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ABSTRAK 

 
Kajian ini bertujuan untuk menilai prestasi kriteria maklumat Akaike diperbaiki atau 
AICC (Akaike’s Information Corrected Criterion) sebagai kriteria penentuan peringkat 
dalam pembentukan model Autoregresif Purata Bergerak (Autoregressive Moving-
average) atau ARMA(p, q). Suatu penyelidikan simulasi dijalankan untuk menentukan 
kebarangkalian di mana kriteria AICC minima telah memilih model sebenar dengan 
tepat. Keputusan yang diperolehi menunjukkan bahawa prestasi kriteria AICC adalah 
sekadar sederhana. Masalah lebihan pemboleh ubah (over pameterization) wujud, tetapi 
masalah kurangan pemboleh ubah (under parameterization) berada pada tahap yang 
minima. Oleh itu, bagi sebarang dua model yang setanding, adalah lebih wajar untuk 
kita memilih model dengan peringkat p dan q yang lebih rendah. 

  
ABSTRACT 

 
This study is undertaken with the objective of investigating the performance of Akaike’s 
Information Corrected Criterion (AICC) as an order determination criterion for the 
selection of Autoregressive Moving-average or ARMA (p, q) time series models. A 
simulation investigation was carried out to determine the probability of the AICC 
statistic picking up the true model. Results obtained showed that the probability of the 
AICC criterion picking up the correct model was moderately good. The problem of over 
parameterization existed but under parameterization was found to be minimal. Hence, 
for any two comparable models, it is always safe to choose the one with lower order of p 
and q.   

  
      Keywords: AICC, ARMA, under/over parameterization 
 
 

INTRODUCTION  

In the process of time series autoregressive moving-average or ARMA (p, q) modelling, 
we do not know the true order of the model generating the data. In fact it will usually be 
the case that there is no true ARMA (p, q) model, in which case our goal is simply to find 
one that represents the data optimally in some sense (Brockwell and Davis, 1996). 
However, the challenge is to decide the optimal orders of p and q (Beveridge and Oickle, 
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1994). In a given application, the Box-Jenkins model selection procedure may suggest 
several specifications, each of which satisfies the diagnostic checks. Some kind of a 
measure of goodness of fit is therefore needed to distinguish between different models in 
these circumstances (Harvey, 1993). Many criteria have been suggested for this reason by 
the past researchers. The Akaike’s information corrected criterion (Hurvich and Tsai, 
1989) or AICC, among others, is a commonly used criterion. However, its performance 
must be evaluated.  Therefore, the objective of this study is to evaluate the performance 
of AICC statistics in selecting the true ARMA time series model based on a simulation 
study.  

The rest of this paper is organized as follows. The next section discusses the order 
determination criterion. This is followed by a description of simulation study and a report 
of simulation results. Finally, the conclusions of the study are presented.   
 
  

ORDER DETERMINATION CRITERIA 
  

Many criteria have been proposed for the purpose order determination by the past 
researchers. These include the final prediction error (FPE) criterion, Schwarz-Rissanen 
criterion (SIC), Bayesian estimation criterion (BEC), Hannan-Qiunn criterion, Akaike’s 
information criterion (AIC) and so on. The latest model selection criterion is the Akaike’s 
information corrected criterion AICC, developed by Hurvich and Tsai in 1989.  

   There has been considerable literature published on order determination criteria. 
A brief discussion of these criteria was available in Beveridge and Oickle (1994); de 
Gooijer et al. (1985), Stoica et al. (1986) and Brockwell and Davis (1996) presented 
greater theoretical and practical detail and additional references for many of these 
criteria. 

The final prediction error, FPE criterion was original proposed by Akaike (1969, 
1970) for AR(p) order determination and was extended to ARMA(p, q) models by 
Söderström in 1977 (Beveridge and Oickle, 1994). This criterion was established on the 
basis of minimizing the one-step-ahead mean square forecast error after incorporating the 
inflating effects of estimated coefficients. The criterion to be minimized is 

 

 FPE = σ̂ 2
q  p  
q  p  n

--
++

n         (1) 

where  σ̂ 2  = variance of white noise, 
  n = number of observations, 

              p = order of the autoregressive component,  
and        q  = order of the moving average component. 
         

 In 1970, Akaike found that FPE is asymptotically inconsistent and in 1973 he 
employed information-theoretic considerations to develop the Akaike’s information 
criterion, AIC. This was designed to be an asymptotically unbiased estimate of the 
Kullback-Leibler index of the fitted model relative to the true model (Akaike, 1973). The 
AIC statistics is defined as 

 
AIC = – 2 ln Likelihood (φ , θ , σˆ ˆ ˆ 2) + 2(p + q + 1)      (2) 
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where  φ  = a class of autoregressive parameters, ˆ

             θ  = a class of moving average parameters, ˆ
and      σ̂ 2, n, p and q are as defined in equation (1). 
 

A criterion like AIC that penalizes the likelihood for the number of parameter in 
the model attempts to choose the most parsimonious model. However, AIC is only 
asymptotically unbiased and Jones (1975) and Shibata (1976) showed empirical 
evidences that AIC has the tendency to pick models which are over-parameterized. In 
view of this, Akaike applied a Bayesian modification to AIC and finally in 1978, he came 
up with a consistent order selection criterion, known as Bayesian information criterion or 
BIC; see Akaike (1979). If the data {X1, …, Xn} are in fact observations of an ARMA(p, 
q) process, then Bayesian information criterion is defined to be 

 

 BIC = (n – p – q) ln 
qpn
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There is evidence to suggest that the BIC is more satisfactory than the AIC as an 

ARMA model selection criterion since the AIC has a tendency to pick models, which are 
over-parameterized; see Hannan (1980).  
   Schwarz (1978) used a Bayesian analysis and Rissanen (1978) applied an optimal 
data-coding scheme to independently arrive at the same criterion, later known as 
Schwarz-Rissanen criterion, SIC. The criterion to be minimized is given by 
 

  SIC = ln σ̂ 2 + (
n

q  p + ) ln n             (4) 

 
 Geweke and Mease (1981) suggested approximating SIC by Bayesian estimation 

criterion, BEC.  

 BEC = σ̂ 2 + (p x + q x) σ̂ 2
x ln 

xx q  p n
n
--

      (5) 

where x denotes a quantity from pre-assigned high order ARMA model that includes all 
potential models. 

Hannan and Quinn (1979) and Hannan (1980) constructed Hannan-Quinn 
criterion from the law of the iterated logarithm. It provides a penalty function, which 
decreases as fast as possible for a strongly consistent estimator, as sample size increases. 
Hannan-Quinn criterion is given by 

 

 HQ = ln σ̂ 2 + 2(p + q)
n

n)(ln ln  
            (6) 
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Hannan and Rissanen (1982) replaced the term ln (ln n) in (6) by ln n to speed up 
the convergence of HQ.  This revised version of HQ, however, was found to overestimate 
the model orders (Kavalieris, 1991). 

In 1989, Hurvich and Tsai found that BIC, which was modified from AIC, is not 
asymptotically efficient. Hence, they suggested a biased corrected version of AIC, known 
as Akaike’s information corrected criterion or AICC. AICC statistics is given by 

 
AICC = – 2 ln Likelihood (φ , θ , σˆ ˆ ˆ 2) +  

  [2n(p + q + 1)]/[n – (p + q) – 2]               (7) 
 

where   φ  = a class of autoregressive parameters, ˆ

             θ  = a class of moving average parameters, ˆ
            σ̂ 2 = variance of white noise, 

   n = number of observations, 
               p = order of the autoregressive component, 

   q = order of the moving average component, 
and Likelihood ( , , σφ̂

ˆ
θ̂

ˆ
ˆ
ˆ

2) is the likelihood of the data under the Gaussian ARMA model 
with parameters (φ , θ , σ 2).  
 

 The penalty factors 2n(p + q + 1)/[n -(p + q) - 2] and 2(p + q + 1), for AICC 
statistics and AIC statistics respectively, are asymptotically equivalent as n → ∞. 
Moreover, AICC, as AIC or FPE, is asymptotically efficient for autoregressive process. 
The AICC statistics however, has a more extreme penalty for large order models, which 
counteract the over fitting nature of the AIC (Brockwell and Davis, 1996). Today, the 
AICC statistics, as its earlier versions (AIC), has been widely used as one of the order 
selection criteria in ARMA time series as well as the lag-length selection criteria in 
econometric modelling processes. Due to its popularity, Brockwell and Davis (1994), for 
instance, has included the AICC statistics in their computer software package known as 
“Iterative Time Series Modelling (ITSM)”. As the AICC statistics is an important 
criterion for the selection of order in time series models, its performance must be 
evaluated. This study hence takes the initiative to explore the probability of minimum 
AICC criterion in picking up the true model based on a simulation study.  

 
SIMULATION STUDY 

 
 In this study, a total of 10,000 simulated data series from 10 autoregressive moving 
average processes were under investigation. These processes were AR(1), AR(2), AR(3), 
AR(4), MA(1), MA(2), ARMA(1,1), ARMA(1,2), ARMA(2,1) and ARMA(2,2). From 
there, 100 models were formulated in such a way that each process was assigned a 
number of 10 models. These models were summarized in the Appendix. For illustration, 
the 10 models for AR(1) process  were  those  with  a  parameter value of 0.10, 0.30, 
0.50, 0.70, 0.90, –0.30, –0.50, –0.60, –0.80 and –0.95 respectively. Each of these 10 
models is in turn replicated into 100 random data series using a different random seed 
number (less than 10 digits) for each replication. To be consistent in comparison, every 
random series has 555 observations with a mean value of 111 and a unit variance. No 

1φ
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element of seasonality or trend is involved in this simulated data. The data series are 
randomly generated using the “Generation of the Simulated Data” option of the ITSM 
software.  

 The process of time series model fitting in this study involves identification of 
appropriate models, estimation of parameters and validation of the model. In the process 
of model fitting, ITSM automatically selected a minimum AICC model for each of the 
data series generated from the AR(1), AR(2), AR(3) and AR(4) processes. As for each of 
the remaining series, 4 to 9 appropriate models were fitted for model selection purpose. 
The estimated models are appropriate in the sense that, besides they are stationary and 
invertible (ITSM strictly prohibits the modelling of non-stationary and non-invertible 
model), they are also required to pass the following formal diagnostic tests of 
randomness: 

1. Ljung-Box portmanteau test, which uses the autocorrelations of the 
residuals to test for the null hypothesis that the residuals are 
independently and identically distributed (iid);  

2. McLeod-Li portmanteau test, which tests whether the residuals are from 
an iid sequence of normally distributed random variables, by using the 
autocorrelations of the squared-residuals;  

3. Turning point test, which is a normality test based on the number of 
turning points; 

4. Difference sign test, which is used to detect whether a linear trend 
(implies non-stationary) is present in the residuals; 

5. Rank test, which is also a stationarity test for the residuals. 
 

These tests are easily checked by “Tests of Randomness of the Residuals” option 
in the software mentioned earlier. The order of the Yule-Walker model for the residuals 
is also estimated by this option, to assess whether the residuals of the each estimated 
model are compatible with the white noise assumption. The informal residuals diagnostic 
tests, namely plotting the sample autocorrelations function (ACF) and partial 
autocorrelation function (PACF) are performed by the “Model ACF/PACF” option of 
ITSM software. The details on these diagnostic tests are available in Brockwell and Davis 
(1996). Out of a class of appropriate models, the order p and q of the minimum AICC 
model was recorded for each series. 

If the estimated p and q of the minimum AICC model matches the simulated 
model, we say that the AICC criterion has picked up the correct model. If it failed to pick 
up the correct model, further investigation was carried out to determine whether over 
parameterization or under parameterization had occurred. Due to the fact that in the 
computation of AICC statistic the sum of p and q is taken as one term [see equation (7)], 
the following definitions were proposed. Over parameterization was defined as the sum 
of the estimated order p and q exceeding sum of the true order p and q, whereas under 
parameterization happened when sum of the true order p and q exceeding sum of the 
estimated order p and q. Under these definitions, a minimum AICC model might fail to 
pick up the correct model, due to neither over parameterization nor under 
parameterization, however. For instance, ARMA(1,2), ARMA(3,0) and ARMA(0,3) 
models were clearly different from ARMA(2,1) model, but neither of them was 
considered over parameterization or under parameterization. This paradox stemmed from 
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the deficiency in the computation of AICC statistics, which regarded p + q as one term. In 
this study, these models are treated as mis-specified models.  
  In this study, for every 100 series of the same model, the probability that the 
minimum AICC model picks up the correct model, denoted by Pc , was computed as 
 

  Pc  = 
100

occurred up" picks"  timeofnumber .                 (8) 

 
 The probability that the event “over parameterization” happened, Po, was 

calculated as 
 

  Po  = 
100

occurred zation"parameteriover "  timeofnumber .        (9) 

 
  Similarly, the probability that the event “under parameterization” happened, Pu , 
was given by 

 

       Pu  = 
100

occurred zation"parameteriunder "  timeofnumber .          (10) 

Finally, the probability that the event “mis-specification” occured, Pm was 
determined by  

Pm  = 
100

occurred ion"specificat-mis"  timeofnumber .          (11) 

 
 

SIMULATION RESULTS  
 
Amongst the 10 models of AR(1) process, Pc ranged from 0.63 to 0.81 with a 

mean value of 0.721; Po ranged from 0.19 to 0.37 with a mean value of 0.268, while Pu 
ranged from 0 to 0.09 with a mean value of 0.011. This means that out of all the 1000 
series of AR(1) process, the minimum AICC model matches the correct model 721 of the 
time; over parameterization occurs 268 of the time and under parameterization happens 
only 11 of the time. The result for AR(1) process and other the processes in this study 
was summarized in Table 1. From this table, we could say that AICC statistics is a 
moderately good model selection criterion, with a probability of picking the true model 
ranging from 0.366 to 0.795 and a mean value of 0.613. However, chances of over 
parameterization still exist and in every 100 models, around 17 to 50 models will be over 
parameterized. As compared to Autoregressive or Moving-average models, over 
parameterization was found relatively serious in mixed Autoregressive Moving-average 
models, where the AICC statistics could pick up at most 60 percent of the correct models. 
The AICC statistics in picking up the “mis-specified” model was negligible in only 4 out 
of 100 models (not shown). This result suggests that whenever the minimum AICC 
criterion failed to pick up the true model correctly, it was due to over parameterization. 
This fact that AICC over parameterized could be perceived as supportive to the 
proponents of parsimonious model such as Box and Jenkins (1976). Hence, for any two 
comparable models, it is always safe to choose the one with lower order of p and q.   
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Table 1: Summary of simulation study’s results. 

Correctly estimated Over parameterization Under parameterization No. Process 
Low High Mean Low High Mean Low High Mean 

1 AR (1) .63 .81 .721 .19 .37 .268 .00 .09 .011 
2 AR (2) .52 .84 .751 .16 .25 .219 .00 .25 .030 
3 AR (3) .60 .79 .714 .19 .32 .255 .00 .16 .031 
4 AR (4) .25 .78 .631 .15 .33 .233 .00 .60 .097 
5 MA (1) .43 .79 .670 .19 .41 .256 .00 .04 .005 
6 MA (2) .56 .84 .733 .16 .44 .265 .00 .00 .000 
7 ARMA (1, 1) .20 .87 .601 .11 .80 .358 .00 .13 .013 
8 ARMA (1, 2) .45 .74 .594 .26 .55 .406 .00 .00 .000 
9 ARMA (2, 1) .01 .84 .320 .11 .71 .303 .00 .84 .246 
10 ARMA (2, 2) .01 .65 .393 .22 .82 .413 .00 .62 .116 
Overall .366 .795 .613 .174 .500 .298 .000 .273 .055 

 

  
CONCLUSIONS 

 
The AICC statistics, as its earlier versions (AIC) has been widely used as one of order selection 
criteria in ARMA time series as well as the lag-length selection criterion in econometric 
modelling processes. As the AICC statistics is important in ARMA time series modelling and 
related fields, its performance must be evaluated. This paper evaluates the performance of AICC 
by determining the probability of the minimum AICC criterion in picking up the true model 
based on a simulation study. A total of 100 models from 10 ARMA processes were used in this 
study, with 100 replications for each model giving to a total of 10,000 data series. The probability 
of interest was found to be only 0.613, even though we had use a considerably large sample size. 
Hence, the performance of AICC in picking up the true models is expected to decline in the case 
of smaller sample size, which usually happens in empirical research. In addition, the minimum 
AICC criterion, which tries to overcome the over parameterization of the minimum AIC criterion, 
still has the tendency to overestimate the model orders. This implies that applying AICC criterion 
in either time series modelling or the selection of lag-length for any lag-length sensitive tests such 
as unit root and cointegration tests in the related fields would weaken the credibility of the 
ultimate results.  

This study investigates only 10 of the commonly used ARMA(p, q) processes. It could be 
improved by including more variations of process, especially those with moderately high order, to 
produce a more influential result. The sample size could also be varied such that the actual 
performance of the minimum AICC criterion in conjunction with various sample sizes could be 
uncovered. A computer search algorithm could also be designed to determine a new empirically 
sound order selection criterion. 
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Appendix: List of Simulated Models. 

Parameters Process Model 
Φ1 Φ2 Φ3 Φ4 Θ1 Θ2 

1   0.10 - - - - - 
2   0.30 - - - - - 
3   0.50 - - - - - 
4   0.70 - - - - - 
5   0.90 - - - - - 
6 -0.30 - - - - - 
7 -0.50 - - - - - 
8 -0.60 - - - - - 
9 -0.80 - - - - - 

 
 
 
 
AR (1) 

10 -0.95 - - - - - 
11   0.70 -0.35 - - - - 
12 -0.25 -0.85 - - - - 
13   0.90 -0.20 - - - - 
14 -0.40   0.40 - - - - 
15   0.20   0.50 - - - - 
16   0.10   0.10 - - - - 
17   0.60   0.30 - - - - 
18   0.40   0.55 - - - - 
19   0.45   0.35 - - - - 

 
 
 
 
AR (2) 

20 -0.50   0.30 - - - - 
21   0.20   0.20   0.55 - - - 
22   0.80  0.10   0.09 - - - 
23   0.10   0.10   0.79 - - - 
24   0.50   0.05   0.40 - - - 
25   0.33   0.33   0.33 - - - 
26 -0.70   0.20   0.50 - - - 
27   0.50 -0.80   0.30 - - - 
28   0.40   0.30 -0.90 - - - 
29   0.20   0.50 -0.50 - - - 

 
 
 
 
AR (3) 
 

30   0.20   0.30   0.10 - - - 
31   0.10   0.10   0.10   0.10 - - 
32   0.35   0.35   0.10   0.10 - - 
33 -0.10   0.10 -0.10   0.10 - - 
34   0.05   0.05   0.20 -0.69 - - 
35 -0.60   0.40   0.20   0.05 - - 
36   0.21   0.21   0.21   0.21 - - 
37 -0.20 -0.10 -0.10 -0.20 - - 
38   0.10   0.20   0.30   0.30 - - 
39   0.10   0.20   0.05   0.60 - - 

 
 
 
 
AR (4) 

40   0.00   0.00   0.00   0.40 - - 
41 - - - - -0.60 - 
42 - - - - -0.80 - 
43 - - - -   0.40 - 
44 - - - -   0.90 - 
45 - - - -   0.30 - 
46 - - - -   0.70 - 
47 - - - -   0.10 - 
48 - - - -   0.50 - 
49 - - - - -0.20 - 

 
 
 
 
MA (1) 

50 - - - - -0.40 - 
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List of Simulated Models (continued). 
Parameters Process Model 

Φ1 Φ2 Φ3 Φ4 Θ1 Θ2 
51 - - - -   0.60   0.40 
52 - - - -   0.30   0.60 
53 - - - - -0.70   0.80 
54 - - - -   0.90   0.30 
55 - - - -   0.50 -0.70 
56 - - - -   0.20   0.60 
57 - - - -   0.40   0.50 
58 - - - - -0.60   0.90 
59 - - - -   0.50   0.50 

 
 
 
MA(2) 

60 - - - - -0.70   0.50 
61   0.30 - - -   0.90 - 
62 -0.50 - - - -0.80 - 
63   0.90 - - -   0.30 - 
64 -0.80 - - -   0.50 - 
65 -0.60 - - - -0.60 - 
66 -0.60 - - -   0.90 - 
67   0.40 - - - -0.70 - 
68   0.80 - - -   0.30 - 
69 -0.60 - - -   0.20 - 

 
 
 
 
 
ARMA(1, 1) 
 

70   0.60 - - -   0.80 - 
71   0.40 - - -   0.60   0.80 
72   0.80 - - -   0.40   0.60 
73 -0.60 - - -   0.30   0.70 
74   0.50 - - -   0.30   0.90 
75   0.90 - - -   0.50   0.60 
76 -0.80 - - -   0.60   0.35 
77   0.30 - - - -0.70   0.80 
78   0.40 - - - -0.60   0.80 
79   0.70 - - -   0.50 -0.40 

 
 
 
 
 
ARMA(1, 2) 

80   0.20 - - -   0.70   0.80 
81   0.50   0.20 - -   0.40 - 
82   0.20   0.50 - -   0.40 - 
83   0.90 -0.80 - -   0.80 - 
84   0.80 -0.50 - -   0.60 - 
85 -0.69   0.26 - -   0.90 - 
86   0.10   0.85 - -   0.70 - 
87   0.40   0.40 - -   0.40 - 
88   0.80   0.15 - -   0.60 - 
89   0.45   0.45 - -   0.45 - 

 
 
 
 
 
ARMA(2, 1) 

90   0.70 -0.70 - - -0.70 - 
91   0.20   0.70 - -   0.50   0.50 
92   0.70   0.20 - -   0.50   0.50 
93   0.50   0.45 - -   0.20   0.70 
94   0.50   0.45 - -   0.70   0.20 
95   0.30   0.65 - -   0.80   0.15 
96   0.70 -0.80 - -   0.50   0.40 
97   0.60   0.35 - - -0.90   0.80 
98 -0.70   0.25 - -   0.30   0.80 
99 -0.35   0.60 - -   1.10   0.90 

 
 
 
 
 
ARMA(2, 2) 

100   0.60 -0.40 - -   0.30   0.30 
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