Modeling of turbulent gas-solid flows.

G. Patino-Palacios, O. Sinonin.
Institut de Mecanique des Fluides.
Allée du Pr. Camille Soula, 31400, Toulouse.
patino(©imft.fr

INTRODUCTION

Recent theories for rapid deformations in gas-solid flow car-
ried out on fluidized bed have attempted to exploit the simi-
larities between the particles of deforming granular mass and
the molecules of a disequilibrated gas. Methods from the ki-
netic theory may then be used to determine, for example, the
form of the balance laws for the means of density, velocity
and energy and to calculate specific forms for the mean fluxes
of momentum and energy and, in these dissipative systems,
the mean rate at which energy is lost in collisions.

More ordinary granular flows involve rapid deformations
at much higher particle densities. Such flows are common in
the industrial transport of cereals, ores, and pharmaceuticals
and occur naturally in granular snow avalanches, rock debris
slides and underwater sediment slumps. Experiments involv-
ing the shear of both dense suspensions of identical, neutrally
bouyant, spherical particles particles and dry, denses masses
of identical spheres indicate that at sufficiently high rates
of shear the dominant mechanism of momentum transfer is
collisions between particles.

On this paper a summary is made of the present state of
knowlegde of polydispersed gas-solid flow modeling and in
particular its application to fluidized beds. Dispersed phase
models are based on kinetic theory of granular flow which
leads to the transport equations for the velocity moments,
closure laws for the stress tensor and energy flux. On the
other hand, gas phase is rounded up from the classical en-
semble average method and it is not on deep detailed here
but is admirably introduced on Enwald et al. (1997).

Three main references was crumbled in order to compare
the degree of developing on the polydispersion system model-
ing: Jenkins-Mancini (1989), Lathouwers-Bellan (2000) and
Gourdel-Simonin (1999).

(GAS-PHASE TRANSPORT EQUATIONS

The average transport equations for the gas phase arise from
multiply the local instantaneous transport equations by the
phase indicator x4 (equal to 1 if the gas phase is present and
0 otherwise) and getting the ensemble averaging. So that the
average mass balance equation is:

dagp _
# +V.-agp,Us =0 (1)
where ay = (xg4) is the gas-phase mean fraction rate and

U, = (uy) is the gas phase mean velocity.

The averaged momentum balance equation for gas phase
is written as:
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E (agngg) +V- (angUgUg) = (2)

V- (ag?g — Qg <Pgulgulg>g) + agpyg — (0g - VXg)
here the average stress tensor is denoted by &4, the " tur-
bulent” stress tensor is <pgu'gu'g>g which results from fluctu-
ations uy = uy — Uy; the average interphase transfer with
particles is — (o4 - VXg) . The equation (2) can be rewritten
as (decomposing @4 on its pressure and viscous parts):
9
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+V- (ag?g —ag <pgu'gu'g>g) + agp,g + M,

where T4 is the average viscous stress tensor; M'g represents

(agP,Ug) + V- (ayp,UyUy) = —y VP, (3)

exchange of momentum between phases after substraction of
the mean gas pressure effect and is due to the combined forces
exerted by the fluid on single particle : drag, added mass and
lift.

M'g = — Z [nw (Fo) — nwmwg—&—auVﬁg] (4)
The closure relations involve turbulent effects —ay (pg u'gu'g>g
which may be predicted using a modified k—e model account-
ing for the influence of the particles. The remaining closed
relations for the pressure and the average viscous stress ten-
sor in eq. (3) are approximated by their similar behavior to
its local instantaneous counterpart

ﬁg = ﬁg RTQ (5)

and in very first approximation the strain rate tensor is

Ty = pg HVU9+VU§ - % V.U, I} (6)

PARTICLE-PHASE TRANSPORT EQUA-

TIONS.

MICROSCOPIC KINETIC EQUATIONS.

Let consider a mixture of spherical particles of several species
(A, B, C,...) characterized by their diameter and density.
In collisional dynamics is assuming the participation only of
binary species w and 3 (beingw = A, B, C, ... and = A, B,
C,...). The evolution of this system is governed by a set of
?Boltzmann” like equations (Chapman and Cowling, 1970):
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where fu(,l) = fu(,l) (cw,r,t) is the single w-particle velocity
distribution function; F, is the external force acting on the
particle; m, and c, are the mass and velocity of w—particle,
respectively; r represents the spatial coordinates and 5dws
defines the effects of collisions with particles of any species.
Average particle properties are derived from fu(,l) using the
following definition:

(o), = %/%ﬁﬁl)dcw (8)

where 1, = ¥, (c.,) is any particle property, n. is the mean
number of w—particle centers per unit volume given by

n = / fDde., (9)

we will assume
Ay Puw = NewMy, (10)

where a,, represents the volumetric fraction of the w-particles
and p,, is the density of a w-particle. Then

ag=1—as (11)
where the total solid volume fraction is

s = Zaw (12)

Employing definition (8) we write the mean translation ve-
locity of w—particles as

Uw = <Cw>w (]‘3)
Then the fluctuating translation velocity ul, is
u, =c, — U, (14)

Multiplying the equation (7) by property 1., integrating over
the whole velocity domain and using definition (8), the gen-
eral form of the transport equations governing (1., is writ-

ten
% (P (Yu),) + V- (ne (cuthn),) = (15)
nu <Tl‘;_z . %>w + Xﬁ:cwﬁ (%))

C.p represents the mean change rate of v, transported by
w—particles due to interparticle collision and is written as an
integral over all posible binary collisions

Conturst) = [[f  wi-wi3 o
xd2g (caw - k) dk de,, deg

where d. g is the distance between centres of the spherical
particles at collision

1
dup = 5 (du + do) (a7

d,, and dg are the diameter of particle w and (3, respectively.
After encounter the property is changed to 1. In equation
(?7?), a presumed form of the pair distribution function ffﬁ)
is nedeed (described in part 4.2) to fully characterize the
collision effects. The relative velocity is cg,, = ¢g —c. and k
is the unit vector directed from the center of the [-particle
to that of the w-particle at collision, stated as

k=218 (18)

dup

The condition cg, - k > 0 indicates that integrations are
to be taken over all values of k and cg. for which an en-
counter is impending. The collision point is located at
r = (dgre + durg) / (2dwg) while the particle centers are lo-
cated at r, = r + (d,/2)k and rg = r — (dg/2) k for the

w-particle and B-particle, respectively.

COLLISION INTEGRAL EXPANSIONS.

In order to get a suitable form of C.g, the pair distribution
functions ffﬁ) (cw,r,cp,r — dugk,t) are obtained from an ex-
panded Taylor series. For any function h(r), its expansion on

—a around the point r is
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Taking h(r) = fiﬁ) (cw,rw,cp,rg); a = (dw/2)k, and
expanding in Taylor series around r, the pair distribution
function becomes
de d
f:;? (Cwa r,ca,r — dwﬁk) = ffﬁ)(cmr + 71{7 C3, T — gk)
(20)
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Consequently the collisional term C,g can be expressed as
the sum of two contributions: the collisional source and the
collisional flux (Dahler and Sather, 1963):

Cup =Xwp — V- 0up (21)

where the collisional source term, x.g3, is

w w :di ‘ :1_ w @ wy Lw, )
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and the collisional flux, 6.3, is given by
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According to Jenkins and Richman (1985) only the lowest
orders terms in Taylor series expansions are retained; this is
justified when the spatial gradients of the mean fields remain
small with respect to the particle size. The kinetic theory of
dilute gases corresponds to the limit case when all expansion
terms are negligible, so that the collisional term reduces to
the collisional source term.

PARTICLE MOMENT BALANCE EQUATIONS
Balance of Mass : Substituting ¥, = m, in eq. (15), we
obtain the transport equation of mass of the w-particles.

% (nomw) +V - (nemuUs) = 0 (24)



Balance of linear Momentum: Substituting 1. = muc.

in eq. (15) we obtain:

% ('I’mewa) + V . (nwmewa) = (25)

-V [neme <u;u;>w + Z 0.5 (m.,U,)

B
+ Z Xop (MwUs) + 10 (Fu),
where ny,me (uwuw>w is the kinetic contribution and
> 3 0.3 (m,U,) are the collisional contributions to the ef-
fective particulate stress tensor. The collisional source term
is written as ZB X (mwUy) , and the final term on the
right hand side of eq. (25) represents the average force ex-
certed on the particles by the fluid. From (23), the collisional

contributions forms are
_m d3
el 1/ PSR
cgw” k>0

daks 0] e ot s
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the expression for the change ¢, — ¢, is given by the micro-
scopic collision model (see section ).

Balance of fluctuating kinetic energy: Taking v, =
using (24) and (25
the transport equation for fluctuating kinetic energy of w-
particles, ¢2

imec in eq.  (15), ) we can derive

Nemuwgs) + V- (numoUsugl) = (27)
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where ¢2 = 2(u,-ul), =3 <u'f>

Mixture balance equations.

Following Jenkins and Mancini (1989), the balance laws
for the mixture are obtained by summing the corresponding
balance laws for the single species. The mixture mass density
is

Qsps = Z NwMe (28)

where «; is given by eq. (12). The mixture mass average

velocity is

aSpSUS - ZnumuUw (29)

then the fluctuating velocity with respect to the mixture av-
erage velocity is written

»

u, = Cu — Us (30)

while the w—diffusion velocity is the mean of the fluctuating

velocity:
Vo = <uz,>w =U, — Ug (31)
The variance of the fluctuation u,, is written
<u:, . uw> = <u; . u;>w + Vo - Vo (32)
The mixture temperat:re is defined as
nTs = Z %nwmw <uw . u:,>w = (33)

anmw[ @ + ;Vw Vw:|
an“"

The equation of mass balance for the mixture is obtained

with ng =

by summing the ones of the species:

g (asps) + V- (aspsUs) =0 (34)
The equation of linear momentum balance for the mixture is
obtained in the same way

0
E (aspsUs) +V (aspsUsUs) =-V-Ps+

(35)
Do (Fu)y T D Xup (muUs)
w w B8
by definition (22)
wUy Up)
Xwp (m )+Xﬁw mgUgp) ///Cﬁw oo wB 7/’(356])

x £ (cmr—i— oy ,Ca,T — d—k) d2s

X [cgw - k] dk dc,, deg

where ¥,5 = m ¢, +mgcg. By neglecting the effect of exter-
nal forces during collisions, the linear momentum of any bi-
nary system is conserved during collision, this is ¥},5 =15,

Vw,B  Xos(MmoUs) + xp, (msUp) =0 (37)

and we obtain
DD Xus (muUu) =0 (38)
w B

The effective mixture stress tensor is written

P, = Z M (ULUG) |+ NwMe Ve Ve + Z 0.5 (Mm,U.,)
w B 3

~

or, using (32),

P, = Z N M <u:,u:,>w + Z 0.5 (m,U

w B (40)
According to Jenkins and Mancini, the mixture balance of
temperature is given by

~V-Q.-P. VU,
(41)

0
Fn (nsTs) + V- (nUsTs) =
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+anvw . <Fw>w



and the mixture energy flux Qs is
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MODELLING APPROACHES.
JENKINS AND MANCINI (1989)

e Model is developed for binary mixture of particles in
vacuum

e Transport equations of momentum and temperature are
solved for mixture.

e Transport equations of mass are solved for each particle
species with a diffusion model.

LATHOUWERS AND BELLAN (2000)
e Model is developed for dense binary mixture of particles
in gas.

e Transport equations of mass, momentum and energy are
solved for each particle species.

e The turbulent effects of gas-phase are neglected.

e The kinetic contribution in the effective stress tensor
is neglected and only the collisional part is taken into
account.

GOURDEL AND SIMONIN (1999)
e Model is developed for dilute binary mixture of settling
particles in homogeneous isotropic gas turbulent flow.

e Transport equations of mass, momentum and energy are
solved for each particle species.

e The model accounts simultaneously for dragging along
the fluid turbulence and intersticial drag effect.

e The collisional flux in the effective stress tensor is ne-
glected and then only the kinetic part is taken into ac-
count.

CLOSURE MODELS FOR COLLISIONAL

TERMS

MICROSCOPIC COLLISION MODELLING.
Assuming exclusively binary collisions without friction ef-
fects, perfectly spherical, smooth particles in translation mo-
tion, the relation between velocities of the particles right be-
fore and after an encounter is developed below. Considering
a collision between two spherical species w and (8 of diame-
ters d.,, , dg and mass m, , mg , then the relative velocity
before and after collision cs., = ¢g — ¢, and ¢, = cj — ¢,
are related by

k-ch, = —ewp (k- cpw) (43)

where e, g is the coefficient of restitution (ewg = €g.). The
mass-centre velocity Gu g of the two particles will move uni-
formly throughout the encounter; this constant velocity is

given by,
G _ mwCw + MgCp (44)
wh Mw + mg

consequently

me (€l — ) = —mg (CZ‘; — Cﬂ) (45)

momg
=—-(1 w3) (k-cpw) k
mw—|—m3( + ewp) (k- caw)

For a given particle property ¢., = 1. (c.) we may use this
last expression to calculate its change ¥, — 1., in a collision.

PRESUMED PAIR DISTRIBUTION FUNCTION

(ENSKOG’S THEORY):

In order to calculate the terms appearing in collisional source
and collisional flux, x5 and 6., presumed forms of the pair
distribution functions ff)zﬁ) are needed in order to perform the
integrations (22) and (23). With the assumption of molecular
chaos, which implies no correlations between neighbouring
particles induced by interaction with the fluid turbulence,
the pair distribution functions are written on terms of the
single velocity distribution functions ff,l) and fél) :

@) dw _dsy ) _
fus (cmr—i— 5 k,cg,r 5 k) (46)

1) dw e dg
guwp (I‘) fw (CW,I‘—F?k) fﬂ (Cﬂ,r—yk)

where g, (r) is the radial distribution function given in the
next section.

RADIAL DISTRIBUTION FUNCTION

The radial distribution functions at contact g.s (r) account
for the increase of probability of collision when the system
becomes dense in the frame of the Enskog’s theory. They
are equal to unity if the system is very dilute and they tend
to infinity when the system tend to random packed particle
system. The position vector r at contact point in collision is
. dgrw + dwrg
r=—— " 47)

where dug is given by (17).

Jenkins and Mancini:
The radial distribution functions at contact for binary mix-
tures are taken from that reported by Masoori (1971), which
are in best agreement with numerical simulations.
1 3 d.dg Eu
2d, +ds (1— )’

+1( dwdg )2 %
2\do+ds) (1-a.)?

where £, = %w (Zw nwdi) and os = )  «, is the total solid

volume fraction.

B = 48
998 = T oo (48)

Lathouwers and Bellan:
The radial distribution functions at contact gwg (r) are
taken from Jenkins-Mancini (1989), eq. (48), but corrected



with the maximum value of solid fraction for a random pack-
ing of spheres (Campbell, 1989) to prevent overpacking:

1 § dwdﬁ gw
1—as/am  2do+ds (1 —as/am)?

+1( dudp )2 &
2 \d, +dg (1—as/am)3

where a,,, = 0.64 . One model proposed by Lun and Savage

gup =
(49)

(1986) is believed to give good results for shearing of small
finite systems at high concentrations:

B - a_w —2.5am, (50)
Jo = o

In order to compare this models, Fig. 1 shows the behavior
of radial distribution functions in a monodisperse system
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Fig. 1 Comparison of radial distribution function g in

a monodisperse system.

Gourdel and Simonin:
The radial distribution function g.g is taken equal to the
limited value for dilute flows (as < 1)

gup =1 (51)

SINGLE PARTICLE VELOCITY DISTRIBUTION
FUNCTIONS.

Jenkins and Mancini:
The single particle distribution function in (46) is evalu-
ated at contact point during collision by Taylor expansion:

= oy} = |14 Gy, 2 2
© (c“’r+ 2 ) [+ 2 " o, (52)

dw\* kik; 82 "
+<7> o Fnior, | 1o (G1)

Chapman-Enskog’s procedure is employed to derive the

suitable single particle velocity distribution function. The
solution for nearly elastic spheres is obtained by perturbating
the uniform state of a system of elastic particles:

I (cowyr,t) = (14 ¢w) f19 (cu,1,1) (53)

where fu(,o) is written

oo () on (- (5) )
27T 2T (54)

here U; is the mixture mean velocity and T is the mixture

temperature given by eq.(29) and eq.(33). The expansion pa-
rameter ¢,, is the relative change of the hydrodynamical vari-
ables over a mean free path and following Jenkins-Mancini
(1989), it has the form

¢o=—-A, -VInT, — B, : VU, + H,V - U,
(55)

—nsly - do + Z Lo (1 —ewp)

where A, B, Hy,, Z,, and L,z are functions of uw In order
to obtain definite expressions for these functions, they have
to be expanded in a convenient set of orthonormal functions,
the Sonine polynomials (Ferziger and Kaper, 1972)

— F(k+n+1)
L@ = R T )

p=0

n

(==)"  (56)

where I' denotes the gamma function. To obtain practical
results these series have to be appropriately truncated. The
number of terms retained in this expansions corresponds to
the different Enskog approximations. Jenkins and Mancini
retain only the first terms of the expansions for A, B,
H., Z, and L,g. The coefficients of such expansions can
be uniquely determined by imposing the conditions that n.,
U, and Ts in the Maxwellian distribution (54) be the local
values of the density species w, of the mass average velocity
and of the mixture temperature. Moreover ¢, must satisfy
the following conditions:

/ fP ¢ude, =0 (57)

> / O mucode, =0 (58)
and
S [ 100umaeo— U deu =0 (59

where (¢, — Uy)? = [co — U,] - [co — Uy]. Forms of such

a coefficients are developed in the appendix.
Lathouwers and Bellan:

The single particle distribution function in (46) is evalu-
ated at contact point during collision by Taylor expansion:

d d 1s]
(1) w _ @ ..
fo (cw,r—&— > k) = {1—&— 5 klan

do\” kik; 07 )
+(7) 3 Groor; | 1o (Cor)

the w—particle distribution is assumed to be equal to the

(60)

equilibrium Maxwellian distribution
Ll) (CWa r, t) = fLEJO) (CWa r, t) (61)

_ N exp ( 3(cw — Uw)2>
=—=7 e
(37a2) A4z



which satisfies

/ fWVdey = n, (62)

/ C“’fu()l)dcw =n, U, (63)
— U] [ew — Uy fdew = nug’  (64)

Gourdel and Simonin /Fede and Simonin:
The spatial dependence of the single particle distribution,
with respect to the particle size, is neglected in (46),

F (cu,r + %"k,t) = 1 (cw,1t) (65)

Following Grad (1949), the single particle distribution func-
tion fu(,l) is provided as a series expansion of Hermite polyno-
mials. Grad proposes to make a third-order approximation,
which is a reasonable assumption if the flow is not varying
too quickly.

8 Ay .ij (92
le) (Cw7 r, t) = [1 — Qu,i 8Cw,i 2} !

8Cw,i 8Cw,j (66)
_ Ow,ijk o?

3! acu,i 8cw,j 86%1@

:| fu(;o) (Cw,r,t)

where f{” (cu,r,t) is given by (61) . It can be shown (Jenkins
and Richman, 1985) that the coefficients a;, aij, ai;jr which
depend on r and ¢ but not on ¢, are related to n*" order
(n < 3) velocity moments (n., Uy, ¢3, (u,ul)).

! !
Auw,ij = <uw,iuw,j>u -

and
Qwyigm = (Uep, iUy jUom) (68)
after carried out derivatives, the general form of approxima-

tion (66) is

QAuw,i

(342)

D) (w1, t) = Ci + —=ii__cyc;

1+
2(3a2) (69)

QA ijk

C-LCCk f (0) (Cw r t)
g 3 J w P
(g 1“’2)

where
Cw’i(l‘,t) = Cw,i — Uw’i(l‘,t) (70)

Straightforward integration shows that eq. (9) places no
constraint on the series (66) , whereas for the velocity moment
of order 1 we find that

Aw,i = 0 (71)
Furthermore, in view of the definition of the temperature,
the following restriction must be imposed

QAu,ii = 0 (72)

Grad introduces a simpler model to reduce the number of
unknowns from 20 to 13. The closure of 13-moment system
on the third-order moment tensor is written

1
Qu,ijk = 5 (aw,immbik + Qw,jmmOik (73)

+aw,kmm6ij)

When formulation (69), restrictions (71), (72) and the con-
tracted form (73) of ajr are used, the approximate single
particle velocity distribution function may be written as

Aw,imm

_—
1 (eurrt) = 14 s uimm_
2 10(2/3 qf,)(274)

w,ic’w,' +
(2/3 ¢2)* !
1 (0)
X m—qzcw,jau,j =5 Cuil| fo (cw,r,t)

COLLISIONAL SOURCE TERMS
MOMENTUM:
Lathouwers and Bellan:

The collisional source term is obtained by analytic inte-
gration of (22) using (46), (60) and (61), assuming a small
mean relative velocity between species with respect to the
turbulent velocity fluctuations (”low drift regime”).

U, — Usl® < (a5 + q3) (75)

the collision source term in the momentum equation is writ-
ten,

Mo mg_ (14 ews) Nw.

wUy) = — 76
Xep (nuU) =~ B LRG0 (7o)
dwg s 2 2) Ny
w — — /7 |4 In—
x[[U Ujg| 3 ,/3<q + 43 vn"ﬁ
with the inter-particle collision time 754 given by
— -1
Top = [4digguanﬁ 3 (qg + qé)} (77)

Gourdel and Simonin / Fede and Simonin:

The collisional source term is obtained by analytic integra-
tion of (22) using (46), (65) and (66) for the computation of
the x5 and accounting for the small mean relative velocity
between species.

The collisional source term in the momentum equation is

_ _mumg (1+ewp)
Xus (V) = — I L (78)
X (U, — Ug] Hy ()
TWB

with the inter-particle collision time 755 given by

™

= (a2 +a3) Ho (z)} T

here Ho and H; are given as function of z which characterize

c 2
TwB = |:4dwﬁgwﬁnﬁ

the competition between the mean slip and the fluctuating
relative velocity in the collision mechanism,

L _3(U,—Up)
4 (qi + qf;) 0

Hy is written as

Ho (2) = [%(_Z) + @ erf (v/Z) (1 + %)} B o

which can be approximated by

Hi () = [VItmerd] (82)



the behavior of this two last expressions are in good agree-
ment (Fig.2).

Fig. 2 Curves for Hy (z) from equations (81) and (82).

complementary definition is

o S0 et (14— o
m\/f%zl +erf (v2) (14 5) (83)

The corresponding H; curve is on Fig. 3

4 . . , .
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z

Fig. 3 Curve for H; ().

KINETIC ENERGY:
Jenkins and Mancini:
The source term in the energy equation for total rate of
energy dissipation per unit volume is
g
My Uy, 2 2 my
—= | =g sdgneng——— 84
X<2>9BB p— (84)
27 (M +mp) T2 1/2
Memg

X (1 — ewg) (
T, is the mixture temperature given by equation (33).
Lathouwers and Bellan:

The collisional source term in the kinetic energy equation
is resulting from the effects of energy redistribution among

particle species and of the dissipation due to inelastic colli-

sions,

mw mp N (14 ewp)

(mw +mp)’ 755 3

Xwps (qui) = -

1—e,
o [ =) (g2 4 g3) + (mod? — moa?)
(85)
for particles of same species, the collision source term leads,
1 N
Xow (Motl) = —gmez= (1-elu) e (86)

and

—1
Tow = |:4digwwnw \/ %qzz] (87)

Gourdel and Simonin / Fede and Simonin:

the collisional source term in the kinetic energy equation
for unlike particle species is

memg 1+ ews Nw

[mg (1 + ewp)

2
Xop (Mwiy) = -
(mw + mB)2 2 Twp (88)

X [Uy — Ug)® Hi (2) — 1?6 (% (1—ewp) [a2 + 3]

2 2
+ [medl — megs)) ]
The collisional source term in the kinetic energy equation for
the same particle species is written
2 N ( 2

Xww (qui) = _gmw e 1-— eww) Qi (89)

—1
[2
Tow = |:4du2ugwwnw %QE] (90)

and

COLLISIONAL FLUX TERMS
MOMENTUM:

Jenkins and Mancini:
The collisional flux term of linear momentum 6.3 (m.U,,)

in (40) is given by

1 1
0.5 (m,U,) = ﬁwgwgdiﬁnwngTSI — ﬁwgwgdiﬁnwn,gTs
(91)

m mMem V2
" [bmo (_ﬁ> n (QwTSW_ﬁ) LB:|
my +mg My +mg

2
1 1 s 1



where the coefficient b, is, for w # 3, given by The collisional heat flux is

T, \'/? MM,
2 4 mg 0 2y 5 43 _ B8 (99
boo =5 [ b [0 + 2 Koo + = Kog [ —28 wp (Mmwal) ( ) ? 30wpT LN (99)
( [n +e s Kep (mw —&—mg)} (92) M (M + mg)?
dos ms —1/2
1/2 wl — —2 _r T
L 32 [z%ﬁa} 1”73 <”<mw+mﬁ)> v
3 2 (mW + mﬁ) 3\ 1/2
d2s 2 4 mg - (T—s) ldgﬂg BTNLNE [mfl/z
— K, Ko | ———— 8 g wpIerTTe “’
7 [n5+5 # ¥ B(mw+mﬁ)}
My — Mg
X (Ntwodw + awoV InTs) (—mw m m;;)

<gwgnwnBT51/2 {bwbg — —392di37r
—1/2 3/2
+mg " (ntgodg + agOVlnTs)] +0 (e )

memg -1
X —(m " mB)3 where the coefficient a1 is, for w # (3, given by

where coefficient b,, is 3 12 mem
w1 =15 (awmy’® [ny + =Kow + = Kop—L—
5 5
00)

1/2
b = 1062, (z%) (_ N _m_) (93) (ma +ms)
2 (mw +mg) 3 Smg &2
mem
1/2 +54 [rmy, /2 (me, +mg)] V2 ——=—L— =
o988 g2 (L) (mo +mg)® 4
Nwguwp mps 3 12 memg V2
. S K + = Kup— 22— | ) (2v/2g,
and K,z is 8 {n3+5 9+ ﬁ(mw+mﬁ)2:|) g8
K _ i d3 (94) 1/2 729 4 mim% -
wB = 127""wnﬁ wBYwp Xnwng (Mmwmg) —dwgﬂ'—5 — awag
8 (mw +mg)

the definition for a., is

1/2 2
m 3 m
: ae = 10d%, [ —— ) = (—B 9101
Lathouwers and Bellan: B <m5 (Mw + mp) 2 \mw + mp )

The collisional flux term of linear momentum is obtained

2
by analytic integration of (23) using (46), (60) and (61) -|—E (L) + 4 (Mﬁz)}
20 \ my +mg 5 (mw + mﬁ)

0.5 (Mo Uy) = Posl — i [VUW +vUl —(v. UW)I] mogss o (7 )\
(95) = 2dgs | ——
Nwgwps mg
—#55 [VUB + VUg —(V-Up) I] and complementary expressions which are included in (99)
are
here the pressure is given by 3, (me +mg) ms 1/2
1 5 Mwms two = ﬁdw/@pnw T E—
Pw = Py w dw w —
8 56" Jep s (96) (102)
2 2
x (1+ ews) (a2 + 93) (1 1/2 mg_ \*?
Gwo = | 5P ((mw +mg)mp)'“ng [ ——
complementary definitions are @ 8 (103)
d2 zmn me,m? m 3/2
w wf3 w wliitg w
B = 97 a1 — | ————— a,
s s (97) () e
A+ ewp) (45 +43)
Tos q? Lathouwers and Bellan:
and the collisional heat flux of particle kinetic energy is
2w
d2 m 2 auﬁ (qui) =3 ( wﬂvqi + KL,fQti)
pb, = 2Lle Mol (98) 3 (104)
- 200 (ma + mp)
h
(1+ewp) (a2 +a3) here \ \
X 2 w _ 1 mwms (14 ews) (95
wf a3 wB = _dwﬁnw 2 c )
96 (mu + mﬁ) TL,.;B 9% (105)
2 2
KINETIC ENERGY: K, = idignw LR @ +Ceuﬂ) ‘1_;
Jenkins-Mancini: Gourdel and Simonin/Fede and Simonin:



The spatial dependence of the single particle distribution,
with respect to the particle size, neglected in (65) leads to
ignore the collisional flux term in momentum and fluctuating
kinetic energy balance.

KINETIC FLUX TERMS

Jenkins and Mancini:
The kinetic flux contribution to the effective stress tensor
is

N M <uwuw> =n,TsI —nuTsboo
w

(107)

(%VUS + % (VU.)T - %v : UsI) +0()

with byo given by eq. (92).
The kinetic flux in the kinetic energy equation is

) » »

N M <[uw . uu] uw> = gnwawl (2Ts/mw)1/2 VTs
“ (108)
5 3 1/2 3/2
+§nw (Ts /Qmw) (ntwodw + awoVInTs) 4+ O (€
where auoand a1 are given by (103) and (100) , respectively.
Lathouwers and Bellan:
The chosen form of particle distribution function at equi-
librium leads to following kinetic transport of momentum:

no (il 5), = 2mugl (100)

3
and the corresponding kinetic flux in energy equation is

N <[uf‘, . uf‘,] u'u,,i>w =0 (110)

such assumption is generally valuable only in dense flows
(aw > 0.1) corresponding to the so-called collisional regime.

Gourdel and Simonin:

The kinetic flux terms of momentum and energy in the
model are not taken in to account.

CLOSURE
MODELS FOR FLUID-PARTICLE INTER-
ACTION TERMS

Jenkins and Mancini:
They consider no contribution of the fluid force on the
particle, consequently

Bl 111
L =8 (111)
Lathouwers and Bellan:
The force acting on a single particle is written
F 1 u, —u
Y —g_-—Vp, ——_9 112
- o VP T (112)
whith the particle relaxation time T;L ,
1 3
— =229 0y, (Rew) [uw — uy (113)

Tgw N 4 pwdw

The drag coefficient Cy,, is based on two separate empirical
correlations valid for dilute (Wen et Yu, 1965) and dense
(Ergun’s relation) particulate flows, respectively,

Ca, (Rew) = WCYY (Rew,) + (1 — W) CF9 (Rey)
(114)

where W is a switch function described on (118) . According
to Wen and Yu (1965), C;Y is

—-1.7 0.687
O (Rey) = s @g T (14 0.15Re; %)
d ¢ 0.44a, "7

Re < 1000
for Re > 1?995)

the particle Reynolds number is

w w T dw
Re,, = Yol — | (116)
Vg
The Ergun’s relation is written
200 7
C79 (Rey) = (1 —ag) =— + = 117
5 (Rew) = (1— ) 2 + 2 (117)

The switch function W is choosen arbitrarely to insure a
rapid continuous transition from (115) to (117)when the gas
volumetric fraction value oy is below 0.8,

W = arctan (150 (ag — 0.8)) /7 +1/2 (118)

The behavior for drag coefficient on Ergun, Wen-Yu and
Lathouwers-Bellan expressions are showed in Fig. 4 for dif-
ferents Reynolds numbers.
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The averaged fluid-particle interaction terms in the partic-
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ulate momentum and kinetic energy equations, (25) and (27)
respectively, are derived by averaging from the force exerted
on a single particle.

The mean momentum interphase transfer rate is written,

F. 1 __ 1
L S VS
e pe (7s%) (119)
where
13
v = o Cao ((Rew) [Us — Uy
(rie) A pudo (120)
(Rey) = M (121)

Vg
The kinetic energy equation fluid-particle interaction term
is assumed to be negligeable for heavy particles, then

Me w

Gourdel and Simonin:

(122)

The external force acting on a single particle is written,

F. 1 __ u, — Uy
Y g — w9 12
o 8T o VP, T (123)
with the particle relaxation time T;;,,
1 3
— = 72 Cu, (Rew) [ — uy| (124)

7L, T 4 pod,
The drag coefficient Cq,, is also based on the two separate
empirical correlations valid for dilute (Wen et Yu, 1965) and
dense (Ergun’s relation) particulate flows, respectively, but
with a different continuous transition between both corre-
< 0.7) than the
Lathouwers and Bellan’s proposition ( oy ~ 0.8),

lations occuring at a4 value smaller ( ag

ChY (Rew) ag > 0.7
min (c;vg (Ren), CF9 (Reu)) % < {5

The mean momentum interphase transfer rate is derived by
averaging from (123) as
Fo 1 1
A
mey Pw <Tgu>

where V., = (u, — ugy) , the mean relative velocity, is writ-

Caw (Rew) = {

(126)

ten,

Vo =U, — Uy — Vg, (127)
with the fluid-particle turbulent drift velocity V4. account-
ing for the correlation between the gas turbulent velocity and
the instantaneous particle distribution,

Vaw = (ug),,

the drift velocity accounts for the turbulent dispersion in-

(128)

duced by the particle transport by gas eddies and is generally
negligible in dense fluidized beds. Following Simonin et al.
(1991), the non linear dependence of the particle relaxation
time on the instantaneous relative velocity is modelled as

1 3 pg

(i) 4 pude

Caw ((Rew)) (luw — ug])
(129)



the averaged Reynolds number is

(Re,) = Qe[ — W) do (130)

Vg

and

<|uw — Ug|> = \/Vru,i‘/rw,i + <U;w,iv7,"w,i>w
(131)

The kinetic energy equation fluid-particle interaction
term is written,

Fo - u:u — _qu — Qgw (132)
e (&)
where the covariance fluid-particle is
Qgw = <u; . u;>w (133)

generally negligible in dense fluidized beds.

The fluid-particle interaction term in the kinetic energy
equation reduces to a dissipation effect. Its influence has
to be compared with the dissipation induced by inelas-

tic collisions and becomes negligeable when n,,/ <Tgli,> <<
S (1—elg)ns/15s-

CONCLUDING REMARKS

Expressions have been given for the modeling of turbulent
non-reacting gas-solid flows by classical transport equations,
continuity and momentum equations which are closed for the
interfacial momentum transfer, the stress tensor in the parti-
cle phase, the drift velocity, the fluid-particle velocity corre-
lation tensor and the second-order velocity moment in both
phases. The models were only possible with simplifying as-
suptions. The collision model is based on binary encoun-
ters between particles in translational motion. In contrast,
the bed material is a polydispersed suspension of rigid, non-
spherical, rotating particles, where the anisotropy level can
be high. Some specific problems are the value of the constants
included in the equations, the treatment of the wall region
and the form of the coupling term. For the fluid-particle
moments a general formulation is possible but two-way cou-
pling is omited. Algebraic models can be derived for homo-
geneous isotropic turbulence, asymptotic cases. The models
formulated need to be solved by numerical methods and fur-
ther validated against experiments to see to what extent they
capture the essential physical mechanisms of turbulent non-
reacting gas-particle flows applied to fluidization.
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