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Abstract

We consider two generic problems of combinatorial search under the additive model. The
first one is the problem of reconstructing bounded—weight vectors. We establish an optimal
upper bound and observe that it unifies many known results for coin-weighing problems. The
developed technique provides a basis for the graph reconstruction problem. Optimal upper
bound is proven for the class of k—degenerate graphs.

1 Introduction

In many practical situations, one needs to obtain some information indirectly available through
some physical device. Sometimes this implies costly or lengthy experiments so that the viability
of the method crucially depends on the total number of them. As a classical example we refer
to the problem of identification of contaminated blood samples [7]. The main problem is that we
should design an optimal protocol of experiments which is often an unfeasible computational task.
Such problems are studied in the field of combinatorics called combinatorial search. We refer to
monographs [2, 7] for detailed account of modern methods and results in this area. Mathematically,
an experiment with the physical device is regarded as a query to an oracle. Their number is the
standard complexity measure for the problem.

Informally, a general combinatorial search problem is described by three parameters: a universe
of objects, a set of queries to the oracle and a set of possible answers. An object from the universe of
objects is accessed uniquely by the oracle. As every query to the oracle adds some information about
the object, we repeat the process until we have enough information in order to uniquely identify
the object. Our goal is to minimize the number of queries to the oracle. We will use notation g(-)
to denote the response of the oracle to the query. Sometimes we indicate which object GG is meant
to be queried using notation ug(-).

One can distinguish two major classes of combinatorial search problems, namely the adaptive
and non-adaptive ones. The latter class contains all algorithms which make all queries in advance,
before any answer is known. In contrast, an adaptive algorithm takes into account outcomes of
previous queries in order to form a next one. The non-adaptive algorithms form a subclass of
adaptive ones and they are generally weaker. Surprisingly, in many cases non-adaptive algorithms
achieve the power of adaptive ones. This will be the case for our problems.

In this paper we concentrate on two sets of objects. The first is the set of d-bounded weight
vectors Q(n, d), which consists of all n—dimensional, non-negative integer valued vectors of the total
weight (sum of components) at most d. The second is the set G, ; of k-degenerate graphs on n
vertices vy, ..., v,. The definition of k-degenerate graphs is given below. Terms “d-bounded weight
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vector reconstruction problem” and “k-degenerate graph reconstruction problem” will refer to these
two sets respectively.

The set of allowed queries and the set of oracle’s answers are crucial for the complexity of the
combinatorial search problem. For the set Q(n,d), an allowed query is a subset S C {1,...,n} of
positions in a vector. The answer to such a query S is the sum of entries corresponding to indices
in S. That is if the unknown vector is v’ = (ay, ..., ay), then ugz(S) =3 ;g a;. For G, 1, an allowed
query is a subset of vertices @ C {vy,...,v,}. For a graph G = (V, E) € G, 1, the answer to the
query pug(Q) is the number of edges with both endpoints in @, pg(Q) = [(Q x @) N E|. Such a
choice of queries and answers corresponds to the additive or quantitative model of combinatorial
search.

Historically, the additive model takes roots in a coin-weighing problem, posed by S6denberg and
Shapiro in 1963 (see [2]). In this problem there is a finite number of coins, defective and authentic
ones. The goal is to find the set of defective coins by possibly minimal number of weighings (or
experiments). Each experiment consists in weighing an arbitrary subset of coins which reveals
the number of defective ones. The problem was solved by B. Lindstrém [12], who gave an explicit
optimal construction for the set of loQan queries. A probabilistic proof can be found in [8]. This result
was extended in several ways. In [11] Lindstrom obtained an explicit construction of a d-detecting
matrix, which provides an optimal reconstruction algorithm for vectors with each entry bounded by
d. This construction can be shown to be optimal for the class of non-adaptive algorithms (see [10]).
Paper [10] studies the coin—weighing problem where the number of defective coins is bounded by a
constant dy. The upper bound of 41020 h log n was established for the non-adaptive version of this
problem. The naive information—theoretic lower bound for non-adaptive algorithms was improved
in [3] to QIOgil?)—C log n for all dy < n and some constant ¢. Again, this class of objects is a proper
subclass of dp—bounded weight vectors.

To introduce main results of this paper, we point out an apparent connection between coin—
weighing and vector reconstruction problems. Namely, we can associate with every coin its “degree
of falsity”, that is the difference between the coin weight and the weight of an authentic one. Our
goal is to reconstruct the degree of falsity of every coin, i.e. the vector of coin overweights. A
weighing of a subset of coins reveals the total overweight which is equal to the sum of corresponding
entries of the coin overweights vector. This establishes correspondence between coin—weighing and
vector reconstruction problems.

In the first part of this paper we extend previous results in the following direction: we show
that an optimal algorithm exists for the problem when only the total overweight is known and
the overweight of each individual coin is not bounded. Furthermore, the optimal upper bound can
be achieved by a non-adaptive algorithm. This bound is of the same order as for the classical
coin-weighing problem where degrees of falsity are restricted to (0,1) only (or more generally to
(0,...,dp)). Thus, we gain a uniform viewpoint to all previously mentioned results.

In the second part of the paper, we apply the results for bounded—weight vector reconstruction
to reconstruction of graphs. Reconstruction of graphs covers a broad class of combinatorial search
problems. For example, in [9] we studied a particular graph reconstruction problem motivated by
a practical application. Note that the problem of graph reconstruction is different from that of
searching for an edge in a giwen graph as well as from the classical problem of verifying a graph
property [2].

In [10] optimal algorithms were proposed for some classes of graphs. For example, it was shown
that d-bounded degree graphs and one-sided d-bounded degree bipartite graphs have reconstruction
complexity O(dn) which can be reached by a non-adaptive algorithm. Another example is provided
by general graphs, where the universe of objects is the set of all labeled graphs on n vertices. This




class has complexity O(l:;n) matched by a non-adaptive algorithm. The same problem was already

considered in [1] in a slightly different setting.

While these results already cover many classes of graphs, they all assume some local restriction
(except for the extremal case of the class of all graphs). In particular, the maximum degree of a
vertex turns out to be the main parameter in complexity bounds. This eliminates, for example,
the class of trees or planar graphs. We get rid of this restriction, but demand a graph to be k-
degenerate (see definition 4.1). We prove that for graph reconstruction problem, the lower and upper
bounds asymptotically coincide up to a multiplicative factor. Furthermore, this can be achieved by
a non-adaptive algorithm. The complexity is shown to be O(nk).

2 Definitions and Conventions

The following global conventions and definitions will be used throughout the paper. We assume
implicitly that all graphs are labeled and simple, i.e. without loops or multiple edges. The weight or
rank of a vector is its cardinality or the sum of the entries of the associated vector ¢ = {vy,...,v,}.
The non-zero positions of a vector represent its support:

n

wt(5) = > v sp(7) = {i|v; # 0}

=1

All logarithms are natural unless the base is indicated. Finally, all considered matrices are (0, 1)-
matrices over the ring of integers.

Throughout the paper we use the asymptotic notation. Usually we have two variables, say n and
k. Implicitly, we suppose that we have a family of problems parameterized by pairs {(n¢, k) }ren
and that n; is increasing. The behavior of k; is usually mentioned in the context. Sometimes we
sacrifice the generality of results in order to make them more clear or symmetric. This mainly
concerns two main assumptions of the paper. In the first part of the paper, we consider only n—
dimensional vectors, whose weight is bounded by a n'*¢, for an € > 0. This choice excludes the
range of values where a trivial construction can be applied. In the second part of this paper we
consider only k—degenerate graphs with £ < n®, with @ < 1, the choice is motivated by similar
considerations.

3 Non-Adaptive Reconstruction of Bounded-Weight Vectors

In this section we give a lower and upper bounds for the complexity of reconstruction of bounded-
weight vectors by a non-adaptive algorithm. As it was mentioned in the introduction this problem
generalizes the classical coin—weighing problem. Recall that a d-bounded weight vector is a vector
7= (v1,...,v,), with non-negative integer components v; € {0} UN and > v; < d. An algorithm
tries to reconstruct such a vector by asking for a sum of entries with indices in a set S C {1,...,n}
which it is free to choose. The complexity measure of the algorithm is the number of queries and

will be denoted by k(n, d).

3.1 Separating Matrices and Bounded Weight Vectors

The notion of separating matrix plays a central role in the study of non-adaptive algorithms for
coin-weighing problems.



Definition 3.1 A matrix M € (0,1)"*" with n columns and k rows is called separating for a set
of vectors V iff for all vector ¢, U3 € V we have

M- 07 =M -7y = 0] =10
The importance of this notion is due to the following simple observation:

Proposition 1 Constructing a non-adaptive algorithm for a coin-weighing problem under the ad-
ditive model is equivalent to constructing a separating matrix.

Indeed, let V' be the set of all possible input vectors. Each query can be represented as an incidence
(0, 1)-vector of the objects that are put in the query. Consider the matrix M, whose rows corre-
spond to queries and columns to objects. A crucial observation is that the vector of answers for
configuration ¢ coincides with the vector M - ¥ (in the additive model). Since the algorithm must
distinguish between different vectors vy # v; we have M - vy} # M - 03. Thus, M is a separating
matrix for V.. On the other hand, given a separating matrix M for a set of vectors V' we obtain a
non-adaptive algorithm, by treating rows of M as incidence vectors of queries. a

This reformulation allows us to reduce the question of existence of a coin-weighing algorithm to
the question of existence of a certain separating matrix. Such reformulation is not known for other
reconstruction problems, such as graph reconstruction, which will be considered later.

Below we concentrate on a particular vector set V, namely the set of all d-bounded weight
vectors, which will be denoted by € or Q(n, d) and defined as

Qn,d) = {(dy,...,dn)| d; € NU{0}, i:digd} (1)

3.2 Information—Theoretic Lower Bound

The work of any algorithm which reconstructs a vector from Q(n,d) can be represented as an
extended decision—tree with at least || = Z?:o (nﬂ_l) leaves and branching degree at most d + 1.

K3

Therefore, the longest path has length k(n, d), and the following lower bound holds:

d )
n+i1-—-1 nd+d-1
k(n,d) > logd_HZ( ; ) > log iy ( d )

1=0

We further simplify this expression. Apply (z‘;y) > max((14$)Y, (1+ 7)) = <1 + E?jéf’g;)mm(%y)

to obtain:

max(n — 1, d) ) min(n—1,d)

n+d-—1
k(n,d) > logg,, ( d ) 2 log(g41) <1 + min(n — 1,d) )

A simple calculation shows that if d is of order ©(n'*¢) (for some fixed € > 0), then k(n,n!*¢) =
Q(n). Since our problem has a trivial solution with n queries (ask separately about each v;), we
conclude that it is reasonable to fix some parameter ¢ > 0 and consider only such d that d < n'*c.
Thus, for d < n'te:

min n, d) log(1 + 22nd)) (3)

(14 €)logmin(n,d)

k(n+1,d) >

In the next section we improve this bound roughly by a factor of two.



3.3 Improving the Lower Bound

In this section we obtain a better constant factor in the lower bound using the second moment
method [4]. This lower bound is the factor of two away from the upper bound which will be
obtained later. The idea of the proof is to consider the set of all vectors of the weight d as a uniform
probabilistic space. Then, an estimation of a certain variance will show that the image M - @ of
at least a half of vectors @ € €2 belong to a sphere of small radius if M € (0, 1)k><” is a separating
matrix for 2. Thus we obtain an estimation of the dimension of the matrix.

Let Q = Q(n,d) = {(d1,...,d,)| >, d; = d} be a probabilistic space with uniform distribution
n—I—d—?—i)/(n—}—d—l

n—2 n—1 )’ and a

(here we consider only vectors of weight exactly d.) The Pr[d; = 1] = (

simple calculation shows that E[d;] = £ and Var[d;] = E[d; — E[d}]]* = % : (nj;—zd)d. Consider a
random vector @ = (dy,...,d,) € Q, and let ¥ = M - @, where ¢ = (v1,...,vg). The first goal
is to estimate Var[v;]. Suppose there are exactly m non-zero entries in i-th line of the matrix M.
The symmetric structure of © imposes that Var[v;] = Var[d;, +---+ d;,,] = Varldyi + -- -+ d,.].
Therefore Var[v;] = 377, Var[d] + 3 _.,; Covld;, d;], where Cov[d;, d;] = Eld; - ;] — E[d;] - E[d;].

A direct calculation shows that

n—1 (n+d)d d(n+d) d(n+d)
di+-4d,]=: : _ 1 - cm - (n— 4
Varldi + -+ dy] mn—}—l e m(m )n2(1+n) 2t 1) m-(n—m) (4)
Since m(n —m) < %, we have Var[v;] < ZEZi‘f; Together with linearity of expectation this gives:
k
d(n +d)
Egz i — Ev))?| <k
From Markov inequality it follows that:
k
d(n+d) 1
P i — Bu))? <k———L| > =
r ;(U [v])? < 2t D)| 22 (6)

n+d—1

n—1

E-d(ntd
2(514-1))' The

Hence at least l( ) vectors ¥ belong to a k-dimensional sphere of radius

2

201 -R2
k

k/
volume of k-dimensional sphere is known to be < ) , for a constant ¢;. Therefore, by volume

()31

argument,

From this we obtain:
min(n — 1, d) log (1 + max(r=Ld)

i 2 9 _ min(n—1,d) (8)
log d + log(1+ m) + log ¢q

Considering two cases of d < n — 1 and d > n — 1 and taking into account that d < n'*¢, we can
further simplify the last expression and formulate the result in the following theorem:

Theorem 1 There exists an absolute constant ¢, such that for all n — 0o and d < n'te:

max(n,d) )

min(n,d)

min(n, d) log (1 +
(14 2¢) logmin(n,d) + ¢

k(n+1,d) > 2



3.4 Upper Bound for the Vector Reconstruction Problem

In this section we apply the probabilistic method [8, 4] to obtain an upper bound on the dimension
of a separating matrix M for the set Q(n,d) of d-bounded weight vectors (see definition 1). The
general idea is to consider a set of “bad” events, defined by conflicting pairs, and estimate their
expected number for a uniformly drawn matrix. When this number is below 1 there is a matrix
where no “bad” events occurs. Thus we can estimate the dimension of the matrix M.
For two different vectors ¢, € V and a matrix M, we define a characteristic function
X(’l?l, ’172, M)
(v, By, M) = { 1 if Mo, = M5,

0 otherwise.

For a matrix M which is not a separating matrix for © we can find two witness vectors @ =
(a1,...,a,), b= (b1,...,b,) that enjoy two additional properties:

1. sp(@) Nsp(b) = 0. Otherwise, consider (@,¥'), where @ = (d,...,d,
a = a; — min(a;, b;), b: = b; — min(a;, b;). Obviously, wt(ad’) < wt(d), wt(b') < wt(b) and
Mi' = MV when Ma = Mb.

-

2. wt(d@) = wt(b). This can be insured by adding to M an additional row with all entries equal
to 1. This row will be implicit and will not be subject to the random choice of matrix entries.
Obviously, adding one row does not affect the asymptotic bound.

An ordered pair of vectors ¥y, U3 € (n, d) satisfying the two properties above is said to be a critical
pair. Let C = C(M) be the set of all critical pairs. We have

Pr[M is not separating for Q(n,d)] = Pr \/ (x(01,0, M) =1) |, (10)
(T1,72)EC(M)

We estimate this probability from above:

Pr Vo (@, 0, M) =1)| <
(#1,72)€C(M) (71,72)€C(M)

Pr[x(¢y, 02, M) =1]. (11)

From now on we assume the uniform distribution over & X n matrices M, except for the “hidden”
row of all 1’s. The idea of obtaining an upper bound is to find the smallest & which makes the above
sum smaller than 1. The first step is to obtain an upper bound for Pr [y (v, U3, M) = 1].

Lemma 1 Given a critical pair (&, %) and M uniformly distributed over (0, 1)¥*"

Prix(@, o, M) =1] < (ﬁw)kﬂ' (ﬁw)m 12

Proof: Let&,...,&, be aset of independent random variables with Pr[§; = 0] = Pr[§; = 1] = 1/2.
The event M©; = M ¥, is equivalent to k independent events corresponding to the equality in each
row. Therefore,

Pr (M = M@, = Pr[(5,6) = (5,5)]F, (13)



where §= (&1,...,&,), and (S, 7;) is the inner product of §and ;. Since sp () Nsp(¥2) = 0, then
(§,71) and (8§, 03) are independent and

Pr[(5,01) = (5, 02)] = ZPr [((5,71) = 9) A((5,02) = §)] = (14)
Zpr[@,a):i]-Pr[@,@):i]g\/Zpr[@,ﬁl):i]?-\/Zpr[@,@):i]? (15)

The sum ), Pr[(s,v;) = i*, j = 1,2, can be bounded from above by max; Pr((5,0;) =14]. In-
deed, consider an arbitrary integer-valued random variable & and let py,q.(§) = max;ez Pr[€ =1].

Then ), Pr[{ = i]2 < i Prmac(OPr[€ = 1] = Prmaz(€) Y, Pr[§ = 1] = Prmaz(§). Therefore, we can
weaken (15) to

Pr((3,1) = (3, 5)] < V/Prmaw((5,51)) - VP (5, 2)) (16)
To estimate p,,q» We need the following technical proposition.
Proposition 2 Let t be a natural number, ay,...,a; > 0, and &, ...,& be independent random

variables with Pr[¢; = 0] = Pr[§; = 1] = 1/2. Then

1. Q_t(l_t;ZJ) < %, forall t > 1,

2. pmam(fl +---+ 575) = 2_t(|_t;2j)’

3. pmam(algl + -+ atgt) S pmaz(fl + -+ 575)7
Proof:

1. For big t’s the inequality easily follows from Stirling formula. The constant was chosen to
satisfy the inequality for all t > 1.

2. This is obvious since Pr[é; + - 4+ & =] = 2_t(§) and (LthJ) > (f), forall:=0,1,...,t.

3. Let P™** = p, o (a1&1+- - +a.&;). By definition, thereis a value s such that Pr{a;& + -+ -+ @& = s] =
Pm2x_ Consider the family F = {A| Y;c 4 a; = s}. Clearly, card(F)-27" = P™**. Since a; > 0,
F is a Sperner family of sets, that is there is no two sets A, B € F such that A C B. By
Sperner’s theorem [5], card(F) < (Lt/tzj)'
O
We return to the proof of Lemma 1. To bound py,q.((5,7;)), s = 1,2, we apply Proposition 2 with

t = sp(7;). We have 1/2
Prmac((8,T;)) < 2_7:(“;20 < (ﬁ(@)l)

By (13), (16), the Lemma follows. ]

Using the definition of conflicting pair, we now rewrite the right-hand side of (11) as

d
S Y Prx(b, oy, M)=1]=3> " Y Prx(#,5,M)=1] (17)

71,7z,
|wt(d1)|=w,
|wt(d2)|=w,
sp(h)Nsp(72)=0

N | —

-~



Using Lemma 1, we bound the inner sum for some fixed w.

> rean-is L () () <09

U1 ,02,|wt (71 ) |=w . 71,72,

[wt (72)]|=w, sp(#1)Nsp(v)=0
sp(th )Nsp(v2)=0

S () | 7|5 T @) -EOCDE)) @

wh (i) =w wit (i )=w,
Isp(71)|=s

e S =

The inequality between (18) and (19) is obtained by dropping the condition sp(%;) N sp(72)

= (.
To obtain the last equality we used the fact that there are (Z) (7“:__11) vectors ¥; of weight w with

|sp(¥1)| = s, which follows from simple combinatorial considerations.

Now we are left with the technical problem of finding a possibly minimal & which makes (19)

smaller than 2. This will make (17) smaller than 1 and achieve our goal. Finding such k requires

some routine calculations that we omit. The following proposition gives the final result.

Theorem 2 There exist absolute constants Cy, (5, C's such that for all n,d there exists a k X n
separating matrix for the set of d-bounded weight vectors with k(n, d) bounded as

4 min(n, d) log <Cl . I;?IT((Z’;I)))
k(n,d) < - :
log min(n, d) + Cy

+ Cslog d. (20)

Comparing (20) with lower bound (9), we conclude that upper bound (20) is within the factor of
2(1 + 2¢) from the lower bound provided that d < n'*¢ for our fixed parameter € > 0.

4 Non-Adaptive Reconstruction of k-Degenerate Graphs

In this section we study the complexity of non-adaptive algorithms which reconstruct the class of
k-degenerate graphs. This class of graphs is large enough to contain k-bounded degree graphs, sums
of k/2 trees and other interesting structures.

Definition 4.1 A graph G = (V, F) is called k-degenerate if there exists an ordering of vertices
V ={v1,vy,...,v,} such that deg(v;) < k in the subgraph induced by the vertices {v;, v;41,...,v,}.

The class of k-degenerate graphs on n vertices will be denoted G,, ;. Informally, a k-degenerate graph
is a graph which contains a vertex of degree at most k and deletion of this vertex from the graph
leads to a new graph with the same property. For example, tree is 1-degenerate, as there is always
a vertex of degree 1 (leaf), whose removal leads to another tree. Planar graphs are 5-degenerate,
because in any planar graph there is a vertex of degree at most 5 (see [6]). Note that our definition
is equivalent to the one in [6]. We mention that k-degenerate graphs are k 4+ 1-colorable and have
at most n - k — (k"QH) edges. For other properties of k-degenerate graphs see [6].

Let pg(X) be the query function, i.e. the number of edges of the graph G with have endpoints
in X. The complexity ¢(G) of graph reconstruction for a class of graphs G is the number of queries
pa(X;) that are sufficient to uniquely identify every graph in G.



Theorem 3 For any constant o < 1 there are two constants b, and ¢, such that for all £ < n®

¢(Gnk)

b, <
- nk

< ey (21)

We start the proof by establishing the lower bound. Next we reformulate our problem in terms of
bipartite graphs and finally apply the techniques developed for bounded weight vectors.

Proof of the lower bound: To establish the information—theoretic lower bound we need to

estimate from below the number N(n, k) of k-degenerate graphs with n vertices. To obtain a k-

degenerate graph with m+ 1 vertices one can take a k-degenerate graph with m vertices and choose
m

any k vertices to be adjacent with the new vertex v,,4+1. Since this can be done in (k) ways, we
obtain the following estimation

N(n+1,k) > ﬁ (;) > ﬁ (é)k B (;;i)’“ (22)

i=k+1 =1

As it was mentioned above, the number of edges in a k-degenerate graph is at most kn — k(k+1)/2.
From (22), our assumption k£ < n® and asymptotic n! & (n/e)”™ we obtain the information-theoretic
lower bound, namely:

n\7* nk(logn—logk—-1) 1-« nk
1 N 1L,k)>1 —] = > k 2
OBk(n+1-EEL) (n+1,k) 2 log, (ke) logn + log k -1 —|—an +0 logn (23)

Therefore we can let b, = 1;—3 |

Proof of the upper bound: In order to prove the upper bound, we reduce our problem to a prob-
lem of reconstructing a bipartite graph of special form. Specially, we reduce the graph G = (V, F)
and query function p(X) to a bipartite graph G' = (V/, V"  E') and a new query function p’. Here
G' is the bipartite representation of G, i.e. V' and V" are copies of V', and there is an edge between
v € V' and v" € V" iff (v, v") € E. The query function ¢/(X,Y) for X C V' and Y C V" is defined
to be p/(X,Y) = |E'N (X x Y)|, the number of edges between X and Y.

Lemma 2 One query p/(-, ) can be evaluated by five queries p(-).
Proof Observe the following properties of p':

L f(X,)Y) =4/ (Y, X) and p/'(X, X) = 2u(X)

2. XNY =0 then p/(X,Y) = p(XUY) — pu(X) — pu(Y)

3. I XyN Xy =0 then /(X3 UXy,Y) =p/(X1,Y)+ 4/ (X2,Y) forany Y C V.
For arbitrary X1, X9 C V,let Y = X; N X5. Then

1 (X1, Xo) = @/ (Xi \ X2) UY, (X2 \ Xp)UY) =
p(X1\ Xy Xo\ Xa) + 4/ (X \ X2, Y) + /(X2 \ X0, Y) + /(YY)

Using properties 1-3, we obtain for arbitrary X c V', Y c V”

WOXY) = p(X\Y)U (Y \ X)) = 20(X \ V) = 20V \ X) + p(X) +u(Y)  (24)



Thus, one query p’ can be simulated by five queries pu. O

We are going to explicitly describe a family of queries p, (X;,Y;) that reconstruct G’ uniquely
provided that G’ corresponds to a k-degenerate graph G as above. Let {Qj}gnzl be a family of
sets corresponding to rows of a matrix that is separating for the set of k-bounded weight vectors.

Theorem 2 states that m = O(k}ﬁ?;) as n — o0o. Recall that for a given k-bounded weight

vector ¥ = (vy,...,vy), values s; = Zier v; uniquely define #. Let {P;}\_, be a family of sets
corresponding to rows of a matrix that is separating for the set of 2nk—bounded weight vectors.
Theorem 2 implies that | = O(n%).

Lemma 3 Values {ug, (P, Q;) g=1.m uniquely identify the graph G'.

i=1..

Proof The proof relies on the following essential properties of reconstruction of bounded-weight
vectors

1. For a fixed j we claim that for all r = 1...n, the value of p/({v.},Q;) can be uniquely
reconstructed. Indeed, ", p'({v.},Q;) < Yo i/ ({v.}, V") = @/ (V,V") = 2uc(V) <
2nk. Consider a vector @ = (wy,...,wy), where w, = p'({v,},Q;). By property of {F;},
vector w is uniquely defined by values of the sum ErePi w, for + = 1...l, which are known,
since by definition of u', 3 p w, = p/(P;, Q;).

2. Fix an order on vertices of V' = {vy,vy,...,v,}, which is compatible with the definition of
k-degenerate graph. Thus g/ ({v;},{vit1, ..., vn}) < k.

3. Consider a vertex vy € V' and vector € = (eq,...,e,), where ¢; = p/({v1}, {v/}), the incidence
vector of vy in G'. If one reconstructs € one will find all vertices adjacent to v;. By Step 2,
vy has at most k£ adjacent vertices in V", so the values EkeQ] e, = ({n},Q;) 7=1...m)
uniquely define € by the property of {Q;}. According to Step 1, the values s; = p/({v1}, Q)
can be reconstructed for all 7 = 1...m, which proves that vector € can be reconstructed and
all vertices adjacent to vy can be found.

4. To proceed to vertex v, we “exclude” vertex vy from graph G and update p/(F;,@;). This
can be done without additional queries due to the additive nature of u’. Namely, given an
edge (v1, w), we subtract 2 from g/ (F;, ();) if both v; and w belong to F; and (), we subtract
1 if exactly one of v; or w belongs to F; and the other to (J;, and we do not change the value

if {(vy, w)U (w,v1)}N (P xQ;)=0.
5. We repeat the process for vy, vs, ... 0U,_1.

6. It is possible that there are several orders on vertices compatible with the definition of k-
degenerate graphs. The uniqueness of reconstruction follows from the fact that at the i-th
step we reconstruct ezactly those edges which are adjacent to v; in the graph. This implies
that different graphs have different values {y/(F;, @;)}- O

The total number of queries p' is m -1 = O(nk). The reduction between p’ and p gives a factor of
5, as it was shown in Lemma 2. Thus Theorem 3 follows. a
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5 Conclusions and Open Problems

A plausible conjecture is that the result of Theorem 3 holds for the graphs with a specified number
of edges (i.e. |E| = nk), but we are unable to prove it with our technique. Another point is that the
multiplicative constant ¢, is not small — two application of Theorem 2 and reduction of Lemma 2
leads to constant 80, which can be optimized to 48, since queries pu(F;) and p(Q);) are made several
times in Lemma 2.

The upper bound for the dimension of a separating matrix for ©(n, d) was obtained by a proba-
bilistic method. We conjecture that the multiplicative constant can be improved by a factor of two
to match the lower bound of Theorem 1.
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