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Introduction

Recent theories for rapid deformations in gas-solid flow car-

ried out on fluidized bed have attempted to exploit the simi-

larities between the particles of deforming granular mass and

the molecules of a disequilibrated gas. Methods from the ki-

netic theory may then be used to determine, for example, the

form of the balance laws for the means of density, velocity

and energy and to calculate specific forms for the mean fluxes

of momentum and energy and, in these dissipative systems,

the mean rate at which energy is lost in collisions.

More ordinary granular flows involve rapid deformations

at much higher particle densities. Such flows are common in

the industrial transport of cereals, ores, and pharmaceuticals

and occur naturally in granular snow avalanches, rock debris

slides and underwater sediment slumps. Experiments involv-

ing the shear of both dense suspensions of identical, neutrally

bouyant, spherical particles particles and dry, denses masses

of identical spheres indicate that at sufficiently high rates

of shear the dominant mechanism of momentum transfer is

collisions between particles.

On this paper a summary is made of the present state of

knowlegde of polydispersed gas-solid flow modeling and in

particular its application to fluidized beds. Dispersed phase

models are based on kinetic theory of granular flow which

leads to the transport equations for the velocity moments,

closure laws for the stress tensor and energy flux. On the

other hand, gas phase is rounded up from the classical en-

semble average method and it is not on deep detailed here

but is admirably introduced on Enwald et al. (1997).

Three main references was crumbled in order to compare

the degree of developing on the polydispersion system model-

ing: Jenkins-Mancini (1989), Lathouwers-Bellan (2000) and

Gourdel-Simonin (1999).

Gas-phase transport equations
The average transport equations for the gas phase arise from

multiply the local instantaneous transport equations by the

phase indicator χg (equal to 1 if the gas phase is present and

0 otherwise) and getting the ensemble averaging. So that the

average mass balance equation is:

∂αgρg
∂t

+∇ · αgρgUg = 0 (1)

where αg = hχgi is the gas-phase mean fraction rate and
Ug = hugi is the gas phase mean velocity.

The averaged momentum balance equation for gas phase

is written as:
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here the average stress tensor is denoted by σg, the ”tur-
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®
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which results from fluctu-

ations u0g = ug − Ug; the average interphase transfer with

particles is − hσg ·∇Xgi . The equation (2) can be rewritten
as (decomposing σg on its pressure and viscous parts):
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where τ g is the average viscous stress tensor; M
0
g represents

exchange of momentum between phases after substraction of

the mean gas pressure effect and is due to the combined forces

exerted by the fluid on single particle : drag, added mass and

lift.
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¤
(4)

The closure relations involve turbulent effects−αg
­
ρgu

0
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0
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®
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which may be predicted using a modified k−²model account-
ing for the influence of the particles. The remaining closed

relations for the pressure and the average viscous stress ten-

sor in eq. (3) are approximated by their similar behavior to

its local instantaneous counterpart

pg = ρgRTg (5)

and in very first approximation the strain rate tensor is

τ g = µg

·h
∇Ug+∇UT

g

i
− 2

3
[∇ ·Ug] I

¸
(6)

Particle-phase transport equa-
tions.
Microscopic kinetic equations.
Let consider a mixture of spherical particles of several species

(A, B, C, ...) characterized by their diameter and density.

In collisional dynamics is assuming the participation only of

binary species ω and β (being ω = A, B, C, ... and β = A, B,

C, ...). The evolution of this system is governed by a set of

”Boltzmann” like equations (Chapman and Cowling, 1970):
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where f
(1)
ω = f

(1)
ω (cω, r, t) is the single ω-particle velocity

distribution function; Fω is the external force acting on the

particle; mω and cω are the mass and velocity of ω−particle,
respectively; r represents the spatial coordinates and

P
β Jωβ

defines the effects of collisions with particles of any species.

Average particle properties are derived from f
(1)
ω using the

following definition:

hψωiω =
1

nω

Z
ψωf

(1)
ω dcω (8)

where ψω = ψω (cω) is any particle property, nω is the mean

number of ω−particle centers per unit volume given by

nω =

Z
f (1)ω dcω (9)

we will assume

αωρω = nωmω (10)

where αω represents the volumetric fraction of the ω-particles

and ρω is the density of a ω-particle. Then

αg = 1− αs (11)

where the total solid volume fraction is

αs =
X
ω

αω (12)

Employing definition (8) we write the mean translation ve-

locity of ω−particles as
Uω = hcωiω (13)

Then the fluctuating translation velocity u0ω is

u0ω = cω −Uω (14)

Multiplying the equation (7) by property ψω, integrating over

the whole velocity domain and using definition (8), the gen-

eral form of the transport equations governing hψωiω is writ-
ten
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Cωβ represents the mean change rate of ψω transported by

ω−particles due to interparticle collision and is written as an
integral over all posible binary collisions

Cωβ (ψω, r, t) =

ZZZ
cβω·k>0

(ψ∗ω − ψω) f
(2)
ωβ (16)

×d2ωβ (cβω · k) dk dcω dcβ
where dωβ is the distance between centres of the spherical

particles at collision

dωβ =
1

2
(dω + dβ) (17)

dω and dβ are the diameter of particle ω and β, respectively.

After encounter the property is changed to ψ∗ω. In equation
(??), a presumed form of the pair distribution function f

(2)
ωβ

is nedeed (described in part 4.2) to fully characterize the

collision effects. The relative velocity is cβω = cβ −cω and k
is the unit vector directed from the center of the β-particle

to that of the ω-particle at collision, stated as

k =
rω − rβ
dωβ

(18)

The condition cβω · k > 0 indicates that integrations are

to be taken over all values of k and cβω for which an en-

counter is impending. The collision point is located at

r = (dβrω + dωrβ) / (2dωβ) while the particle centers are lo-

cated at rω = r + (dω/2)k and rβ = r − (dβ/2)k for the
ω-particle and β-particle, respectively.

Collision integral expansions.
In order to get a suitable form of Cωβ , the pair distribution

functions f
(2)
ωβ (cω, r, cβ , r− dωβk, t) are obtained from an ex-

panded Taylor series. For any function h(r), its expansion on

−a around the point r is

h (r− a) = h (r)− ai
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Taking h(r) = f
(2)
ωβ (cω, rω, cβ, rβ); a = (dω/2)k, and

expanding in Taylor series around r, the pair distribution

function becomes

f
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2
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Consequently the collisional term Cωβ can be expressed as

the sum of two contributions: the collisional source and the

collisional flux (Dahler and Sather, 1963):

Cωβ = χωβ −∇ · θωβ (21)

where the collisional source term, χωβ , is

χωβ (ψω) = d
2
ωβ

ZZZ
cβω·k>0

[ψ∗ω − ψω] f
(2)
ωβ (cω, rω, cβ, rβ)

(22)

× [cβω · k] dk dcω dcβ
and the collisional flux, θωβ, is given by

θωβ (ψω) = −d
3
ωβ

2

ZZZ
cβω ·k>0

[ψ∗ω − ψω]k (23)

×
"
1− dω

2

kj
2!

∂

∂rj
+

µ
dω
2

¶2
kjkm
3!

∂2

∂rj∂rm
− ...

#
× f

(2)
ωβ (cω, rω, cβ, rβ) [cβω · k] dk dcω dcβ

According to Jenkins and Richman (1985) only the lowest

orders terms in Taylor series expansions are retained; this is

justified when the spatial gradients of the mean fields remain

small with respect to the particle size. The kinetic theory of

dilute gases corresponds to the limit case when all expansion

terms are negligible, so that the collisional term reduces to

the collisional source term.

Particle moment balance equations
Balance of Mass : Substituting ψω = mω in eq. (15), we

obtain the transport equation of mass of the ω-particles.

∂

∂t
(nωmω) +∇ · (nωmωUω) = 0 (24)
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Balance of linear Momentum: Substituting ψω = mωcω

in eq. (15) we obtain:

∂

∂t
(nωmωUω) +∇ · (nωmωUωUω) = (25)
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­
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X
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X
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χωβ (mωUω) + nω hFωiω

where nωmω hu0ωu0ωiω is the kinetic contribution andP
β θωβ (mωUω) are the collisional contributions to the ef-

fective particulate stress tensor. The collisional source term

is written as
P

β χωβ (mωUω) , and the final term on the

right hand side of eq. (25) represents the average force ex-

certed on the particles by the fluid. From (23), the collisional

contributions forms are

θωβ (mωUω) = −mωd
3
ω

2
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2
k)

× [cβω · k] dk dcω dcβ
the expression for the change c∗ω − cω is given by the micro-
scopic collision model (see section ).

Balance of fluctuating kinetic energy: Taking ψω =
1
2mωc

2
ω in eq. (15), using (24) and (25) we can derive

the transport equation for fluctuating kinetic energy of ω-

particles, q2ω
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where q2ω =
1
2
hu0ω · u0ωiω = 1

2

­
u02ω
®
ω
.

Mixture balance equations.

Following Jenkins and Mancini (1989), the balance laws

for the mixture are obtained by summing the corresponding

balance laws for the single species. The mixture mass density

is

αsρs =
X
ω

nωmω (28)

where αs is given by eq. (12) . The mixture mass average

velocity is

αsρsUs =
X
ω

nωmωUω (29)

then the fluctuating velocity with respect to the mixture av-

erage velocity is written

u”ω = cω −Us (30)

while the ω−diffusion velocity is the mean of the fluctuating
velocity:

vω =
D
u”ω

E
ω
= Uω −Us (31)

The variance of the fluctuation u”ω is writtenD
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E
ω
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®
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The mixture temperature is defined as
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with ns =

P
ω nω.

The equation of mass balance for the mixture is obtained

by summing the ones of the species:

∂

∂t
(αsρs) +∇ · (αsρsUs) = 0 (34)

The equation of linear momentum balance for the mixture is

obtained in the same way
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where ψωβ = mωcω+mβcβ. By neglecting the effect of exter-

nal forces during collisions, the linear momentum of any bi-

nary system is conserved during collision, this is ψ∗ωβ =ψωβ ,

∀ ω, β χωβ (mωUω) + χβω (mβUβ) = 0 (37)

and we obtain X
ω

X
β

χωβ (mωUω) = 0 (38)

The effective mixture stress tensor is written
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or, using (32) ,
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According to Jenkins and Mancini, the mixture balance of

temperature is given by
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and the mixture energy flux Qs is

Qs =
X
ω

nωmω
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Modelling approaches.
Jenkins and Mancini (1989)
• Model is developed for binary mixture of particles in
vacuum

• Transport equations of momentum and temperature are

solved for mixture.

• Transport equations of mass are solved for each particle
species with a diffusion model.

Lathouwers and Bellan (2000)
• Model is developed for dense binary mixture of particles
in gas.

• Transport equations of mass, momentum and energy are

solved for each particle species.

• The turbulent effects of gas-phase are neglected.

• The kinetic contribution in the effective stress tensor
is neglected and only the collisional part is taken into

account.

Gourdel and Simonin (1999)
• Model is developed for dilute binary mixture of settling
particles in homogeneous isotropic gas turbulent flow.

• Transport equations of mass, momentum and energy are

solved for each particle species.

• The model accounts simultaneously for dragging along
the fluid turbulence and intersticial drag effect.

• The collisional flux in the effective stress tensor is ne-
glected and then only the kinetic part is taken into ac-

count.

Closure models for collisional
terms
Microscopic collision modelling.
Assuming exclusively binary collisions without friction ef-

fects, perfectly spherical, smooth particles in translation mo-

tion, the relation between velocities of the particles right be-

fore and after an encounter is developed below. Considering

a collision between two spherical species ω and β of diame-

ters dω , dβ and mass mω , mβ , then the relative velocity

before and after collision cβω = cβ − cω and c∗βω = c∗β − c∗ω,
are related by

k · c∗βω = −eωβ (k · cβω) (43)

where eωβ is the coefficient of restitution (eωβ = eβω). The

mass-centre velocity Gωβ of the two particles will move uni-

formly throughout the encounter; this constant velocity is

given by,

Gωβ =
mωcω +mβcβ
mω +mβ

(44)

consequently

mω (c
∗
ω − cω) = −mβ

¡
c∗β − cβ

¢
(45)

=
mωmβ

mω +mβ
(1 + eωβ) (k · cβω)k

For a given particle property ψω = ψω (cω) we may use this

last expression to calculate its change ψ∗ω −ψω in a collision.

Presumed pair distribution function
(Enskog’s Theory):
In order to calculate the terms appearing in collisional source

and collisional flux, χωβ and θωβ, presumed forms of the pair

distribution functions f
(2)
ωβ are needed in order to perform the

integrations (22) and (23). With the assumption of molecular

chaos, which implies no correlations between neighbouring

particles induced by interaction with the fluid turbulence,

the pair distribution functions are written on terms of the

single velocity distribution functions f
(1)
ω and f

(1)
β :

f
(2)
ωβ

µ
cω, r+

dω
2
k, cβ , r− dβ

2
k

¶
= (46)

gωβ (r) f
(1)
ω

µ
cω, r+

dω
2
k

¶
f
(1)
β

µ
cβ, r− dβ

2
k

¶
where gωβ (r) is the radial distribution function given in the

next section.

Radial distribution function

The radial distribution functions at contact gωβ (r) account

for the increase of probability of collision when the system

becomes dense in the frame of the Enskog’s theory. They

are equal to unity if the system is very dilute and they tend

to infinity when the system tend to random packed particle

system. The position vector r at contact point in collision is

r =
dβrω + dωrβ

2dωβ
(47)

where dωβ is given by (17) .

Jenkins and Mancini:

The radial distribution functions at contact for binary mix-

tures are taken from that reported by Masoori (1971), which

are in best agreement with numerical simulations.

gωβ =
1

1− αs
+
3

2

dωdβ
dω + dβ

ξω

(1− αs)
2 (48)

+
1

2

µ
dωdβ
dω + dβ

¶2
ξ2ω

(1− αs)
3

where ξω =
1
3π
¡P

ω nωd
2
ω

¢
and αs =

P
ω αω is the total solid

volume fraction.

Lathouwers and Bellan:

The radial distribution functions at contact gωβ (r) are

taken from Jenkins-Mancini (1989) , eq. (48), but corrected
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with the maximum value of solid fraction for a random pack-

ing of spheres (Campbell, 1989) to prevent overpacking:

gωβ =
1

1− αs/αm
+
3

2

dωdβ
dω + dβ

ξω

(1− αs/αm)
2

(49)

+
1

2

µ
dωdβ
dω + dβ

¶2
ξ2ω

(1− αs/αm)
3

where αm = 0.64 . One model proposed by Lun and Savage

(1986) is believed to give good results for shearing of small

finite systems at high concentrations:

gω =

µ
1− αω

αm

¶−2.5αm
(50)

In order to compare this models, Fig. 1 shows the behavior

of radial distribution functions in a monodisperse system

0 0.1 0.2 0.3 0.4 0.5 0.6
100

101

102

103

104

105

αω

g ω
ω

Lathouwers-Bellan
Jenkins-Mancini  
Lun-Savage       

Fig. 1 Comparison of radial distribution function gω in

a monodisperse system.

Gourdel and Simonin:

The radial distribution function gωβ is taken equal to the

limited value for dilute flows (αs ¿ 1)

gωβ = 1 (51)

Single particle velocity distribution
functions.
.

Jenkins and Mancini:

The single particle distribution function in (46) is evalu-

ated at contact point during collision by Taylor expansion:

f (1)ω

µ
cω, r+

dω
2
k

¶
=

·
1 +

dω
2
ki

∂

∂ri
(52)

+

µ
dω
2

¶2
kikj
2!

∂2

∂ri∂rj

#
f (1)ω (cω, r)

Chapman-Enskog’s procedure is employed to derive the

suitable single particle velocity distribution function. The

solution for nearly elastic spheres is obtained by perturbating

the uniform state of a system of elastic particles:

f (1)ω (cω, r, t) = (1 + φω) f
(0)
ω (cω, r, t) (53)

where f
(0)
ω is written

f (0)ω = nω

µ
mω

2πTs

¶3/2
exp

µ
−
µ
mω

2Ts

¶
(cω −Us)

2

¶
(54)

here Us is the mixture mean velocity and Ts is the mixture

temperature given by eq.(29) and eq.(33). The expansion pa-

rameter φω is the relative change of the hydrodynamical vari-

ables over a mean free path and following Jenkins-Mancini

(1989), it has the form

φω = −Aω ·∇ lnTs −Bω : ∇Us +Hω∇ ·Us

(55)

−nsZω · dω +
X
ω

Lωβ (1− eωβ)

whereAω, Bω,Hω, Zω and Lωβ are functions of u
”
ω. In order

to obtain definite expressions for these functions, they have

to be expanded in a convenient set of orthonormal functions,

the Sonine polynomials (Ferziger and Kaper, 1972)

Snk (x) =

nX
p=0

Γ (k + n+ 1)

(n− p)!p!Γ (k + p+ 1) (−x)
p (56)

where Γ denotes the gamma function. To obtain practical

results these series have to be appropriately truncated. The

number of terms retained in this expansions corresponds to

the different Enskog approximations. Jenkins and Mancini

retain only the first terms of the expansions for Aω, Bω,

Hω, Zω and Lωβ . The coefficients of such expansions can

be uniquely determined by imposing the conditions that nω,

Us and Ts in the Maxwellian distribution (54) be the local

values of the density species ω, of the mass average velocity

and of the mixture temperature. Moreover φω must satisfy

the following conditions:Z
f (0)ω φωdcω = 0 (57)

X
ω

Z
f (0)ω φωmωcωdcω = 0 (58)

and X
ω

Z
f (0)ω φωmω (cω −Uω)

2 dcω = 0 (59)

where (cω −Uω)
2 = [cω −Uω] · [cω −Uω]. Forms of such

a coefficients are developed in the appendix.

Lathouwers and Bellan:

The single particle distribution function in (46) is evalu-

ated at contact point during collision by Taylor expansion:

f (1)ω

µ
cω, r+

dω
2
k

¶
=

·
1 +

dω
2
ki

∂

∂ri
(60)

+

µ
dω
2

¶2
kikj
2!

∂2

∂ri∂rj

#
f (1)ω (cω, r)

the ω−particle distribution is assumed to be equal to the
equilibrium Maxwellian distribution

f (1)ω (cω, r, t) = f
(0)
ω (cω, r, t) (61)

=
nω¡

4
3
πq2ω

¢3/2 expµ−3 (cω −Uω)
2

4q2ω

¶
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which satisfies Z
f (1)ω dcω = nω (62)Z

cωf
(1)
ω dcω = nωUω (63)

Z
1

2
[cω −Uω] · [cω −Uω] f

(1)
ω dcω = nωq

2
ω (64)

Gourdel and Simonin /Fede and Simonin:

The spatial dependence of the single particle distribution,

with respect to the particle size, is neglected in (46),

f (1)ω

µ
cω, r+

dω
2
k,t

¶
= f (1)ω (cω, r,t) (65)

Following Grad (1949), the single particle distribution func-

tion f
(1)
ω is provided as a series expansion of Hermite polyno-

mials. Grad proposes to make a third-order approximation,

which is a reasonable assumption if the flow is not varying

too quickly.

f (1)ω (cω, r, t) =

·
1− aω,i ∂

∂cω,i
+
aω,ij
2!

∂2

∂cω,i ∂cω,j
(66)

−aω,ijk
3!

∂3

∂cω,i ∂cω,j ∂cω,k

¸
f (0)ω (cω, r, t)

where f
(0)
ω (cω, r, t) is given by (61) . It can be shown (Jenkins

and Richman, 1985) that the coefficients ai, aij , aijk which

depend on r and t but not on c, are related to nth order

(n ≤ 3) velocity moments (nω, Uω, q
2
ω, hu0ωu0ωi).

aω,ij =
­
u0ω,iu

0
ω,j

®
ω
− 2

3
q2ωδij (67)

and

aω,ijm =
­
u0ω,iu

0
ω,ju

0
ω,m

®
ω

(68)

after carried out derivatives, the general form of approxima-

tion (66) is

f (1)ω (cω, r, t) =

"
1 +

aω,i¡
2
3q

2
ω

¢Ci + aω,ij

2
¡
2
3q

2
ω

¢2CiCj
(69)

+
aω,ijk

9
¡
2
3 q

2
ω

¢3CiCjCk
#
f (0)ω (cω, r, t)

where

Cω,i(r, t) = cω,i − Uω,i(r, t) (70)

Straightforward integration shows that eq. (9) places no

constraint on the series (66) ,whereas for the velocity moment

of order 1 we find that

aω,i = 0 (71)

Furthermore, in view of the definition of the temperature,

the following restriction must be imposed

aω,ii = 0 (72)

Grad introduces a simpler model to reduce the number of

unknowns from 20 to 13. The closure of 13-moment system

on the third-order moment tensor is written

aω,ijk =
1

5
(aω,immδjk + aω,jmmδik (73)

+aω,kmmδij)

When formulation (69), restrictions (71) , (72) and the con-

tracted form (73) of aijk are used, the approximate single

particle velocity distribution function may be written as

f (1)ω (cω, r, t) =

·
1 +

aω,ij

2 (2/3 q2ω)
2Cω,iCω,j +

aω,imm

10 (2/3 q2ω)
2

(74)

×
µ

1

2/3 q2ω
Cω,jCω,j − 5

¶
Cω,i

¸
f (0)ω (cω, r, t)

Collisional source terms
Momentum:

Lathouwers and Bellan:

The collisional source term is obtained by analytic inte-

gration of (22) using (46), (60) and (61), assuming a small

mean relative velocity between species with respect to the

turbulent velocity fluctuations (”low drift regime”).

|Uω −Uβ|2 ¿
¡
q2ω + q

2
β

¢
(75)

the collision source term in the momentum equation is writ-

ten,

χωβ (mωUω) = − mω mβ

mω +mβ

(1 + eωβ)

6

nω
τ cωβ

(76)

×
·
[Uω −Uβ]− dωβ

8

r
π

3

³
q2ω + q

2
β

´
∇ ln nω

nβ

¸
with the inter-particle collision time τcωβ given by

τ cωβ =

·
4d2ωβgωβnβ

r
π

3

³
q2ω + q

2
β

´¸−1
(77)

Gourdel and Simonin / Fede and Simonin:

The collisional source term is obtained by analytic integra-

tion of (22) using (46), (65) and (66) for the computation of

the χωβ and accounting for the small mean relative velocity

between species.

The collisional source term in the momentum equation is

χωβ (mωUω) = − mωmβ

mω +mβ

(1 + eωβ)

2
(78)

× nω
τ cωβ

[Uω −Uβ]H1 (z)

with the inter-particle collision time τcωβ given by

τcωβ =

·
4d2ωβgωβnβ

r
π

3

³
q2ω + q

2
β

´
H0 (z)

¸−1
(79)

here H0 and H1 are given as function of z which characterize

the competition between the mean slip and the fluctuating

relative velocity in the collision mechanism,

z =
3 (Uω −Uβ)

2

4
³
q2ω + q

2
β

´ (80)

H0 is written as

H0 (z) =

·
exp (−z)

2
+

√
πz

2
erf
¡√
z
¢ µ
1 +

1

2z

¶¸−1
(81)

which can be approximated by

H∗0 (z) =
hp

1 + πz/4
i−1

(82)
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the behavior of this two last expressions are in good agree-

ment (Fig.2).

10-2 10-1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

z

H 0(z
)

H0    
H0

*

Fig. 2 Curves for H0 (z) from equations (81) and (82) .

complementary definition is

H1 (z) =

exp(−z)√
πz

¡
1 + 1

2z

¢
+ erf (

√
z)
¡
1 + 1

z
− 1

4z2

¢
exp(−z)√

πz
+ erf (

√
z)
¡
1 + 1

2z

¢
(83)

The corresponding H1 curve is on Fig. 3

10-5 10-4 10-3 10-2 10-1 100 101 102 103
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

z

H 1(z
)

Fig. 3 Curve for H1 (z) .

Kinetic Energy:

Jenkins and Mancini:

The source term in the energy equation for total rate of

energy dissipation per unit volume is

χ

µ
mωu

” 2
ω

2

¶
= g2ωβd

2
ωβnωnβ

mω

mω +mβ
(84)

× (1− eωβ)
µ
2π (mω +mβ)T

3
s

mωmβ

¶1/2
Ts is the mixture temperature given by equation (33).

Lathouwers and Bellan:

The collisional source term in the kinetic energy equation

is resulting from the effects of energy redistribution among

particle species and of the dissipation due to inelastic colli-

sions,

χωβ
¡
mωq

2
ω

¢
= − mω mβ

(mω +mβ)
2

nω
τcωβ

(1 + eωβ)

3

×
·
(1− eωβ)

2
mβ

¡
q2ω + q

2
β

¢
+
¡
mωq

2
ω −mβq

2
β

¢¸
(85)

for particles of same species, the collision source term leads,

χωω

¡
mωq

2
ω

¢
= − 1

12
mω

nω
τcωω

¡
1− e2ωω

¢
q2ω (86)

and

τcωω =

"
4d2ωgωωnω

r
2π

3
q2ω

#−1
(87)

Gourdel and Simonin / Fede and Simonin:

the collisional source term in the kinetic energy equation

for unlike particle species is

χωβ
¡
mωq

2
ω

¢
=

mωmβ

(mω +mβ)
2

1 + eωβ
2

nω
τcωβ

[mβ (1 + eωβ)

(88)

× [Uω −Uβ ]
2H1 (z)− 16

3

³mβ

2
(1− eωβ)

£
q2ω + q

2
β

¤
+
£
mωq

2
ω −mβq

2
β

¤¢¤
The collisional source term in the kinetic energy equation for

the same particle species is written

χωω
¡
mωq

2
ω

¢
= −2

3
mω

nω
τcωω

¡
1− e2ωω

¢
q2ω (89)

and

τcωω =

"
4d2ωgωωnω

r
2π

3
q2ω

#−1
(90)

Collisional flux terms

Momentum:

Jenkins and Mancini:

The collisional flux term of linear momentum θωβ (mωUω)

in (40) is given by

θωβ (mωUω) =
1

12
πgωβd

3
ωβnωnβTsI− 1

15
πgωβd

3
ωβnωnβTs

(91)

×
"
bωo

µ
mβ

mω +mβ

¶
+

µ
2πTs

mωmβ

mω +mβ

¶1/2
dωβ
2

#

×
·
1

2
∇Us +

1

2
(∇Us)

T − 1

3
∇ ·UsI

¸
+O (²)
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where the coefficient bωo is, for ω 6= β, given by

bωo = 5

µ
bω

·
nω +

2

5
Kωω +

4

5
Kωβ

µ
mβ

mω +mβ

¶¸
(92)

+
32

3

·
π

2

mωmβ

(mω +mβ)
3

¸1/2
×d

2
ωβ

4

·
nβ +

2

5
Kββ +

4

5
Kωβ

µ
mβ

mω +mβ

¶¸!
µ
gωβnωnβT

1/2
s

·
bωbβ − 32

9
d4ωβπ

×
µ

mωmβ

(mω +mβ)
3

¶¸¶−1
where coefficient bω is

bω = 10d2ωβ

µ
π

2

mωmβ

(mω +mβ)
3

¶1/2 µ
2

3
+
2

5

mω

mβ

¶
(93)

+2
nβgββ
nωgωβ

d2ββ

µ
π

mβ

¶1/2
and Kωβ is

Kωβ =
1

12
πnωnβd

3
ωβgωβ (94)

Lathouwers and Bellan:

The collisional flux term of linear momentum is obtained

by analytic integration of (23) using (46), (60) and (61)

θωβ (mωUω) = PωβI− µωωβ
h
∇Uω +∇UT

ω − (∇ ·Uω) I
i
(95)

−µβωβ
h
∇Uβ +∇UT

β − (∇ ·Uβ) I
i

here the pressure is given by

Pωβ =
1

36
πgωβd

3
ωβnωnβ

mωmβ

mω +mβ
(96)

× (1 + eωβ)
¡
q2ω + q

2
β

¢
complementary definitions are

µωωβ =
d2ωβπnω

240

mωm
2
β

(mω +mβ)
2 (97)

× (1 + eωβ)
τcωβ

¡
q2ω + q

2
β

¢
q2ω

and

µβωβ =
d2ωβπnω

240

mβm
2
ω

(mω +mβ)
2 (98)

× (1 + eωβ)
τcωβ

¡
q2ω + q

2
β

¢
q2β

Kinetic Energy:

Jenkins-Mancini:

The collisional heat flux is

θωβ
¡
mωq

2
ω

¢
=

µ
Ts
mω

¶1/2
d3ωβgωβπnωnβ

mωmβ

(mω +mβ)
2 (99)"

aω1 − dωβ
3

µ
π

µ
mβ

mω +mβ

¶¶−1/2#
∇Ts

−
µ
T 3s
8

¶1/2
1

3
d3ωβgωβπnωnβ

h
m−1/2ω

× (ntωodω + aωo∇ lnTs)
µ
mω −mβ

mω +mβ

¶
+ m

−1/2
β (ntβodβ + aβo∇ lnTs)

i
+O

³
²3/2

´
where the coefficient aω1 is, for ω 6= β, given by

aω1 = 15

µ
aωm

1/2
β

·
nω +

3

5
Kωω +

12

5
Kωβ

mωmβ

(mω +mβ)
2

¸
(100)

+54 [πmω/2 (mω +mβ)]
1/2 mωmβ

(mω +mβ)
2

d2ωβ
4

×
·
nβ +

3

5
Kββ +

12

5
Kωβ

mωmβ

(mω +mβ)
2

¸¶³
2
√
2gωβ

×nωnβ (mωmβ)
1/2

"
729

8
d4ωβπ

m2
ωm

2
β

(mω +mβ)
5 − aωaβ

#!−1
the definition for aω is

aω = 10d2ωβ

µ
πmω

mβ (mω +mβ)

¶1/2 "
3

2

µ
mβ

mω +mβ

¶2
(101)

+
13

20

µ
mω

mω +mβ

¶2
+
4

5

µ
mωmβ

(mω +mβ)
2

¶¸
+
nβgββ
nωgωβ

2d2ββ

µ
π

mβ

¶1/2
and complementary expressions which are included in (99)

are

tωo =

µ
3

32
d2ωβρnω

¶µ
(mω +mβ)mβ

π

¶1/2
(102)

aωo =

µ
1

2
ρ

¶
((mω +mβ)mβ)

1/2 nβ

Ãµ
mβ

mω +mβ

¶3/2
(103)

aω1 −
µ

mω

mω +mβ

¶3/2
aβ1

!

Lathouwers and Bellan:

the collisional heat flux of particle kinetic energy is

θωβ
¡
mωq

2
ω

¢
=
2

3

³
Kω

ωβ∇q2ω +Kβ
ωβ∇q2ω

´
(104)

where

Kω
ωβ =

1

96
d2ωβnω

mωm
2
β

(mω +mβ)
2

(1 + eωβ)

τcωβ

Ã
q2β
q2ω

!
(105)

Kβ
ωβ =

1

96
d2ωβnω

m2
ωmβ

(mω +mβ)
2mω

(1 + eωβ)

τcωβ

Ã
q2ω
q2β

!
(106)

Gourdel and Simonin/Fede and Simonin:
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The spatial dependence of the single particle distribution,

with respect to the particle size, neglected in (65) leads to

ignore the collisional flux term in momentum and fluctuating

kinetic energy balance.

Kinetic flux terms

Jenkins and Mancini:

The kinetic flux contribution to the effective stress tensor

is

nωmω

D
u”ωu

”
ω

E
ω
= nωTsI− nωTsbωo (107)µ

1

2
∇Us +

1

2
(∇Us)

T − 1

3
∇ ·UsI

¶
+O (²)

with bωo given by eq. (92) .

The kinetic flux in the kinetic energy equation is

nωmω

Dh
u”ω · u”ω

i
u”ω

E
ω
=
5

4
nωaω1 (2Ts/mω)

1/2∇Ts
(108)

+
5

2
nω
¡
T 3s /2mω

¢1/2
(ntωodω + aωo∇ lnTs) +O

³
²3/2

´
where aωoand aω1 are given by (103) and (100) , respectively.

Lathouwers and Bellan:

The chosen form of particle distribution function at equi-

librium leads to following kinetic transport of momentum:

nω
­
u0ω,iu

0
ω,j

®
ω
=
2

3
nωq

2
ωI (109)

and the corresponding kinetic flux in energy equation is

nω
­£
u0ω · u0ω

¤
u0ω,i

®
ω
= 0 (110)

such assumption is generally valuable only in dense flows

(αω ≥ 0.1) corresponding to the so-called collisional regime.

Gourdel and Simonin:

The kinetic flux terms of momentum and energy in the

model are not taken in to account.

Closure
models for fluid-particle inter-

action terms
Jenkins and Mancini:

They consider no contribution of the fluid force on the

particle, consequently

Fω

mω
= g (111)

Lathouwers and Bellan:

The force acting on a single particle is written

Fω

mω
= g− 1

ρω
∇pg −

uω − ug
τFgω

(112)

whith the particle relaxation time τFgω ,

1

τFgω
=
3

4

ρg
ρωdω

Cdω (Reω) |uω − ug| (113)

The drag coefficient Cdω is based on two separate empirical

correlations valid for dilute (Wen et Yu, 1965) and dense

(Ergun’s relation) particulate flows, respectively,

Cdω (Reω) =WC
wy
d (Reω) + (1−W )CEgd (Reω)

(114)

where W is a switch function described on (118) . According

to Wen and Yu (1965), Cwyd is

Cwyd (Reω) =

(
24
Reω

α−1.7g

¡
1 + 0.15Re0.687ω

¢
Re < 1000

0.44α−1.7g for Re ≥ 1000
(115)

the particle Reynolds number is

Reω =
αω |uω − ug | dω

νg
(116)

The Ergun’s relation is written

CEg
d (Reω) = (1− αg)

200

Reω
+
7

3
(117)

The switch function W is choosen arbitrarely to insure a

rapid continuous transition from (115) to (117)when the gas

volumetric fraction value αg is below 0.8,

W = arctan (150 (αg − 0.8)) /π + 1/2 (118)

The behavior for drag coefficient on Ergun, Wen-Yu and

Lathouwers-Bellan expressions are showed in Fig. 4 for dif-

ferents Reynolds numbers.
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Fig.4 Cd from Ergun, Wen-Yu and Lathouwers-Bellan

(a) Re=10, (b) Re=50, (c) Re=100, (d) Re=500

The averaged fluid-particle interaction terms in the partic-

ulate momentum and kinetic energy equations, (25) and (27)

respectively, are derived by averaging from the force exerted

on a single particle.

The mean momentum interphase transfer rate is written,¿
Fω

mω

À
= g− 1

ρω
∇pg −

1­
τFgω
® (Uω −Ug)

(119)

where
1­
τFgω
® = 3

4

ρg
ρωdω

Cdω (hReωi) |Uω −Ug|
(120)

hReωi = αω |Uω −Ug| dω
νg

(121)

The kinetic energy equation fluid-particle interaction term

is assumed to be negligeable for heavy particles, then¿
Fω

mω
· u0ω

À
ω

≈ 0 (122)

Gourdel and Simonin:

The external force acting on a single particle is written,

Fω

mω
= g − 1

ρω
∇pg −

uω − ug
τFgω

(123)

with the particle relaxation time τFgω,

1

τFgω
=
3

4

ρg
ρωdω

Cdω (Reω) |uω − ug| (124)

The drag coefficient Cdω is also based on the two separate

empirical correlations valid for dilute (Wen et Yu, 1965) and

dense (Ergun’s relation) particulate flows, respectively, but

with a different continuous transition between both corre-

lations occuring at αg value smaller ( αg < 0.7) than the

Lathouwers and Bellan’s proposition ( αg ≈ 0.8),

Cdω (Reω) =

(
Cwydω (Reω) αg ≥ 0.7
min

³
Cwydω (Reω) , C

Eg
dω (Reω)

´
αg < 0.7

(125)

The mean momentum interphase transfer rate is derived by

averaging from (123) as¿
Fω

mω

À
= g− 1

ρω
∇pg −

1­
τFgω
®Vrω (126)

where Vrω = huω − ugi , the mean relative velocity, is writ-
ten,

Vrω = Uω −Ug −Vdω (127)

with the fluid-particle turbulent drift velocity Vdω account-

ing for the correlation between the gas turbulent velocity and

the instantaneous particle distribution,

Vdω =
­
u0g
®
ω

(128)

the drift velocity accounts for the turbulent dispersion in-

duced by the particle transport by gas eddies and is generally

negligible in dense fluidized beds. Following Simonin et al.

(1991), the non linear dependence of the particle relaxation

time on the instantaneous relative velocity is modelled as

1­
τFgω
® = 3

4

ρg
ρωdω

Cdω (hReωi) h|uω − ug|i
(129)
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the averaged Reynolds number is

hReωi = αω h|uω − ug|i dω
νg

(130)

and

h|uω − ug |i =
q
Vrω,iVrω,i +

­
v0rω,iv

0
rω,i

®
ω

(131)

The kinetic energy equation fluid-particle interaction

term is written,

¿
Fω · u0ω
mω

À
= −2q

2
ω − qgω­
τFgω
® (132)

where the covariance fluid-particle is

qgω =
­
u0g · u0ω

®
ω

(133)

generally negligible in dense fluidized beds.

The fluid-particle interaction term in the kinetic energy

equation reduces to a dissipation effect. Its influence has

to be compared with the dissipation induced by inelas-

tic collisions and becomes negligeable when nω/
­
τFgω
®
<<P

(1− e2ωβ)nβ/τcωβ.

Concluding Remarks
Expressions have been given for the modeling of turbulent

non-reacting gas-solid flows by classical transport equations,

continuity and momentum equations which are closed for the

interfacial momentum transfer, the stress tensor in the parti-

cle phase, the drift velocity, the fluid-particle velocity corre-

lation tensor and the second-order velocity moment in both

phases. The models were only possible with simplifying as-

suptions. The collision model is based on binary encoun-

ters between particles in translational motion. In contrast,

the bed material is a polydispersed suspension of rigid, non-

spherical, rotating particles, where the anisotropy level can

be high. Some specific problems are the value of the constants

included in the equations, the treatment of the wall region

and the form of the coupling term. For the fluid-particle

moments a general formulation is possible but two-way cou-

pling is omited. Algebraic models can be derived for homo-

geneous isotropic turbulence, asymptotic cases. The models

formulated need to be solved by numerical methods and fur-

ther validated against experiments to see to what extent they

capture the essential physical mechanisms of turbulent non-

reacting gas-particle flows applied to fluidization.
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