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Abstract

We study the problem of combinatorial search for graphs under the additive model.
The main result concerns the reconstruction of bounded degree graphs, i.e. graphs with
the degree of all vertices bounded by a constant d. We show that such graphs can be
reconstructed in O(dn) non-adaptive queries, which matches the information-theoretic
lower bound. The proof is based on the technique of separating matrices. Here a central
result is a new upper bound for a general class of separating matrices. As a particular
case, we obtain a tight upper bound for the class of d-separating matrices, which settles
an open question stated by Lindstrém in [19]. Finally, we consider several particular
classes of graphs. We show how an optimal non-adaptive solution of O(n?/log n) queries
for general graphs can be obtained. We also prove that trees with unbounded vertex
degree can be reconstructed in linear number of queries by a non-adaptive algorithm.

1 Introduction and Definitions

Combinatorial Search studies problems of the following general type: determine an
unknown object by means of indirect questions about this object. Perhaps the most
common example of combinatorial search is the variety of problems of determining one
or several counterfeit coins in a set using scales of some kind. Many of these problems
still lack an optimal general solution.

Each instance of a Combinatorial Search problem has two main components: a finite
domain of objects M and a class of queries Q, which is a family of functions from the
domain of objects to a domain A of answers. Given M and Q, the combinatorial search

problem is to find a sequence of queries (q1,q2,-.. ,qx), ¢ € Q, such that the sequence
of answers (q1(x),q2(z), ... ,qr(z)) uniquely identifies the object z € M. A method
for choosing queries (q1,q2, ... ,qx) is called a (combinatorial) search algorithm. The

complexity measure of a search algorithm is the maximal number k of required queries
over all z € M. This implies that we are concerned with query complexity only. Precise
complexity bounds to combinatorial search problems can be rarely obtained. Instead,
one is usually interested in the asymptotic complexity, when |M| tends to infinity.
Monographs [3, 8] present detailed accounts of numerous results on Combinatorial
Search problems. Variants of these problems abound in different application domains.
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For example, paper [13] deals with a problem motivated by genome analysis. Note
that Combinatorial Search is closely related to Learning Theory, where the general
framework is similar, except possibly that there is usually an infinity of objects and one
is looking not necessarily for the object itself but for its approximation according to a
given distance function.

In general, the choice of ¢; in the sequence (qi1,q2,...,q,) depends on answers
(q1(x), ... ,qi—1(x)) obtained “so far”. If this dependence exists, the algorithm is called
adaptive (or sequential). Otherwise, when all the queries can be given before any an-
swer is known, the algorithm is called non-adaptive (or predetermined). In this paper,
we deal with non-adaptive algorithms. Although they are obviously less powerful in
general, non-adaptive algorithms usually admit “nicer” mathematical formulations that
allow to use more powerful mathematical methods. Besides, in many cases (including
those considered in this paper) non-adaptive algorithms achieve the power of adaptive-
ness. Note also that in non-adaptive algorithms all queries can be made in parallel,
which is useful in many applications.

For the non-adaptive case, we reformulate the combinatorial search problem as
follows: find a minimal number of queries q1, ¢, ... , g, € Q such that for every z,y €
M, there is ¢;, 1 < i < n, such that g;(z) # ¢(y).

In contrast to the coin weighing problem where objects of M are just elements or
subsets of elements of a given set, the objects may be of a more complex nature, such
as graphs or partially ordered sets (see [2, 3]). In case of graphs, different combinatorial
search problems can be raised. One may look for an unknown edge in a given graph by
asking, for a subset of vertices, whether one of the edge’s endpoints (or both) belongs to
the subset. A more general problem, considered in this paper, consists of determining
an unknown graph of a given class. Here again, subsets of vertices are queried, but the
answer returned characterizes some property of the subgraph induced by the subset.
Finally, the third type of problem is to check whether an unknown graph belongs to a
given class without actually determining the graph. This problem, known as property
testing, received much attention in connection with the study of evasiveness property
(see [20]). Another approach to property testing, in the framework of probabilistic
algorithms and approximation, was recently introduced in [11, 12].

It is clear that for the same object domain M, different classes of queries Q lead
to combinatorial search problems of different type and different complexity. Under the
additive model, the domain of answers is the ring of integers Z. This model is also
called quantitative, as the queries Q are usually about some quantitative property of
the object. A typical example is to identify the subset of counterfeit coins using a
spring scale under the knowledge of the difference in weight between a counterfeit and
authentic coin (which allows to determine the number of counterfeit coins in a subset by
weighing this subset). We will come back to this example in Section 2. Some additive
models of combinatorial search are studied in 15, 10, 14].

In this paper we consider the problem of searching for a graph under the additive
model defined as follows. The domain of objects, denoted G, is a class of simple graphs

with n vertices labelled by natural numbers 1,2,... ,n. (A graph is simple if it does
not contain loops and multiple edges.) The queries that we are allowed to make about
G € G, are of the following form: For a subset V' C {1,... ,n} of vertices, how many

edges are there in GG between vertices of V7 More formally, how many edges occur in
the intersection G N Ky, where Ky is the complete graph with the set of vertices V7



In this paper we develop new techniques of non-adaptive additive search for a graph.
Our main result concerns bounded degree graphs, i.e. graphs with the degree of all ver-
tices bounded by a constant d. We prove that such a graph can be reconstructed within
O(dn) non-adaptive queries, which matches the information-theoretic lower bound. The
key intermediate result shows that a bipartite graph can be reconstructed in O(dn) non-
adaptive queries provided that the degree of vertices on one side is bounded by d while
no restriction on the other part is made (we call such graphs one-sided bounded degree
bipartite graphs). We also show how optimal non-adaptive solutions of O(n?/logn)
queries for general graphs and of O(n) queries for trees can be obtained.

The results show the power of the considered model, gained by the possibility of
testing a set of vertices and counting the number of edges between them. For compar-
ison, if we are allowed to query only two vertices (that is, test one edge at a time),
Q(n?) queries are needed for many natural classes of graphs, such as trees, matchings,
Hamiltonian cycles and paths, and some others (see [3]).

The paper is organized as follows. Section 2 is devoted to separating matrices —
the main tool for constructing non-adaptive algorithms. In Section 2.1 we consider
a general family of separating matrices, those for the class of bounded weight vectors,
and derive an upper bound for them. In Section 2.2 we concentrate on an important
subclass of d-separating matrices. Specializing the general result to this class, we obtain
a new upper bound that matches modulo a constant factor the information-theoretic
lower bound. Another subclass of d-detecting matrices is analyzed in Section 2.3. In
Section 3 we turn to our main subject of interest — searching for graphs under the
additive model. We consider bounded-degree graphs and prove that such graphs can
be reconstructed in O(dn) queries. Finally, in Section 4 we consider several particular
classes of graphs. For some of them, that are not subclasses of degree bounded graphs,
we show that our technique still applies. For others, we show that the constant factor
can be improved. For the class of trees of unbounded degree, we propose an optimal
construction based on the general result of Section 2.1.

2 Separating Matrices

Cousider the following setting. Assume we have a set of items and each of them is
assigned an integer value. Assume that we want to reconstruct the values by making
queries about subsets of items. As noted in the introduction, this type of search prob-
lems is very common and is called combinatorial group testing. Note that each query
can be associated to a (0, 1)-vector ¢ which is the incidence vector of the corresponding
subset. Assume further that the result of a query is the sum of item values of the corre-
sponding subset. This assumption typically corresponds to the additive model discussed
in the introduction. It implies that if v is the vector of item values, the query result is
the scalar product < ¢,v >. Let us now restrict ourselves to non-adaptive algorithms.
Then the whole algorithm can be represented by a (0, 1)-matrix where each row is a
query vector and each column corresponds to an item. This leads us to the following
notion.

Definition 2.1 A k x n (0,1)-matriz M is called separating for a finite set of integer
vectors V C Z" iff for every vi,ve € V, Mvy # Muvs provided that vy # vs.



In general, our goal is to reduce the number of queries, that is to construct a
separating matrix, for a given number n of columns, with possibly minimal number k
of rows. Clearly, the matrix construction strongly depends on the vector set V. In this
section, using the probabilistic method [5, 9] we prove an upper bound for & for a very
general class of vectors, namely the set of bounded weight vectors. We then show that
this estimation gives optimal bounds for some more specific classes of vectors.

2.1 Separating Matrices for the Bounded Weight Vectors

Definition 2.2 Let n,d € N. Consider vectors v = (a1,... ,a,) with non-negative
integer components a;, and denote weight(v) = > ", a;. The set of d-bounded weight
vectors is the set of all vectors v with weight(v) < d.

Our goal is to obtain an upper bound on the minimal number of rows k = k(n,d) of a
separating matrix for the set of d-bounded weight vectors. Note that we don’t assume
d to be a constant, but an arbitrary integer parameter.

By viewing the columns of a separating matrix as vectors, the problem can be
interpreted in the following way. Given n,d, construct a set of n vectors vy,... ,v, of
minimal dimension k(n, d) such that the sum of any multiset of no more than d of these
vectors is distinct.

We start by giving some preliminary analysis and establishing an information-
theoretic lower bound for k(n,d). There are ("+§_1) vectors of weight ¢, therefore

d .
n+i—1 n+d—1
k(n,d) > log (g1 (E < ; >> > log (g1 < d > = (1)

i=1

log (a4 1) <nL+d <" ; d>> 2)

Applying (z) > (%)y, we obtain:

n+d\? [n+d\" n
k(n,d)Zlog(d+1)maX<< d > ,< . >>_10g(d+1) (14—3): (3)

max(n, d) | ™29 n
= log(a41) <1 + m) — log a1 (1 + 3) (4)

A simple calculation shows, that if d = n!*¢ then k(n,n'™®) = Q(n). Since a linear
number of rows is trivially achieved by the identity matrix, we can assume that in all
interesting cases logd < (1 4 ¢) log n. Thus,

min(n, d) log (1 + m“(”’d))

min(n,d)

n
k(n,d) > —10g(441) (1 + 3) (5)

(14 ¢)log min(n,d)
Below we are going to prove that this theoretic-information lower bound is achievable
within a constant factor.

We use the probabilistic method [5, 9]. Let M be a random k x n (0, 1)-matrix
and V be the set of d-bounded weight vectors. If Prob{M is not separating for V} < 1,
then at least one such separating matrix exists.
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For two vectors v1,vo € V and a matrix M, we define a characteristic function
X(vla V2, M)
1 if Mvy = Muws,

X(v1,v2, M) = { 0 otherwise.

For a vector v = (ay, ... ,ay), let dom(v) denote the set {i|a; > 0}. Whenever M is not
a separating matrix for V, there exist vectors v; = (a1,... ,a,),v2 = (b1,... ,by) €V
with Mv; = Mvy. Moreover, we can assume that v, vy verify two additional properties:

1. dom(vi)Ndom(vg) = 0. Otherwise, consider (v}, v5), where v} = (da},... ,al,), v}
(Y, ...,b), ai = a; — min(a;, b;), b, = by — min(a;, b;). Obviously, weight(A’)
weight(A), weight(B') < weight(B) and Mv} = Mv), when Mv; = Muvs.

2. weight(vy) = weight(vy). This can be insured by adding to M an additional row

with all entries equal to 1. This row will not be subject to the random choice of
matrix’ entries. Obviously, adding one row does not affect the asymptotic bound.

<

A pair of vectors vy, ve € V satisfying the two properties above is said to be a critical
pair. We have

Prob{M is not separating for V} = Prob{ \/ (x(vi,v2, M) =1)}, (6)
(v1,02)

where disjunction is for all possible critical pairs (v1,v2). We estimate this probability
from above:

Prob{ \/ (x(vi,ve, M) = 1)} < Y Prob{x(v1,vs, M) = 1}. (7)
(”Ul,'vg) (1)1,'()2)

From now on we assume the uniform distribution over k£ x n matrices M. The idea of
obtaining an upper bound is to find the smallest k& which makes the above sum smaller
than 1. The first step is to obtain an upper bound for Prob{x(vi,ve, M) = 1}.

Lemma 1 Given a critical pair (vi,vs),

. k4 < /4
Prob{x(vy,v2, M) =1} < <W> . (m) ®

Proof: Let &,...,&, be a set of independent random variables with Prob{¢; = 0} =
Prob{¢; = 1} = 1/2. The event Mv; = Mwy is equivalent to k independent events
corresponding to the equality in each row. Therefore,

Prob{Muv; = Mvy} = Prob{< s,v; >=< s,vp >}¥, (9)

where s = (&1,...,&,), and < s,v; > is the scalar product of s and v;. Since dom(vy)N
dom(ve) = 0, then < s,v; > and < s,vy > are independent and

Prob{< s,v; >=< s,v3 >} = ZProb{(< s,v1 >=19) A (< s,v9>=14)} = (10)

7

= ZProb{< s,v1 >=1} - Prob{< s,vy >=1i} < (11)

< \/Z Prob{< s,v; >=1}?" \/Z Prob{< s,vs >=i}? (12)




The sum Y, Prob{< s,v; >=i}?, j = 1,2, can be bounded from above by max; Prob{<
s,vj >= i}. Indeed, consider an arbitrary integer-valued random variable £ and let
Pmaz(§) = max;ez Prob{¢ = i}. Then >, Prob{¢ = i}? < 3. Pmaz(§)Prob{¢ = i} =
Pmaz (&) Y_; Prob{{ = i} = pmaz(§). Therefore, we rewrite (12) as

Prob{< s,v1 >=< 8,02 >} < \/Pmaz(< 5,01 >) - \/Dmaz (< 5,02 >) (13)
We now need the following technical proposition.

Proposition 1 Lett be a natural number, aq,... ,a; > 0, and &1, ... ,& be independent
random variables with Prob{¢; = 0} = Prob{{; =1} =1/2. Then

1. Q_t(Lt;2J) < \/g, forallt>1,

2. Pmac(& 4+ &) =27 (\y)a))

8. pmaz(@1§1 + -+ @r&t) < Pmaa(§1 + - + &)

4 Pmaz(@1€1 + -+ at&t) = praz (G + -+ &) ff e = a2 = = as.

Proof:

1. For big ¢ the inequality easily follows from Stirling formula. The constant was
chosen to satisfy the inequality for all t > 1.

2. This is obvious since Prob{& + -+ & =i} = 271 (:) and (Lt;2J) > (f), for all
1=0,1,...,t

3. Let P™* = par(a1& + -+ + ai&y). There is a value s such that Prob{a;&; +
o+ aéy = s} = P™. Consider the family 7 = {A]} ;.4 a; = s}. Clearly,
card(F) - 27t = P™a_ Since a; > 0, F is a Sperner family of sets, that is there is
no two sets A, B such that A C B. By Sperner’s theorem [6], card(F) < (Lt;QJ)'

4. Another consequence of Sperner’s theorem is that card(F) = (Lt;2 J) iff F is the
family of all subsets of equal size |t/2] or |(t+1)/2]|. It follows that the sum
of [t/2| minimal elements among a1, ..., a; is equal to the sum of |¢/2] maximal
elements, so they are all equal.

O
We return to the proof of Lemma 1. To bound py,.(< s,v; >), j = 1,2, we apply the
Proposition above with ¢t = dom(v;). We then have

ot 8 1/2
Pmax <37U' > §2_ ( > S <7>
(<502 =2 11y21) =\ Tdomioy)]
By (9), (13), the Lemma follows. O

We now rewrite the right-hand side of (7) as

d
1
> Prob{x(vi,ve, M) =1} = 5 2_:1 Z Prob{x(vi,va, M) =1} (14)
(v1,02) = \weightk’ul’)\:w,
|weight(v)|=w,
dom(v1)Ndom(v2)=0



Using Lemma 1, we bound the inner sum for some fixed w.

Z Prob{x(vi,ve, M) =1} < (15)

1,02,
fweight(vy)| = weight (vz)|=w,
dom(vi)Ndom (v )=0

2 (i) (5]

dom(v1)Ndom (v )=0

IN
~
—
D
N—r

> () | ]S T G- o

U1, U1,
weight(vy)=w weight(vy)=w,
|dom(v1)|=s

S (&) 2 (18)
> ()05) ()
(17) has been obtained by dropping the condition dom(vi) N dom(ve) = 0. To obtain
(18), we used the fact that there are (7) (7;’__11) vectors vy of weight w with |dom(v1)| = s,
which follows from simple combinatorial considerations.

We are now left with the technical problem of finding a possibly minimal k& which
makes (18) smaller than 2. This will make (14) smaller than 1 and achieve our goal.
Finding such k requires some calculations that are left for Appendix C. The following

proposition gives the final result.
Proposition 2 There exist absolute constants C1,Co, C3 such that for all 1 < w < d,
2/ [w—1 8\ /4 \/5
> 2\
s/\s—1 9s d
s=1

provided that

4min(n,d)log (01 . max("d))

min(n,d)

k(n,d) <

Cslogd. 19
log min(n, d) + Co +Cslog (19)

Putting all together, we state the main result of this section.

Theorem 1 There exist absolute constants Cy,Cs, C3 such that for all n,d there exists
a k X n separating matriz for the set of d-bounded weight vectors with k(n,d) bounded
as in (19).

Relating (19) to lower bound (5), we conclude that upper bound (19) is within the
factor of 4(1 + €) from the information-theoretic lower bound provided that d < n!'*®
for any € > 0.

We conclude this section with two special cases of Theorem 1 that will be used in
the sequel. The first one corresponds to the case when d is a constant, and the second
one to the case d = dgn for some constant dy > 1.

Corollary 1 For a constant d, there exists a separating matriz for the set of d-bounded
weight vectors of dimension n with asymptotically 4@ logn rows.
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Corollary 2 Assume that d = dgn for some constant dy > 1. Then there exists a sepa-
rating matriz for the set of d-bounded weight vectors of dimension n with asymptotically
4log dy % TOWS.

2.2 Optimal d-Separating Matrices

Here we concentrate on an important subclass of separating matrices for bounded weight
vectors.

Definition 2.3 For a constant d € N, a d-separating matrix is a separating matriz for
the set of (0,1)-vectors containing at most d entries equal to 1.

Equivalently, for a d-separating matrix, all the sums of any up to d columns are dis-
tinct. If a matrix has n columns, there will be Z?:o () different sums of at most d
columns. Since each entry of such a sum is at most d, a d-separating matrix has at
least log, 1 () = (1+ o(1))dlog,(n) rows (recall that d is a constant). A better lower
bound was proved by Noga Alon [4]. Using the second moment method (cf. [5]), it was
shown in [4] that there exists an absolute constant ¢ such that for every n > d any
d-separating matrix has at least 10;5 — log (n/d) rows.

By definition, a matrix is 1-separating iff all its columns are different. Clearly,
a l-separating matrix with n columns and [log, n| rows can be easily constructed by
setting the columns to be the binary representations of numbers 1,2, ..., n. This matrix
corresponds to the non-adaptive binary search, as it provides a non-adaptive analogue
to the binary search procedure. For an arbitrary constant d, it is known that a d-
separating matrix with asymptotically dlog, n rows can be effectively constructed (see
[19] and [3, exercise 2.3.5]). For d = 2, the lower bound (5/3)log, n has been proved
by Lindstrom [18], while no better upper bound than 2log, n is known. This suggests
that settling the multiplicative factor for the case of arbitrary constant d is difficult.

The general result of the previous section allows to improve the upper bound by the
factor of logy d. Corollary 1 implies immediately the following result.

Theorem 2 (d-separating matrix) For fized d, there exists a d-separating matriz

with n columns and asymptotically 4@71 TOWS.

Thus, we obtain the upper bound which is within the factor two of the lower bound
(2+0(1))dloggn from [4]. This answers the question whether the upper bound dlog, n
can be improved, posed by Lindstrém in [19].

Let us note a straightforward connection between d-separating matrices and a clas-
sical problem of counterfeit coins. A d-separating matrix with n columns solves the
following problem. Suppose we have n coins of which at most d are counterfeit. We
are allowed to ask how many counterfeit coins occur in a subset. Find an optimal
non-adaptive algorithm that determines all counterfeit coins.

2.3 d-Detecting Matrices
In this section we consider another important class of separating matrices.

Definition 2.4 Let d be a constant. A k x n (0,1)-matriz, with n columns, is called
d-detecting iff it is separating for the set of n-vectors {0,... ,d —1}™.



Let vy, v2,... ,v, be the columns of a (0, 1)-matrix. Then this matrix is d-detecting iff
all the sums > ", €v; (¢, =0,1,...,d — 1) are different. Such a set of vectors is called
detecting in [17], hence our terminology.

Given n and d, we are interested in d-detecting matrices with minimal number of
rows. An information-theoretic argument gives the inequality d” < (dn)*, and the
lower bound Q(n/(1 + log,n)) for k.

Corollary 2 implies the asymptotic bound 4n/log,n for k. While this already meets
the lower bound modulo a constant factor, an effective construction yielding a better
upper bound can be given. The problem has been studied by several authors, and
particularly by Bernt Lindstrom in a series of papers [16, 17, 19]. In [17] Lindstrom
presents a construction of a detecting matrix, using the theory of Mdbius functions.
This construction gives a solution of order 2n/log,n, although this was not explicitly
pointed out by the author. Moreover, this bound turns out to be optimal, that will be
stated in Lemma 2 below. We refer to Appendix A for a summary of main Lindstrém’s
results from [16, 17|, and their application to the construction of an optimal d-detecting
matrix. Here we summarize this construction in the following theorem.

Theorem 3 For fized d, a d-detecting matriz can be effectively constructed with n
columns and asymptotically 2n/logyn rows.

In [19] Lindstrém concentrates on the case d = 2 for which he proposes a con-
struction of a detecting matrix based on elementary methods (the construction is also
described in [3, 8]). The matrix has asymptotically 2n/logyn rows. Lindstrom also
proves that the construction is optimal, that is the bound 2n/log, n is the asymptotic
lower bound. Further references to the case d = 2 can be found in [19].

It is interesting that the construction of Theorem 3 matches the asymptotic lower
bound for d-detecting matrices.

Lemma 2 For a fized d, any d-detecting matriz with n columns has at least 2n/log,n
rows asymptotically.

The proof is given in Appendix B. It is a generalization of the proof for d = 2 [19] based
on the method attributed to L. Mozer.

Similarly to d-separating matrices, d-detecting matrices have a natural interpreta-
tion in terms of “generalized counterfeit coins problem”. Assume we have n coins and an
unknown arbitrary number of them are false. Assume further that we know the weight
« of an authentic coin, and that the weight of each false coin takes one of the values
a+0di fori=1,...,d—1. One can think of i (the overweight of a coin) as the “mea-
sure of falsity”. We are allowed to weigh subsets of coins and thus measure the overall
overweight of a subset. Determine the false coins and their falsity by possibly minimal
number of weighing. It is easily seen that finding a non-adaptive solution of the gen-
eralized counterfeit coins problem is directly translated to constructing a d-detecting
matrix with minimal number of rows. Note that for d = 2 we get the counterfeit coins
problem described in Sect. 2.2 but with an arbitrary non-fixed number of false coins.

3 Reconstructing Bounded Degree Graphs

Now we turn to our main subject of interest — the problem of graph reconstruction
under the additive model. Let G,, be a class of undirected graphs on the set V of n



vertices labelled by {1,2,... ,n}. We consider simple graphs, that is graphs without
loops or multiple edges.

We address the following problem. Reconstruct an unknown graph G = (V, E) € G,,
by means of queries of the following type: For a subset W C V of vertices, how many
edges are there in the intersection G N Ky, where Kyy is the complete graph with the
set of vertices W C V7 In other words, we want to reconstruct G by means of the
query function u(W) = |[EN (W x W)|.

Note that a slightly different graph reconstruction model was considered in [1]. In
this model, two subsets Wy, Wy C V are queried, and the query yields the number of
1’s in the submatrix of the adjacency matrix of G induced by rows Wi and columns
Wy. While this model is clearly stronger than ours, below we will show that such a
query can be simulated by five queries u, and therefore both models are equivalent up
to a constant factor.

Using the results on separating matrices presented in Section 2, we solve this problem
for an important subclass of graphs, namely the bounded degree graphs. These are graphs
with the degree of vertices bounded by some constant d. Bounded degree graphs are
quite common objects and cover such classes as matchings, cycles and paths, trees
with bounded branching degree, etc. Property testing for bounded degree graphs was
considered in [12]. In this section we propose an asymptotically optimal (modulo a
constant factor) predetermined search algorithm for this class.

We first prove an auxiliary result. Using the results of Section 2.2 and 2.3, we prove
the existence of an optimal predetermined algorithm for the class of one-sided bounded
degree bipartite graphs. Consider a bipartite graph G = (V, W, E), where VU W is the
set of vertices, VN W = (), and E CV x W. For a constant d, G is called a one-sided
(d-)bounded degree graph if deg(v) < d for every vertex v € V.

Assume that |V| = |IW| = n. By assuming that every node of V has degree d, it is
easy to estimate the number of such graphs from below as ()" = Q((n/d)"). Since
the answer to a query has nd + 1 potential values, any search algorithm requires at
least log,1(n/d)% = dn(1 + o(1)) queries. We now prove that this lower bound can
be met, modulo a constant factor, by a non-adaptive algorithm.

Theorem 4 For a constant d, there exists a non-adaptive search algorithm for the class
of one-sided d-bounded degree bipartite graphs with n vertices on each side, that requires
8dn queries asymptotically.

Proof: Consider a bipartite graph G = (V, W, E), where V U W is the set of vertices,
VAW =0, |V|=|W|=n,and E CV xW is the set of edges. Assume that deg(v) < d
for all v € V. By definition, each query is associated with a couple (V/,W’), V' C V,
W' C W, and has the form: how many edges of G are between vertices of V' and W'?
(what is |[EN (V' x W')|?)

For a vertex v € V and a subset W' C W, denote by degy(v) the number of
vertices of W’ adjacent to v. Note that degy(v) < d and can be determined by one
query.

Fix a vertex v € V. According to Theorem 2, we can find all its adjacent vertices
in W using 4di‘;§ 3 queries (think of adjacent vertices as being “counterfeit”, all other
vertices in W being “authentic”). Each query asks about degy(v) for some subset
W' C W. Let Wy, Wa,...,W, C W (k asymptotically to 4d%) be these subsets.
Since the algorithm is predetermined, the subsets W1, W, ..., W} are independent of
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v. In other words, if for some v € V' we know degyy, (v) for every W, we can reconstruct
all the adjacent vertices of v in W.

Now fix some W;. By Theorem 3, we can find a sequence of subsets Vi, ... ,V}, with
| asymptotically to 2n}3§i, such that the queries < (W;,V;),j = 1,...,1 > allow to
reconstruct degy, (v) for every v € V' (think of degyy, (v) as “the degree of falsity” of v).

Repeating this algorithm for each W;, we can determine degyy, (v) for all v € V and
all W; via 4dﬁ§ o 2n %ggg = 8dn queries asymptotically. This allows us to reconstruct
the adjacent vertices in W of each v € V, that is to reconstruct the whole graph. O

The key argument of the proof is that the algorithm implied by Theorem 2 is non-
adaptive, i.e. the sets W; don’t depend on vertices of V. The fact that the algorithm
implied by Theorem 3 is also non-adaptive does not affect the complexity bound but
insures that the resulting algorithm is completely predetermined too. Specifically, it
insures that all the sets V; are predetermined, and therefore all the queries (W, V) are
mutually independent and can be made in any order.

We now use Theorem 4 to construct a separating set of queries for general bounded
degree graphs. We start with computing the information-theoretic lower bound and for
that we estimate from below the number of graphs with bounded degree. Instead of
counting all such graphs, we will count a subclass of them, and show that their number
is already sufficiently big.

Denote by D(n,d) the set of labelled bipartite graphs with n vertices on each side
with the degree of each vertex equal to d (d constant). This d-regular graph is a union
of d disjoint matchings. Clearly, |D(n,0)| = 1 and |D(n,1)| = nl.

Consider a graph G € D(n,d). From G we can obtain a graph in D(n,d + 1) by
adding a matching which doesn’t intersect with G. To estimate the number of possible
extensions, consider the complement bipartite graph G (an edge connecting the sides
belongs to G iff it does not belong to G). It is an (n — d)-regular graph. Since the
number of matching in a bipartite graphs is equal to the permanent of the adjacency
matrix, from the Van der Waerden conjecture, proved by Egorychev and Falikman
(see [7]), it follows that this graph has at least (n — d)" 2% matchings. Obviously, none
of them intersects with G.

On the other hand, consider a graph G’ € D(n,d+1). The number of matchings it
contains is bounded from above by (d 4+ 1)" (a better estimation is not important for
our purposes). Thus, |D(n,0)| = 1 and |D(n,d)|(n — d)" 2 < |D(n,d + 1)|(d + 1)™.
From this recurrence, |D(n,d)| > (Z)n(%)d > (n/d)¥(e7") = (). We obtain
log,,q41 |D(n,d)| > nd(1+ o(1)), and thus any search algorithm for D(n,d) requires
Q(nd) queries. As D(n/2,d) is a subclass of d-bounded degree graphs with n vertices,
we conclude that at least (%) queries are needed for this class.

Using theorem 4 we now show that this lower bound can be achieved, modulo a
constant factor, by a predetermined algorithm.

Theorem 5 For a constant d, there exists a predetermined search algorithm for the
class of d-bounded degree graphs with n vertices, that requires 24dn queries asymptoti-
cally.

Proof: Consider a graph G = (V, E) with deg(v) < d for all v € V, and |V| = n.
Recall that the nodes V are labelled by {1,... ,n}. We associate to G a bipartite graph
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G = (V' V" E"), where V! = V" ={1,... ;n}, and (v1,v2) € E' iff (v1,v2) € E. Note
that deg(v) < d for every v € V' UV”. We want to reconstruct graph G by applying
Theorem 4 to graph G’. The query function for graph G’ is ¢/(X,Y) = [E' N (X x Y]
for X C V', Y C V”. Note that i/ coincides with the above-mentioned query function
considered in [1]. We now show that a query x’ can be simulated by a constant number
of queries p.
Observe the following properties of p':

WX, Y) = (Y, X)
W (X, X) = 24(X)
IFXNY =0then /(X)) =pu(XUY) — pu(X) — u(Y)

4. If X1 N X9 =0 then p/(X1UX2,Y) =p/(X1,Y) + p/(Xo,Y) for any Y € V.
For arbitrary X;,Xo CV,let Y = X; N X5. Then

w oo

p (X1, Xo) = p/ (X1 \ Xo) UY, (X2 \ X7) UY) =
p (X1 \ Xo, Xo \ X)) + /(X0 \ X2, V) + 4/ (X2 \ X1, Y) + /(Y. Y).

Using properties 1-4, we obtain for arbitrary X c V', Y c V"
WY = p((X\Y)U (Y \ X)) = 2u(X \ ¥) — 2(Y \ X) + p(X) + (V) (20)

Thus, one query y’ can simulated by five queries y. By Theorem 4, graph G’, and
therefore G, can be reconstructed through 8nd queries p/(W;, V). The number of cor-
responding queries £ can be optimized, if queries p(W;), (V) are computed once. This
gives us 24nd + 4dlog;n + 2n/logyn = 24nd(1 + o(1)) queries u. O

4 Case Studies

Here we consider some particular classes of graphs. For some of them, that are not
subclasses of bounded degree graphs, we show that our technique still applies. For
others, we show that the multiplicative factor can be improved. Finally, for trees, we
propose a new construction based on the general result of Section 2.1.

4.1 General and c-Colorable Graphs

The results above assume some knowledge about the class that the unknown graph is
drawn from. What can be said when no prior information about the structure of the

graph is given, i.e. all graphs are possible? The information-theoretic lower bound for
n(n—1)

this case is immediate. There are 27 2 labelled graphs with n vertices and each query

can yield up to 1+ n(n —1)/2 answers. Therefore, any algorithm should make at least
n(n—1) .

log(14n(n—1y/2)2 2 v Q(%) queries. Note that since graphs can be represented

by (0, 1)-vectors of length n(n — 1)/2, any non-adaptive algorithm for reconstructing
general graphs gives a 2-detecting matrix with n(n — 1)/2 columns. By Lemma 2,
we can then obtain a better lower bound of 2 - n(n2_1)/10g2 "("2_1) = 9(21:;71) for

non-adaptive algorithms for reconstructing general graphs. This lower bound can be
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achieved, within a factor of 4, using the technique of the proof of Theorem 5. Represent
G = (V,E) as a bipartite graph G’ = (Vi, V4, E’) where each side consists of a copy
of vertices of V (Vi = Vo = V) and (v1,v2) € E' iff (vi,v2) € E. For each vertex
vy € Vi, we can find all its adjacent vertices in V5 (and then in G) through hénn
queries of the form “How many adjacent vertices does v have in a subset W C V577,
Every such query can be simulated by two queries to the initial graph G. Similar to the
proof of Theorem 5, let u (resp. p') denote the query function for graph G (resp. G’).

Then p/({v1}, W) = u(W U {v1}) — (W \ {v1}). To reconstruct the graph, we find for

every vertex ¢ the a2djacent vertices among 1,... ;% — 1. Then the overall complexity is
2.5, 10?22. = 102;2 —(1+4 o(1)) which is 4 times the lower bound.

Note that the same upper bound 1()2;;2” was obtained in [1]. However, their model

is stronger than ours as was mentioned earlier in this Section.
Does the knowledge of the graph’s chromatic number ¢ = x(G) help? Not much, as

there are at least 2% ™ such graphs (divide n vertices into ¢ parts evenly and consider

all possible edge combinations between different parts). The information-theoretic lower
bound is then Q(% . %), and the algorithm above for the general case is again optimal
up to a constant factor.

4.2 h-Edge Colorable Graphs

If the graph is known to be h-edge-colorable, the degree of vertices is bounded by A
and by Theorem 5, it can be reconstructed within O(hn) non-adaptive queries. Note
that this is asymptotically best possible, as by Vizing’s theorem (see [7]), the graphs
with the edge chromatic number less than or equal to h contain all the (h— 1)-bounded
degree graphs.

4.3 Matchings in Bipartite Graphs

Matchings occur in numerous applications and we consider important to present a
refinement of the general technique that can be obtained for this class. This refinement
is valid for a more general class, namely the 1-bounded one-sided bipartite graphs (see
Section 3). Let G = (V,W, E) be a bipartite graph, where |V| = n, |W| = m and
all vertices in V' have degree at most 1. According to the proof of Theorem 4, to
reconstruct G we need a 1-separating matrix for m objects and 2-detecting matrix for
n objects. A 1-separating matrix with m columns has log, m rows (see Section 2.2).
As for 2-detecting matrix with n columns, loz’;n(l + o(1)) rows are necessary and
sufficient, as it was mentioned in Section 2.3. Putting together, G can be reconstructed
by 10g2(m)1o§2 —(1 + o(1)) non-adaptive queries. Note that the probabilistic proof of
Theorem 2 is not involved here, and the queries can be constructed explicitly.

In the case of matchings in bipartite graphs we have m = n which gives a non-
adaptive algorithm to reconstruct a matching within 2n(1 + o(1)) queries. This bound

is asymptotically optimal within a factor of 2.

4.4 Hamiltonian Cycles and Paths

Let us consider the 2-bounded degree graphs with n vertices. Any such graph is a
disjoint collection of paths and cycles. In particular, this class contains the Hamiltonian
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cycles and the Hamiltonian paths. The problem of reconstructing Hamiltonian cycles
under different models was considered in [13] in connection with its application to
genome physical mapping.

Theorem 5 suggests a non-adaptive solution that requires 48n queries asymptot-
ically. A better performance can be obtained if we sacrifice the requirement for the
algorithm to be fully non-adaptive. Instead, we propose a two-stage algorithm — the
first stage does an adaptive “pre-processing” and the second stage reconstructs the graph
non-adaptively.

At the first stage, we sort out the vertices into three disjoint independent subsets,
that is without adjacent pairs in each subset. As each vertex has at most two adjacent
vertices, this sorting can be easily done in at most 2n queries by processing the vertices
consecutively and testing each vertex against at most two of the already formed subsets.

At the second stage, we reconstruct separately each of the three bipartite 2-degree
bounded graphs resulting from the first stage. Again, applying the proof of Theorem 5,
we need a 2-separating and a 3-detecting matrices. As noted in Section 2.2, a 2-
separating matrix with n columns and 2log, n rows can be effectively constructed. On
the other hand, by adapting the proof of Theorem 3 to the case d = 3, it can be shown
that there exists a 3-detecting matrix with n columns and ; rows. By applying the
algorithm of reconstructing bipartite graphs in such a way t?hat the detecting matrix
always acts on a smaller part (see proof of Theorem 4), we can reconstruct each bipartite

graph in 2logyn - 102 {1 2/2 = 4n queries.
Putting two stages together, this gives an algorithm with 2n + 3 - 4n = 14n queries.

4.5 'Trees

Trees are quite different from previous graph classes in that they are not bounded de-
gree, and the technique of Section 3 does not apply. Here we use the general construction
of Section 2.1.

By Cayley theorem, there are n" 2 labelled trees and since the number of edges
inside a subset of vertices ranges in 0,...,n — 1, the information-theoretic argument
gives a simple lower bound log, (n"~2) = n—2 = Q(n). Below we prove that this bound
can be reached asymptotically by a non-adaptive algorithm.

To construct a separating matrix for trees we use the following well-known facts:

e A forest with n vertices has at most n — 1 edges,
e for a forest on vertices {vi,... ,vn}, Y iy (deg(v;)) < 2n — 2,
e in a non-empty forest at least one vertex has degree 1.

Consider the following two matrices. M is a l-separating matrix (matrix of non-
adaptive binary search, as described in Section 2.2) with n columns, augmented by an
additional row, say the first one, consisting of all 1’s. M, is a separating matrix, with
n columns, for the set of (2n — 2)-bounded weight vectors (see Section 2.1). Thus, M;
has [log, n} + 1 rows and M; has O(yz;) rows by Theorem 1.

We view the rows of both matrices as queries, that is subsets of vertices {1,... ,n}.
Let subsets < Q} > correspond to the rows of M7 and < Q? > correspond to the rows
of MQ.

Consider a tree T = (V,E), V. = {1,...,n}. As in the proof of Theorem 5, let
w' (W71, Ws) be the number of edges of T with one endpoint in W and another in W5
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(edges with both endpoints in W7 N W count twice). According to (20), query u' can
be simulated by a constant number of queries i of our basic additive model.

Theorem 6 T is uniquely determined by the numbers 1’ (Q}, Q?)

Proof: Asin the proof of Theorem 5, denote by degy (v) the number of vertices of W
adjacent to v. Let a;; = p/(Q}, Q?) By definition of matrix Ms, we can reconstruct,
for each Q}, degq: (v) for every v € Q}. (Think of the degree of each vertex in the
subtree induced by Q} as its “weight”, the “weight” of the vertices V '\ Q} being zero.
Note that the weight of the whole vector is no more than 2n — 2.) In particular, we
know the degree of each vertex v € V in the whole tree, since Q1 = V (due to the
additional row in Mj). Choose a vertex v* € V of degree 1. Since we know degg: (v*)
for each Q}, we can determine a unique vertex w* € V adjacent to v* using the def-
inition of matrix M;. Now we “forget” the edge (v*,w*) by properly updating a; ;’s.
Formally, a; ; is decremented by 1 if v* € QHw* € Q?. Then a; ; is decremented by 1
if v* € Q?, w* € Q}. Tterating this process n — 1 times we end up with the empty tree
which can be easily recognized, as both matrices contain a row of all 1’s. By that time
we determined all the edges of T'. This shows that T is uniquely determined by a; ;’s. O

Since we made O(logn) - O(z;;) = O(n) queries overall, we conclude with the
following theorem.

Theorem 7 There exists a non-adaptive algorithm reconstructing a tree on n vertices
within O(n) queries.

5 Remarks

An interesting open question is to give an explicit construction of separating matrices
the existence of which has been proved in Theorem 1 by a probabilistic method. An
effective construction of d-separating matrices with O(dlog,n) rows would be of special
interest. An explicit construction could open a way to the study of computational com-
plexity of reconstructing the unknown graph given a vector of answers. This question
is another direction for future research.
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Appendix A

In this section we give main ideas of an explicit construction of d-detecting matrix
presented in a series of works of B. Lindstrém, especially in [17].

Ccan

Consider the columns of a d-detecting matrix as a set of vectors. Their property
be rephrased as follows.

Definition 5.1 A set of (0,1) vectors U1,0a, ..., U, is said to be d-detecting iff all the
sums Y i, €U; (€, =0,1,...,d— 1) are different. 0
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Given n and d, we are interested in a set of d-detecting vectors of minimal dimension.
Below we outline the asymptotically optimal construction given by Linsdtrém in [17].
The proofs can be found in the original paper.

To introduce the Lindstrém’s construction we recall the definition of M6bius function
for partially ordered sets.

Definition 5.2 (Md&bius function) Let (P, <) be a finite partially ordered set. The
Mobius function p(z,y) of P is defined for x,y € P as follows.

1. p(z,x) =1
2. if x Ly then p(z,y) =0
8. if v <y then p(z,y) = =3, ., 1(zY)
For example, it is known that if P is the Boolean algebra of all subsets of a finite set

then
p(z,y) = (—1)\e! ifzcCy

We will use this fact later. Lindstrom proved the following results:

Theorem 8 ([17]) Let P be a finite partially ordered set with 0 and a unique last
element 1. Let p(x,y) be the Mébius function of P. Set m = > __p |u(z,1)|. m is then
an even integer. Let n be an arbitrary integer in the interval 0 < n < m/2. Then there
exists a function f(z) € {0,1} on P such that

S Fa)ur,1) = —n- sign(u(0, 1)),

0<z<1
where sign(a) =1 if a > 0 and sign(a) = -1 if a < 0.

Theorem 9 ([16]) Let P be a finite semilattice with Mébius function p(z,y). Let
a,b€ P and b £ a. Let f(z) be defined for all # < a A b with values in a commutative
ring with unit. Then we have

S F@ Aoyl b) =0 (21)

z<b

Before we give the construction of a d-detecting vector set, we introduce the detecting
capacity hi(x).

Definition 5.3 The detecting capacity hi(x) is the mazimum number h for which
there exist integers d; (i = 1...h), 1 < d; < x, such that all the sums Z?:l €;id;
(¢i=0...k—1) are distinct.

We call a vector (dy, ... dh)T on which the maximum is reached a detecting vector.
The following theorem is the key-stone of the construction of optimal d-detecting
vector set.

Theorem 10 ([17]) Let (P,A) be a finite semilattice with m + 1 elements. Define a
partial order on P such that a < b iff a = a A'b. Let 6 be the least element in (P, <).
Putmy =3, o, [1(z,y)|. Then there exists a d-detecting set containing >, - g ha(my/2)
vectors of dimension m. O
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The construction of the d-detecting vector set has the following stages [17]:

1. Given a semilattice P = (x1,x2,...,%;,) with m elements we consider its multi-
plication table, an m x m matrix (a; ), where a; ; = x; A x;.

2. Consecutively consider each column of the above matrix. Replace each entry
of this column by a row-vector of dimension hg(mg,/2). Note that the column
marked with z; contains all z; < z;. By theorem 8, for all k£ < my,,/2, there is a

function fi.(x) : P — {0,1} such that > o . fr(z)p(z,z;) = —k-sign(u(0,z;)).

3. For each column z;, find hg(m,,/2) and a corresponding d-detecting vector
(dy,da,...,dp). Then replace the entry at each row x; by the row-vector (fg, (z; A

:L‘j)vfdQ(mi /\33’]), S 7fdh(xi /\':U]))

To prove that the columns of the obtained matrix form a d-detecting set assume that

E 67;7]'277;7]' = O, where €ij = —]ﬁ, ce ,O, ce ,k, (22)
1<i<m,1<j<hg(ma, /2)

We prove (following [17]) that all e; ; = 0. If it is not true, then there exists a maximal
x; in (P, <) such that e; ; # 0 for some j. Multiply the v-th row of both side of (22) by
— (g, ;) - sign(pu(f, x;)) and sum up all the rows. It follows from (21) that columns
corresponding to y # x; sum up to zero. From (22) we further get

h
> eijdij =0,
j=1

where h = hg(m;/2). If some e; ; # 0 we get a contradiction to the fact that {di’j}?zl
is detecting.

Now we apply the above construction in order to obtain an upper bound of a d-
detecting set of n vectors.

1. Consider the Boolean lattice of subsets of n-element set. So that if # C y then
u(x,y) = (—=1)W\el 1t follows that m, = 2/I.

2. Consider a prefix of the sequence (1,d,d?,...,d",...). Clearly, this is a d-detecting
vector.

3. Now we have hg(m) = |log; m|, and the detecting capacity of element x is

)= e = [ 2

4. This gives a matrix with

|| " /n i 2"n 11
-2 = -2 = —2"
Z <log2 d — \! log, d 2logy d

xC[n] 1=

columns.

It follows that there exists a d-detecting set of approximately 5 1202;” - vectors of dimension

2™. We conclude that for large n, there exists a d-detecting set of n vectors of dimension
2log(d)2X- asymptotically.

logn
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Appendix B

Here we give a proof of Lemma 2 that an optimal d-detecting matrix has at least
2log dlogn rows asymptotically. The proof is a modification of L.Moser’s method de-
scribed in [19, p. 415].

Let the {¢},0%,...,7,} be the columns of a d-detecting matrix. We show that
these vectors must have dimension at least 2log d-~— asymptotically. Let m be the
dimension of ¥;’s. The idea of the proof is to show that at least half of the vectors of
the set {e10) + eatio + -+ + €,Un|€; = 0,...,d — 1} belongs to an m-dimensional sphere
of a “small” radius. This gives an estimation for m.

Consider the uniform probabilistic space {(e1, €2,...,€,)]€6; =0,...,d—=1} = [0,...,d—
1]™. The random variable £ = €; has the expectation E(§) = (d—1)/2 and the variance
02 = Var(¢) = (dJ{s)d. Denote by vf the value of j-th coordinate of #;. Then the
random variable ¢, = evf + - 4+ ,vF (k= 1...m) is a sum of independent random

variables ¢; with coefficients 0, 1. It means that

Var(s) < Z Var(e;) = no’.
i=1

By definition of variance and the linearity of expectation, we have:

B <§m:(§k’ - C_k)2) = zm:E(Ck —&)? <m-no?

k=1 k=1

It follows from the Chebyshev inequality,

Prob <Z(§k S 2mna2) >1/2.

k=1
Since (€1, ...,en) — €101+ +€ntn = (61,--.,5m) is a bijection, at least a half of these
sums belong to a sphere with center (S, . . ., &y ) and radius r = (2mno?)'/2. By the vol-

ume argument, the number of integer-valued points in a sphere with radius r is less than
(¢/m)™?r™ for a constant c. Therefore, 1/2-d" < (¢/m-r2)"™? = (¢/m-2mno?)™? =

m n log d—log(2) . n n
(2ena?)™/2. Tt follows that m > 2- oEnToe e amy = 2logdigny +olges)- D

6 Appendix C

Here we prove Proposition 2 from Section 2.1.

Proposition 2 There exist absolute constants Cy, Cy, (5 such that for all 1 < w < d,

Y\ (w—1Y) [ 8\"* \/5
>CIC) G < =
provided that

4min(n,d)log(C1 - max(n,d)

min(n,d)
log d. 24
log min(n, d) + Cs +Cslog (24)

k(n,d) <
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Sum (23) is increasing on w, so it suffices to consider only the case w = d. We further

increase the sum by estimating (18”__11) < (%). Thus, we have

SOENE) =006 @

The binomial coefficients impose that s < n and s < d. Define a = max(n,d), b =
min(n,d). We have to find k such that

> ()0 (5)" <2

S=

Since b < d, the inequality can be further strengthened:

wrsesn ()0)E)" <2

Vs, 1<s<b k>4loge,s ((Z) (2)%)

It follows that any k > 4max;logy, /g ((‘;) (ls’)ﬂg) will be sufficient. This maximum

In other words,

can be estimated from above as

a\ (b\ dvd a b dvd
max logg, /g )\s) 7 < gggl)bggs/g i +1Ig§%<bloggs/8 . + logg g 7

Note that max;<s<plogg, /s (ls’) is reached at s* < b/2, as this function is decreasing

when s > b/2. Applying it together with inequality (Z) < (59)Y we have:

1 °) 4 max 1 “) < 1 AW 1 (ea)s
max max 10 max 10 — max (6] —
1§§L§b 089s/8 | 4 oo Bos/8 | (| = 129872 89s/8 | I<s<mintb.a/2) 89s/8 \ 5

A simple analysis of the derivative shows that maximum is reached at s = b/2 and
s = min(b, a/2) respectively. Finally, we obtain

b(log(2)+1) a(log(2)+1) 3log d—log 2 :
k _ ) 3@Tog3—dlogatiogd) T 2(2log3—4logatloga) | 2(2log33l0g2) ifb<a<2b
4 b(log(2)+1) + b(log a—log b+1) + 3log d—log 2 ifa> 2
2(21log 3—4log 2+logd) log b+2log 3—3log 2 2(2log 3—3log 2) =

Two cases can be merged:

b(log 4 + 3(log2 + 1))
2log3 —4log?2 + logb

+52logd
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