Engineering Physics 06PHY12 Assignment 5

Answer the following questions

1.	What is Superconductivity? Describe $type$ - I and $type$ - II superconductors.	[8]
2.	Explain in brief $type$ - I and $type$ - II superconductors. How does a superconductor differ from normal conductor? [1]	га 10]
3.	Discuss <i>BCS theory</i> of super conductivity.	[6]
4.	Describe how Cooper pairs are formed and explain the salient features of super conductivity.	[5]
5.	Explain <i>Meissner effect</i> . Illustrate with an example.	[5]
6.	Give a brief account of high temperature superconductors.	[4]
7.	Explain any two applications of superconductivity.	[5]
8.	What are SQUIDS? Give a brief account of their applications.	[5]
9.	Write short note on <i>Maglev</i> vehicles.	[4]
10.	Using total internal reflection concept, obtain an expression for the <i>acceptance angle</i> in an optic fiber.	cal [6]
11.	With a neat diagram derive an expression for <i>numerical aperture</i> and condition for propagati in optical fiber.	on [8]
12.	Explain the different types of optical fiber with the refractive index profile and mode propagati sketches.	on [7]
13.	What is <i>attenuation</i> in an optical fiber? Explain the attenuation mechanisms.	[5]
14.	Explain fiber-optic communication. Describe point to point communication system using optic fibers with the help of a block diagram.	cal [8]
15.	Explain the advantages and disadvantages of optical fibers when used for communication.	[4]
Solve the following problems		

- 1. An optical fiber has a core material with refractive index 1.55 and its cladding material has a refractive index of 1.50. Calculate its numerical aperture, the acceptance angle and also the fractional index change. [5]
- 2. Calculate the numerical aperture, fractional index change and V-number for a fiber of core diameter $40\mu m$ and with refractive indices of 1.55 and 1.50 respectively for core and cladding. The wavelength of the propagating wave is 1400 nm. Assume that the fiber is in air. [5]
- 3. The attenuation of an optic fiber is -3.6 dB/km. What is the fraction of light intensity that remain after (i) 1 km and (ii) 3 km? [5]
- 4. A fiber with an input power of $9.0 \,\mu W$ has a loss of $1.5 \, dB/km$. If the fiber is $3000 \, m$ long. what is the output power? [5]

- 5. Find the attenuation in an optical fiber of length 500 m, when the light signal power 100 mw emerges out of the fiber with 90 mw. [5]
- 6. The attenuation of light in an optical-fiber is estimated as 2.2 dB/km. What fractional initial intensity remains after 2 km and 6 km? [4]
- 7. Calculate the number of modes an optical fiber will transmit given the following data $n_{core} = 1.50$, $n_{clad} = 1.48$, core radius = 50 μm , wave length of light = 1 μm . [4]
- 8. A multi mode step-index fiber with a core diameter of $80 \ \mu m$ and relative refractive index difference of 1.5% is operating at $0.85 \ \mu m$. If the core refractive index is 1.48, calculate number of guided modes. [4]

This document is typeset in Free Software LATEX2e distributed under the terms of the GNU General Public License.