordinate

dec y_data ;no decrement Y coordinate

yexit:

sbr flag,0x80 ;set global flag

out SREG,status ;restore status register

reti ;and return to main loop

up:
inc y_data ;increment Y coordinate

rjmp yexit ;and return
AVR38010

© Atmel Corporation 1999.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686677
FAX (44) 1276-686697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East
Kowloon, Hong Kong
TEL (852) 27219778
FAX (852) 27221369

Japan
Atmel Japan K.K.
Tonetsu Shinkawa Bldg., 9F
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4 42 53 60 00
FAX (33) 4 42 53 60 01

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

xxxxA–02/99/xM

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

	Features
	Introduction
	Theory of Operation
	Basic Principle of Operation
	Implementation
	Reset/Initialization Function
	Main Program Loop
	Serial Function
	Interrupt Service Routines

