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Preface

Every year, millions of microprocessor and microcontroller chips are sold as
CPUs for general purpose computers, such as PCs or workstations, but also for
devices that are not primarily used as computers, such as printers, TV sets, SCSI
controllers, cameras, and even coffee machines. Such devices are commonly
calledembedded systemSurprisingly, the number of chips used for embedded
systems exceeds by far the number of chips used for general purpose computers.

Both general purpose computers and embedded systems (except for the very
simple ones) require an operating system. Most general purpose computers
(except mainframes) use either UNIX, Windows, or DOS. For these operating
systems, literature abounds. In contrast, literature on operating systems of
embedded systems is scarce, although many different operating systems for
embedded systems are available. One reason for this great variety of operating
systems might be that writing an operating system is quite a challenge for a
system designer. But what is more, individually designed systems can be
extended in exactly the way required, and the developer does not depend on a
commercial microkernel and its flaws.

The microkernel presented in this book may not be any better than others, but at
least you will get to know how it works and how you can modify it. Apart from
that, this microkernel has been used in practice, so it has reached a certain level of
maturity and stability. You will learn about the basic ideas behind this
microkernel, and you are provided with the complete source code that you can use
for your own extensions.

The work on this microkernel was started in summer 1995 to study the efficiency
of an embedded system that was mainly implemented in C++. Sometimes C++ is
said to be less efficient than C and thus less suitable for embedded systems. This
may be true when using a particular C++ compiler or programming style, but has
not been confirmed by the experiences with the microkernel provided in this
book. In 1995, there was no hardware platform available to the author on which
the microkernel could be tested. So instead, the microkernel was executed on a
simulated MC68020 processor. This simulation turned out to be more useful for
the development than real hardware, since it provided more information about the
execution profile of the code than hardware could have done. By mere
coincidence, the author joined a project dealing with automated testing of
telecommunication systems. In that project, originally a V25 microcontroller had



been used, running a cooperative multitasking operating system. At that time, the
system had already reached its limits, and the operating system had shown some
serious flaws. It became apparent that at least the operating system called for
major redesign, and chances were good that the performance of the
microcontroller would be the next bottleneck. These problems had already caused
serious project delay, and the most promising solution was to replace the old
operating system by the new microkernel, and to design a new hardware based on
a MC68020 processor. The new hardware was ready in summer 1996, and the
port from the simulation to the real hardware took less than three days. In the two
months that followed, the applications were ported from the old operating system
to the new microkernel. This port brought along a dramatic simplification of the
application as well as a corresponding reduction in source code size. This
reduction was possible because serial I/0 and interprocess communication were
now provided by the microkernel rather than being part of the applications.

Although the microkernel was not designed with any particular application in
mind, it perfectly met the requirements of the project. This is neither by accident
nor by particular ingenuity of the author. It is mainly due to a good example: the
MIRAGE operating system written by William Dowling of Sahara Software Ltd.
about twenty years ago. That operating system was entirely written in assembler
and famous for its real-time performance. Many concepts of the microkernel
presented in this book have been adopted from the MIRAGE operating system.



1 Requirements

1.1 General Requirements

Proper software design starts with analyzing the requirements that have to be
fulfilled by the design. For embedded systems, the requirements are defined by
the purpose of the system. General definitions of the requirements are not
possible: for example, the requirements of a printer will definitely be different
from those of a mobile phone. There are, however, a few common requirements
for embedded systems which are described in the following sections.

1.2 Memory Requirements

The first PCs of the early eighties had 40 kilobytes of ROM, 256 or 512 kilobytes
of RAM, and optionally a hard disk drive with 5 or 10 megabytes capacity. In the
mid-nineties, an off-the-shelf PC had slightly more ROM, 32 megabytes of RAM,
and a hard disk drive of 2 or 4 gigabytes capacity. Floppy disks with 360 or
720 kilobyte capacity, which were the standard medium for software packages
and backups, had been replaced by CD-ROM and tape streamers with capacities
well above 500 megabytes. Obviously, capacity has doubled about every two
years, and there is no indication that this trend will change. So why bother about
memory requirements?

A PC is an open system that can be extended both in terms of memory and
peripherals. For a short while, a PC can be kept up to date with technological
developments by adding more memory and peripherals until it is ultimately
outdated. Anyway, a PC could live for decades; but its actual lifetime is often
determined by the increasing memory demands of operating systems and
applications rather than by the lifetime of its hardware. So to extend the lifetime
of a PC as much as possible and thus to reduce the costs, its configuration has to
be planned thoroughly.

For a given embedded system, in contrast, the memory requirements are known in
advance; so costs can be saved by using only as much memory as required.
Unlike PCs, where the ROM is only used for booting the system, ROM size plays
a major role for the memory requirements of embedded systems, because in
embedded systems, the ROM is used as program memory. For the ROM, various
types of memory are available, and their prices differ dramatically: EEPROMSs are
most expensive, followed by static RAMs, EPROMs, dynamic RAMs, hard disks,
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floppy disks, CD-ROMs, and tapes. The most economical solution for embedded
systems is to combine hard disks (which provide non-volatility) and dynamic
RAMs (which provide fast access times).

Generally, the memory technology used for an embedded system is determined
by the actual application: For example, for a laser printer, the RAM will be
dynamic, and the program memory will be either EEPROM, EPROM, or RAM
loaded from a hard disk. For a mobile phone, EEPROMSs and static RAMs will
rather be used.

One technology which is particularly interesting for embedded systems is on-chip
memory. Comparatively large on-chip ROMs have been available for years, but
their lack of flexibility limited their use to systems produced in large quantities.
The next generation of microcontrollers were on-chip EPROMs, which were
suitable also for smaller quantities. Recent microcontrollers provide on-chip
EEPROM and static RAM. The Motorola 68HC9xx series, for example, offers
on-chip EEPROM of 32 to 100 kilobytes and static RAM of 1 to 4 kilobytes.

With the comeback of the Z80 microprocessor, another interesting solution has
become available. Although it is over two decades old, this chip seems to
outperform its successors. The structure of the Z80 is so simple that it can be
integrated in FPGAs (Field Programmable Logic Arrays). With this technique,
entire microcontrollers can be designed to fit on one chip, providing exactly the
functions required by an application. Like several other microcontrollers, the Z80
provides a total memory space of 64 kilobytes.

Although the memory size provided on chips will probably increase in the future,
the capacities available today suggest that an operating system for embedded
system should be less than 32 kilobytes in size, leaving enough space for the
application.

1.3 Performance

The increase in the PCs’ memory size is accompanied by a similar increase in
performance. The first PCs had an 8 bit 8088 CPU running at 8 MHz, while today
a 32 bit CPU running at 200 MHz is recommended. So CPU performance has
doubled about every two years, too. Surprisingly, this dramatic increase in
performance is not perceived by the user: today’s operating systems consume
even more memory and CPU performance than technological development can
provide. So the more advanced the operating system, the slower the applications.
One reason for the decreasing performance of applications and also of big
operating systems might be that re-use of code has become common practice;
coding as such is avoided as much as possible. And since more and more code is
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executed in interfaces between existing modules, rather than used for the actual
problem, performance steadily deteriorates.

Typically, performance demands of embedded systems are higher than those of
general purpose computers. Of course, if a PC or embedded system is too slow,
you could use a faster CPU. This is a good option for PCs, where CPU costs are

only a minor part of the total costs. For embedded systems, however, the cost

increase would be enormous. So the performance of the operating system has
significant impact on the costs of embedded systems, especially for single-chip

systems.

For example, assume an embedded system requiring serial communication at a
speed of 38,400 Baud. In 1991, a manufacturer of operating systems located in
Redmond, WA, writes in his C/C++ Version 7.0 run-time library reference: “The
_bios_serialcom routine may not be able to establish reliable communications at
baud rates in excess of 1,200 Baud (_COM_1200) due to the overhead associated
with servicing computer interrupts”. Although this statement assumes a slow 8 bit
PC running at 8 MHzno PC would have been able to deal with 38,400 baud at
that time. In contrast, embedded systems had been able to manage that speed
already a decade earlier: using 8 bit CPUs at even lower clock frequencies than
the PCs'.

Performance is not only determined by the operating system, but also by power
consumption. Power consumption becomes particularly important if an embedded
system is operated from a battery, for example a mobile phone. For today’s
commonly used CMOS semiconductor technology, the static power required is
virtually zero, and the power actually consumed by a circuit is proportional to the
frequency at which the circuit is operated. So if the performance of the operating
system is poor, the CPU needs to be operated at higher frequencies, thus
consuming more power. Consequently, the system needs larger batteries, or the
time the system can be operated with a single battery charge is reduced. For
mobile phones, where a weight of 140g including batteries and stand-by times of
80 hours are state of the art, both of these consequences would be show stoppers
for the product. Also for other devices, power consumption is critical; and last,
but not least, power consumption should be considered carefully for any electrical
device for the sake of our environment.

1.4 Portability

As time goes by, the demands on products are steadily increasing. A disk
controller that was the fastest on the market yesterday will be slow tomorrow.
Mainstream CPUs have a much wider performance range than the different
microcontroller families available on the market. Thus eventually it will be

necessary to change to a different family. At this point, commercial microkernels
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can be a problem if they support only a limited number of microcontrollers, or not
the one that would otherwise perfectly meet the specific requirements for a
product. In any case, portability should be considered from the outset.

The obvious approach for achieving portability is to use high level languages, in
particular C or C++. In principle, portability for embedded system is easier to
achieve than for general purpose computers. The reason is that complex
applications for general purpose computers not only depend on the CPU used, but
also on the underlying operating system, the window system used, and the
configuration of the system.

A very small part of the microkernel presented in this book was written in
Assembler; the rest was written in C++. The part of the kernel which depends on
the CPU type and which needs to be ported when a different CPU family is used,
is the Assembler part and consists of about 200 Assembler instructions. An
experienced programmer, familiar with both the microkernel and the target CPU,
will be able to port it in less than a week.

The entire kernel, plus a simple application, fit in less than 16 kilobyte ROM for a
MC68020 CPU. Hence it is especially suitable for single chip solutions.



2 Concepts

2.1 Specification and Execution of Programs

The following sections describe the structure of a program, how a program is
prepared for execution, and how the actual execution of the program works.

2.1.1 Compiling and Linking

Let us start with a variant of the well known “Hello World!” program:
#include <stdio.h>

const char * Text = "Hello World\n";

char Data[] = "Hello Data\n";

int Uninitialized; // Bad Practice

int main(int argc, char * argv[])

{
}

printf(Text);

This C++ program prints “Hello World”, followed by a line feed on the screen of

a computer when it is executed. Before it can be executed, however, it has to be
transformed into a format that is executable by the computer. This transformation
is done in two stepgompilationandlinking.

The first step, compilation, is performed by a program cabtedpiler The
compiler takes the program text shown above from one file, for exahgile.cc,
and produces another file, for examplello.o. The command to compile a file is
typically something like

g++ -0 Hello.o Hello.cc

The name of the C++ compiler, g++ in our case, may vary from computer to
computer. TheHello.o file, also referred to agbject file mainly consists of three
sections: TEXT, DATA, and BSS. The so-callattlude file stdio.h is simply
copied intoHello.cc in an early execution phase of the compiler, known as
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preprocessingThe purpose ostdio.h is to tell the compiler thaprintf is not a
spelling mistake, but the name of a function that is defined elsewhere. We can

imagine the generation éfello.o as shown in Figure 214

#include <stdio.h>

| JTEXT |
DATA

Hello.cc Hello.o

-

FIGURE 2.1 Hello.o Structure

Several object files can be collected in one single file, a so-céibeary. An
important library idibc.a (the name may vary with the operating system used): it
contains the code for therintf function used in our example, and also for other
functions. We can imagine the generatiotilmf.a as shown in Figure 2.2.

1. Note: The BSS section contains space for symbols that uninitialized when starting the
program. For example, the integer variablrinitialized will be included here in order to speed

up the loading of the program. However, this is bad programming practice, and the bad style is not
weighed up by the gain in speed. Apart from that, the memory of embedded systems is rather
small, and thus loading does not take long anyway. Moreover, we will initialize the complete data
memory for security reasons; so eventually, there is no speed advantage at all. Therefore, we
assume that the BSS section is always empty, which is why it is not shown in Figure 2.1, and why
it will not be considered further on.
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[ TEXT || [ Text__ |
.DATA I .DATA
foo.o foo.o
[ TEXT || [ T1ext__ |
.DATA I .DATA
printf.o printf.o
[ TEXT || [ Text__ |
.DATA I .DATA
bar.o bar.o
libc.a

FIGURE 2.2 libc.a Structure

The second step of transforming program text into an executable program is
linking. A typical link command is e.qg.

Id -0 Hello Hello.o

With the linking process, which is illustrated in Figure 2.3, all unresolved
references are resolved. In our examplintf is such an unresolved reference, as

it is used inmain(), but defined irprintf.o, which in turn is contained itibc.a.

The linking process combines the TEXT and DATA sections of different object
files in one single object file, consisting of one TEXT and one DTA section only.
If an object file is linked against a library, only those object files containing
definitions for unresolved symbols are used. It should be noted that a linker can
produce different file formats. For our purposes, the so-called Motorola S-record
format will be used.
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| JTEXT II
.DATA

Hello.o

JTEXT
DATA

foo.o Bl .DATA

Bl TEXT

] Hello

| JTEXT II
| DATA !I

printf.o

‘ JTEXT

DATA

bar.o

libc.a

FIGURE 2.3 Hello Structure
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2.2 Loading and Execution of Programs

After a program has been compiled and linked, it can be executed. While

compilation and linking is basically identical for embedded systems and general

purpose computers, there are some differences regarding the execution of
programs. Table 2.1 lists the steps performed during program execution and
shows the differences between general purpose computers and embedded
systems:

General Purpose Computer Embedded System

1 | The TEXT section of the program| The TEXT section is already
is loaded into the program memoryexisting in the program memory
(part of the computer's RAM). (EEPROM) of the embedded

system.
2 | Depending on the object format | The addresses are computed by the
generated by the linker, the linker.

addresses of the TEXT section may
need to be relocated. If the compiler
produced position independent
code (PIC), this step is omitted.

3 | The DATA section of the program| The DATA section is already in the
is loaded into program memory | EEPROM of the embedded syste
(part of the computer's RAM).

4 | Depending of the object format | The DATA section is copied as a

generated by the linker, the whole to its final address in RAM.
addresses of the TEXT section may
need to be relocated.

154

>

TABLE 2.1 Execution of a program

Obviously, the execution of a program in an embedded system is much easier than
in a general purpose computer.
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2.3 Preemptive Multitasking

The previous sections described the execution of one program at a time. But what
needs to be done if several programs are to be executed in parallel? The method
we have chosen for parallel processingisemptive multitaskindy definition,
ataskis a program that is to be executed, andltitaskingrefers to several tasks
being executed in parallel. The tepreemptive multitaskings such may imply a
complex concept. But it is much simpler than other solutions, as for exanhgie
(Terminate and Stay Resident) programs in DO$poperativemultitasking.

To explain the concepts of preemptive multitasking, we developed a model which
is described in the following sections.

2.3.1 Duplication of Hardware

Let us start with a single CPU, with a program memory referred @kl (Read

Only Memory), and a data memofgAM (Random Access Memory). The CPU
may read from the ROM, as well as read from and write to the RAM. In practice,
the ROM is most likely atctEPROM(Electrically Erasable Programmable ROM).
The CPU reads and executes instructions from the ROM. These instructions
comprise major parts of the TEXT section in our example program on page 7.
Some of these instructions cause parts of the RAM to be transferred into the CPU,
or parts of the CPU to be transferred to the RAM, as shown in Figure 2.4 on
page 13. For general purpose computers, the program memory is a RAM, too. But
in contrast to embedded systems, the RAM is not altered after the program has
been loaded — except for programs which modify themselves, or paged systems
where parts of the program are reloaded at runtime.
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JEXT
ROM

CPU

DATA
RAM

FIGURE 2.4 Program Execution

Now let us assume we have two different programs to be run in parallel. This can
be achieved surprisingly easy by duplicating the hardware. Thus, one program
can be executed on one system, and the second program can be executed on the
other system, as shown in Figure 2.5. Note that the TEXT and DATA sections are

at different locations in the ROMs and RAMs of Figure 2.5.

JEXT1
TEXTO )
ROMO ROMll
CPUO CPUL
DATA1
.DATAQ
RAMO RAM1

FIGURE 2.5 Parallel execution of two programs
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Because of the increased hardware costs, this approach for running different
programs in parallel is not optimal. But on the other hand, it has some important
advantages which are listed in Table 2.2. Our goal will be to eliminate the
disadvantage while keeping the benefits of our first approach.

Advantages Disadvantages

The two programs are entirely Two ROMs are needed (although
protected against each other. If onehe total amount of ROM space is
program crashes the CPU, then thehe same).

other program is not affected by the
crash.

Two RAMs are needed (although
the total amount of RAM space is
the same).

Two CPUs are needed.

The two programs cannot
communicate with each other.

TABLE 2.2 Duplication of Hardware

2.3.2 Task Switch

The next step in developing our model is to eliminate one of the two ROMs and
one of the two RAMSs. To enable our two CPUs to share one ROM and one RAM,
we have to add a new hardware devicecleck The clock has a single output
producing a signal (see Figure 2.5). This signal shall be inadtive) {or 1,000 to
10,000 CPU cycles, and activhigh) for 2 to 3 CPU cycles. That is, the time
while the signal is high shall be sufficient for a CPU to complete a cycle.

Ll Il

CLOCK

FIGURE 2.6 Clock
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The output of the clock is used to drive yet another devicetdlsk switch(see
Figure 2.7). The task switch has one input and two outputs. The outputs shall be
used for turning on and off the two CPUs. The clock (CLK) signal turning from
inactive to active is referred to aask switch eventOn every task switch event,

the task switch deactivates the active output, OUTO or OUT1. Then the task
switch waits until the CLK signal becomes inactive again in order to allow the
CPU to complete its current cycle. Finally, the task switch activates the other
output, OUTO or OUT1.

CLK _e—* [ ourt
&————» 0OuUTo
CLOCK TASK SWITCH
ouTo
OUT1

FIGURE 2.7 Task Switch

Each of the CPUs has an input that allows the CPU to be switched on or off. If the
input is active, the CPU performs its normal operation. If the input goes inactive,
the CPU completes its current cycle and releases the connections towards ROM
and RAM. This way, only one CPU at a time is operating and connected to ROM
and RAM, while the other CPU is idle and thus not requiring a connection to
ROM and RAM. Consequently, we can remove the duplicated ROM and RAM
from our model, and the remaining ROM and RAM can be shared by the two
CPUs (see Figure 2.8).
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ouT1
| CLK ol _¢—® [OuTo
._
CLOCK TASK SWITCH
TEXTL
TEXTO
ROM
vy vy
CPUO CPUL

Y

DATAL
DATAQ
RAM

FIGURE 2.8 Shared ROM and RAM

By using the shared RAM, the two CPUs can communicate with each other. We
have thus lost one of the advantages listed in Table 2.2: the CPUs are no longer
protected against each other. So if one CPU overwrites the DATA segment of the
other CPU during a crash, then the second CPU will most likely crash, too.
However, the risk of one CPU going into an endless loop is yet eliminated. By the
way, when using cooperative multitasking, an endless loop in one task would
suspend all other tasks from operation.

2.3.3 Task Control Blocks

The final steps to complete our model are to move the duplicated CPU, and to
implement the task switch in software rather than in hardware. These two steps
are closely related. The previous step of two CPUs sharing one ROM and one
RAM was relatively easy to implement by using different sections of the ROM

and RAM. Replacing the two CPUs by a single one is not as easy, since a CPU
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cannot be divided into different sections. But before discussing the details, let us
have a look at the final configuration which is shown in Figure 2.9:

JEXT1
JEXTO

ROM

INT
—>
CPU
CLOCK ¢

DATA1
DATAO
RAM

FIGURE 2.9 Final Hardware Model for Preemptive Multitasking

In contrast to the configuration with two CPUs shown in Figure 2.8, the final

configuration (see Figure 2.9) has only one CPU and no task switch. Moreover,
the CLK signal has been replaced by an INT signal. This signal indicates that in
the final model, task switching is initiated by a regular interrupt towards the CPU.

The final configuration is very similar to our initial model shown in Figure 2.4 on
page 13. We merely have added the clock device, which is nhow connected to the
interrupt input of the CPU. Note that our final model is able to run more than two
programs in parallel.

The main reason why we wanted to remove the duplicated CPU is the following:
Think of the two CPUs shown in Figure 2.8 on page 16. At any time, these two
CPUs are most likely in different states. The two possible states are represented
by the internal registers of the CPU and determined by the programs executed by
the CPUs. So to remove the duplicated CPU, we need to replace the hardware
task switch by a software algorithm. Upon a task switch event (that is, the time
when the clock signal goes inactive, or low), the state of one CPU needs to be
saved, and the state of the second CPU needs to be restored. So we obtain the
following algorithm:

. Save the internal registers of CPUO
. Restore the internal registers of CPU1
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However, this algorithm does not make much sense, as our final model in
Figure 2.9 on page 17 is to have only one CPU. Instead of having two CPUs, we
use a data structure call@@CB, Task Control Blockto represent the CPUs of the
system. These TCBs provide space for storing the contents of the CPUSs’ registers
Ro to R,. Moreover, each TCB has a pointer to the TCB that represents the next

CPU. The task switch of Figure 2.8 on page 16 is replaced by a variable,
CurrentTask. The TCB concept is illustrated in Figure 2.10.

—»1 [ NextTask |

FIGURE 2.10 Task Control Blocks and CurrentTask

As a result, the proper task switch algorithm, which is laterrupt Service
Routine, ISRis as follows:

. Reset the interrupt, if required

. Store the internal CPU registers into the TCB to which CurrentTask is
pointing

. Replace CurrentTask by NextTask pointer of the TCB to which
CurrentTask is pointing

. Restore the internal CPU registers from the TCB to which
CurrentTask points now

. Return from ISR

Not that the ISR itself does not change the CPU state during the task switch. But
this ISR is all we need for preemptive multitasking. By inserting further TCBs in
the TCB NextTask pointer ring, the model can be extended to perform any
number of tasks.

There is an important invariant for this scheriiéhenever a task examines the
variable CurrentTask, it will find this variable pointing to its own TCB . If
CurrentTask does not point to some arbitrary task, then this task is not active at
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that time, and thus this condition cannot be detected. In bioefevery task,
CurrentTask refers to the tasks’s own TCB

2.3.4 De-Scheduling

Up to now, our two tasks had equal share of CPU time. As long as both tasks are
busy with useful operations, there is no need to change the distribution of CPU

time. For embedded systems, however, a typical situation is as follows: each task
waits for a certain event. If the event occurs, the task handles this event. Then the
task waits for the next event, and so on. For example, assume that each of our
tasks monitors one button which is assigned to the relevant task. If one of the

buttons is pressed,Jang and involved computation, lis called:

task_0_main()

{
for (;)
if (button_0_pressed()) lic_0();
}
task_1_main()
{
for (;})
if (button_1_pressed()) lic_1();
}

As task switching is controlled by our clock device, each task consumes 50
percent of the CPU time, regardless of whether a button is being pressed or not.
This situation is described dmisy wait. So precious CPU time is wasted by the
tasks being busy with waiting as long as théton_x_pressed()functions return

0. To ensure optimal exploitation of CPU time, we adDe&Schedule(function

which causes a task to release explicitly its CPU time:

task_0_main()

{
for (5
if (outton_0_pressed()) lic_0();
else DeSchedule();
}
task_1 _main()
{
for (;)
if (outton_1_pressed()) lic_1();
else DeSchedule();
}

So theDeSchedule(¥unction initiates the same activities as our ISR, except that
there is no interrupt to be reset. Unless both buttons are pressed simultaneously,
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theDeSchedule(function allows to assign the CPU time to the task that actually
needs it, while still maintaining the simplicity of our model. Note that explicit de-
scheduling should only be used rarely, becauséausdrickliche Begrindung
fehlt!) .
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2.4 Semaphores

To further enhance the usage of CPU time and to reduce the time for task
switching, we will make use of yet another powerful data structure of preemptive
multitasking: semaphoresThese semaphores allow changing the state of our

tasks.

In our current model, the two tasks are permanently running and thus consuming
precious CPU capacity. For this purpose, we introduce two new variables in the
TCB: State and NextWaiting. For now, State is initially set to the valueRUN,

and NextWaiting is set to 0. If requiredState may be set to the valuBLKD

(that is, blocked). So if we refer to the task as being RUN or BLOCKED, that
means that th&tate variable has the corresponding value. As a result, we obtain
the TCB and the state machine shown in Figure 2.11. The state machine will be
extended later.

RUN
BLKD

TCB

FIGURE 2.11 Task State Machine

Next, we slightly modify our task switching ISR so that it ignores tasks that are
not in state RUN:

. Reset the interrupt, if required
. Store the internal CPU registers into the TCB to which CurrentTask is
pointing
. Repeat
Replace CurrentTask by NextTask pointer of the TCB to which CurrentTask is
pointing
until the state of CurrentTask is RUN
. Restore the internal CPU registers from the TCB to which
CurrentTask is pointing now

. Return from ISR
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There is an important invarian®vhenever a task examines the variable State,

it will find this variable set to RUN . Statemay have any value at any time; but if
Stateis not set toRUN, then this task is not active at that time, and thus the task
cannot find itself in another state.

This invariant does not yet have any impact on our model, since our tasks are
permanently in statRUN. Clearly, if no task were in statRUN, the above ISR
would loop forever. It will be the semaphores that control the state changes of a
task; that is, switch betwe@&UN andBLKD .

A semaphore represents the number of abstract resources: if resources are
available, the semaphore counts the number of resources. If no resources are
available, the semaphore counts the number of tasks that are waiting for
resources. The latter situation can also be expressed as the “number of resources
missing”. If there are resources missing, then the TCBs of the tasks waiting for
these resources are appended to a linked list of TCBs of waiting tasks, where the
head of the list is part of the semaphore.

The semaphore consists of two variables: a counter and a pointer to a TCB. The
TCB pointerNextWaiting is only valid if the counter is less than O; otherwise, it

is invalid and set to O for clarity. The pointer represents the state of the semaphore
as shown in Table 2.3.

Counter NextWaiting TCB

Value Pointer State
N>0 0 N resources available
N=0 0 No resource available, and no task waiting

for a resource

-N<O Next task waiting for a| N tasks waiting for a resource; that is, N
resource represented byresources are missing
this semaphore

TABLE 2.3 Semaphore States

When a semaphore is created, the counter is initialized with the numbeb df
resources initially available, and tiNextWaiting pointer is set to 0. Then tasks
may request a resource by calling a functié(), or the tasks may release a
resource by calling a functiod(). The name® andV have been established by
Dijkstra, who invented the semaphores concept. In C++, a semaphore is best
represented as an instance of a classnaphore while P() and V() are public
member functions of that class.
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The algorithm for thé() member function is as follows:

. If Counter >0 (i.e. if resources are available)
Decrement Counter (decrement number of resources)

. Else (i.e. if no resources are available)
Decrement Counter, (increment number of tasks waiting)

Set State of CurrentTask to BLKD
Append CurrentTask at the end of the waiting chain
DeSchedule()

The P() function examine€ounter in order to verify if there are any resources
available. If so, the number of resources is simply decremented and execution
proceeds. Otherwise, the number of waiting tasks is increased (which again
causes the counter to be decreased, st@munter is increased), the task is
blocked and appended to the waiting chain, and finraschedule()s called to

make the blocking effective. Obviousigounter is decremented in any case. So
decrementing the counter can be placed outside the conditional part, thereby
changing the comparison fro> 0 to> 0. By inverting the condition frore O to <

0 and by exchanging the If part (which is empty now) and the Else part, we get the
following equivalent algorithm:

. Decrement Counter

. If Counter <0
Set State of CurrentTask to BLKD
Append CurrentTask at the end of the waiting chain
DeSchedule()

The V() member function has the following algorithm:

. If Counter >0 (i.e. if there are no tasks waiting)
Increment Counter (increment number of resources)

. Else (i.e. if there are tasks waiting)
Increment Counter, (decrement number of tasks waiting)

Set State of first waiting task to RUN
Remove first waiting task from the head of the waiting chain

The V() function examinesCounter. If V() finds thatCounter is > 0, which
means there are no tasks waiting, then it just increm@atsater, indicating there

is one more resource available Mf{) finds thatCounter is < 0, there are tasks
waiting. The number of waiting tasks is decremented by incrementing the
counter, the first task in the waiting chain is then unblocked by setting its state
back to RUN, and the task is removed from the waiting chain. The task that is
being activated had issuedR{) operation before and continues execution just
after theDeSchedule()call it made in theP() function. Figure 2.12 shows a
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sequence oP() function calls performed by a task TO, aM{) function calls
performed by another task or ISR on the same semaphore.

Count=2
Count=1
Count=0
Count=-1
Ty RUN
Ty BLKD

FIGURE 2.12 P() and V() Function Calls

A semaphore is very similar to a bank account. There are no restrictions to pay
money into your accouni()) whenever you like. In contrast, you can withdraw
money E()) only if you have deposited it before. If there is no money left, you
have to wait until somebody is kind enough to fill the account again. If you try to
cheat the bank by trying to withdraw money from an empty accoRftwhen
Counter = 0), you go to jail (get blocked) until there is enough money again.
Unfortunately, if you are in jalil, there is no way for yourself to fix the problem by
depositing money, since in jail you can’t do anything at all.

As for the bank account, there are huge differences betwee(hand V()
functions, see Table 2.3.

P() V()

P() must not be called in an ISR V() may be called from anywhere,
including ISR.

A P() function call may block the calling A V() function call may not block any

task task

TABLE 2.4 P() and V() properties
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The negative value of Counter is limiteg
by the number of existing tasks, since
every task is blocked atR) call with
Counter < 0.

I Any number oiV() operations may be
performed, thus increasirigounter to
arbitrarily high values.

TheP() call requires time O(N) if
Counter < 0; else P() requires time
O(1). The time can be made constant &
using a pointer to the tail of the waiting
chain, but it is usually not worth the
effort.

TheV() call requires constant time

y

TABLE 2.4 P() and V() properties

Initial

Counter | Semantic

N>1 The semaphore represents a pool of N resources.

N=1 A single resource that may only be used by one task at a time; for
example, hardware devices.

N=0 One or several resources, but none available initially; for example,
buffer for received characters.

TABLE 2.5 Typical Initial Counter Values

Semaphores used some common initial values which have specific semantics, as
shown in Table 2.3.

a
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2.5 Queues

Although semaphores provide the most powerful data structure for preemptive
multitasking, they are only occasionally used explicitly. More often, they are
hidden by another data structure callpekues Queues, also calleldlFOs (first

in, first out), are buffers providing at least two functiofsit() and Get(). The

size of the items stored in a queue may vary, thus Queue is best implemented as a
template class. The number of items may vary as well, so the constructor of the
class will take the desired length as an argument.

2.5.1 Ring Buffers

The simplest form of a queue is a ring buffer. A consecutive part of memory,
referred to as Buffer, is allocated, and two variables, @etindex and the
Putindex, are initialized to O, thus pointing to the beginning of the memory
space. The only operation performed on Betindex and thePutindex is
incrementing them. If they happen to exceed the end of the memory, they are reset
to the beginning. This wrapping around at the end turns the straight piece of
memory into a ring. The buffer is empty if and only Getindex = Putindex.
Otherwise, thePutindex is always ahead of thd&setindex (although the
Putindex may be less than th&etindex if the Putindex already wrapped
around at the end, while th@etindex did not wrap around yet). In Figure 2.13, a
ring buffer is shown both as straight memory and as a logical ring.
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Buffer

Item Item Item Item Item Item

Get Put
we® e,
X
S
&%
lta m \\e,('(\

FIGURE 2.13 Ring Buffer

The algorithm forPut(), which takes an item as its arguments and puts it into the
ring buffer, is as follows:

. Wait as long as the Buffer is full, or return Error indicating overflow

. Buffer[Putindex] = Item

. Putindex = (Putindex + 1) modulo BufferSize (increment
Putindex, wrap
around at end)

Get(), which removes the next item from the ring buffer and returns it, has the
following algorithm:

. Wait as long as Buffer is empty, or return Error indicating underflow
. Item = Buffer[Gettindex]

. Getindex = (Getlndex + 1) modulo BufferSize(increment Getlndex,
wrap around at end)

. Return Item
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In practice, an empty buffer is much more likely than a buffer overflow. In
embedded systems, an empty buffer is a sign of proper design, while a full buffer
usually shows that something is wrong. Get() andPut() can also be compared

to a bank account, which tends to be empty rather than overflow.

Assume that we don not want to return an error condition on full or empty buffers.
There are good reasons not to return an error condition, since this condition is
likely to disappear again, and the response to such an error condition will most
often be a retry of théut() or Get(). That is, we assume we want to wait. The
simplest (and worst) approach is again busy wait:

For the Get() function:

. While Getindex = Putindex
Do Nothing (i.e. waste time)

For the Put() function:

. While Getindex = (Putindex + 1) modulo BufferSize
Do Nothing (i.e. was time)

The note on bank accounts and the tdoasy waitshould have reminded you of
semaphores.

2.5.2 Ring Buffer with Get Semaphore

The basic idea is to consider the items in a buffer as resources. | have seen this
idea for the first time in an operating system called MIRAGE about twenty years
ago. It was used for interrupt-driven character 1/0O.

In addition to theGetindex andPutindex variables, we add a semaphore called
GetSemaphore which represents the items in the buffer. &etindex and
Putindex are initialized to O (that is, the buffer is initially empty), this semaphore
is initialized with itsCounter variable set to O.

For eachPut(), a V() call is made to this semaphoedter the item has been
inserted into the buffer. This indicates that another item is available.

. Wait as long as the Buffer is full, or return Error indicating overflow

. Buffer[Putindex] = Item

. Putindex = (Putindex + 1) modulo BufferSize(increment Putindex,
wrap around at end)

. Call V() for GetSemaphore
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For eachGet(), a P() call is madebeforeremoving an item from the buffer. If
there are no more items in the buffer, then the task performinG#i@ and thus
the P() is blocked until someone usegt() and thus/() to insert an item.

. Call P() for GetSemaphore

. Item = Buffer[GettIndex]

. Getindex = (Getindex + 1) modulo BufferSize(increment Getindex,
wrap around at end)

. Return Item

2.5.3 Ring Buffer with Put Semaphore

Instead of considering the items that are already inserted as resources, we could
as well consider the free space in the buffer as resources. In addition to the
Getindex andPutindex variables for the plain ring buffer, we add a semaphore
called PutSemaphore which represents the free space in the buffer. As
Getindex andPutindex are initialized to O (that is, the buffer is initially empty),

this semaphore (in contrast to t@etSemaphorg is initialized with itsCounter
variable set t@ufferSize.

For eachPut(), a P() call is made to this semaphobeforethe item is inserted

into the buffer and thus buffer space is reduced. If there is no more free space in
the buffer, then the task performing tiRet() and thus theP() is blocked until
someone useaset() and thus/() to increase the space again.

. Call P() for PutSemaphore

. Buffer[Putindex] = Item

. Putindex = (Putindex + 1) modulo BufferSize(increment Putindex,
wrap around at end)

For eachGet(), a P() call is madeafter removing an item from the buffer,
indicating another free position in the buffer.

. Wait as long as Buffer is empty, or return Error indicating underflow

. Item = Buffer[GettIndex]

. GetIndex = (Getindex + 1) modulo BufferSize(increment Getindex,
wrap around at end)

. Call V() for PutSemaphore
. Return Item

This scheme is used less often than the ring buffer with Get semaphore. To
understand why, let us consider a task which communicates with an interrupt-
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driven serial port. For each direction, a buffer is used between the task and the
serial port, as shown in Figure 2.14. Assume further that the task shall echo all
characters received to the serial port, possibly running at a lower speed. At a first
glance, you may expect to have the (upper) receive buffer used with a get
semaphore, and the (lower) transmit buffer with a put semaphore. The task will be
blocked most of the time on the get semaphore, which is a normal condition.
What would happen, however, if the task would block on the put semaphore, i.e.
if the transmit buffer is full? This will eventually happen if the transmit data rate

is lower than the receive data rate. In this case, one would normally signal the
sender at the far end to stop transmission for a while, for example by hardware or
software handshake. A blocked task, however, would not be able to do this. This
scenario is quite common, and one would use a get semaphore for the upper
buffer, but a plain ring buffer for the lower one.

Serial Port
Pu Get
—P Rx - | [ [ [ [ ]
Task
-y Tx [ [ [ | [ |
Ge Put

FIGURE 2.14 Serial Communication between a Task and a Serial Port

2.5.4 Ring Buffer with Get and Put Semaphores

The final option is to use both a get and a put semaphore. The buffer and the
semaphores are initialized as described in the previous sections.

For eachPut(), aP() call is made to the put semaphdreforethe item is inserted,
and aV() call is made to the get semaphafterthe item is inserted:

. Call P() for PutSemaphore (block until there is space)
. Buffer[Putindex] = Item

. Putindex = (Putindex + 1) modulo BufferSize

. Call V() for GetSemaphore (indicate a new item)

For eachGet(), a V() call is made on the get semaphdvefore an item is
removed, and #() call is made on the put semaphater removing an item
from the buffer.
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. Call P() for GetSemaphore (block until there is an item)
. Item = Buffer[GettIndex]

. Getindex = (Getindex + 1) modulo BufferSize

. Call V() for PutSemaphore (indicate space available)

. Return Item

This ring buffer with get and put semaphore is optimal in the sense that no time is
wasted, and no error condition is returned on either full or empty queues.
However, it cannot be used in any ISR, since both siBef) andGet(), use the

P() call which is forbidden for ISRs. Thus the only application for this scheme
would be the communication between tasks. Moreover, the disadvantages of put
semaphores apply here as well.
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3 Kernel Implementation

3.1 Kernel Architecture

Figure 3.1 shows the overall architecture of the kernel implementation.

Application
Application
Kernel
Queue
Application Serial 1/0 Task *
Startup
0s Queue Queue Semaphore
A A

User Mode
Supervisor
Mode

v ¥ I vy [ vy

Startup Hardware Access ISR Scheduler| | P(), V(), Poll()
crt0.S A A

Y

Hardware (DUART)

FIGURE 3.1 Kernel Architecture

The bottom part of Figure 3.1 shows the part of the kernel that is (along with the
functions called from there) executed in supervisor mode. All code that is
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executed in supervisor mode is written in assembler and is contained in the file
crt0.S. The code incrt0.S is divided into the start-up code, functions for
accessing the hardware, interrupt service routines, the task switch (scheduler),
and the semaphore functions that are written in assembler for performance
reasons.

The middle part of Figure 3.1 shows the rest of the kernel, which is executed in
user mode. Any call to the code ant0.S requires a change to supervisor mode,
i.e. every arrow from the middle to the lower part is related to one or several
TRAP instructions which cause a change to supervisor mode. G3asmtains a
collection of wrapper functions with TRAP instructions and enables the
application to access certain hardware parts. The cl&esgalin andSerialOut,
referred to asSerial I/0O, require hardware access and are also accessed from the
interrupt service routine. Clas§ask contains anything related to task
management and uses the supervisor part of the kernel for (explicit) task
switching. Task switching is also caused by the interrupt service routine. Class
Semaphore provides wrapper functions to make the implementation of its
member functions available in user mode. Sevena¢ueclasses are used inside
the kernel and are also made available to the application; most of them use class
Semaphore

Normally, an application is not concerned with the internal kernel interfaces. The
relevant interfaces towards the kernel are those defined in class8erialln,
SerialOut, Task, Queue,and sometimeSemaphore.

3.2 Hardware Model

In order to understand the kernel implementation, we need some information
about the underlying hardware:

. Which processor type is used?

. How is the memory of the processor mapped?

. Which peripherals are used?

. Which interrupt assignment of the peripherals are used?
. How do the peripherals use the data bus?

For the implementation discussed here, the hardware described in the following
sections is assumed.

3.2.1 Processor

We assume that any processor of the Motorola MC68000 family is used. The
implementation works for the following processors:
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. MC68000
. MC68008
. MC68010
. MC68012
. MC68020
. MC68030
. MC68040
. CPU32

Note that out of this range of processors, only the MC68020 has been tested. For
use of other chips, see also Section 3.2.5.

3.2.2 Memory Map

We assume the following memory map for the processor:

. (E)EPROM at address 0x00000000..0x0003FFF
. RAM at address 0x20000000..0x2003FFF
. DUART at address 0xA0000000..A000003C

The EPROM and RAM parts of the memory map are specified in the
System.configfile.

1 #define ROMbase 0x00000000
2 #define ROMsize 0x00040000
3 #define RAMbase 0x20000000
4 #define RAMsize 0x00040000

3.2.3 Peripherals

We assume a MC68681 DUART with two serial ports, a timer, and several
general purpose input and output lines.

The DUART base address, along with the addresses of the various DUART
registers, is contained in the fdeart.hh.

5 #define DUART 0xA0000000
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3.2.4 Interrupt Assignment

We assume the DUART may issue interrupts at level 2 to the CPU. We further
assume that the interrupt vector is determined by the interrupt level (i.e. the vector
is a so called autovector) rather than by the DUART.

3.2.5 Data Bus Usage

We assume the DUART is connected to data lines D16..D23 of a MC68020, and
that it indicates WORD size for read accesses because of the considerable turn-off
time of 150 nS for the data bus of the MC68681 as well as for many other
peripherals. For a MC68020 running at 20 MHz, the timing to deal with is as
shown in Figure 3.2.

ck ./ ./ L/ /S S S

C_SDUART

DATApUART | 1

CSrom

DATA rom —

T= 0 100 150 250

FIGURE 3.2 Data Bus Contention

After deasserting the DUART's chip select, the DUART needs a long time to
three-state its data bus. This causes contention on the data bus between the
DUART and the device addressed with the next cycle, which is usually a ROM or
RAM. Adding wait states does not help here: this way, @8y agT Would

merely be extended, while the contention remains as it is. The standard way of
dealing with this contention is to separate the DUART from the CPU'’s data bus
by means of a bidirectional driver, which is switched on with the DUART’s chip
selectCSyyarT- But this solution requires an additional driver, and frequently

cost limits, PCB space, or components do not allow for this.
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For the MC68000 family, this problem can also be solved in a different way: by
generating two read cycles towards the DUART instead of one read cycle only.
However, only in the first cycle, €Sy arT IS generated, while the second is a

dummy cycle allowing the DUART to completely three-state its data bus. For
higher speeds, the dummy cycle can be extended by wait states.

As the CPUs of the MC68000 family have different memory interfaces, the way
to implement such a dummy cycle depends on the CPU used.

For MC68020, MC68030, and MC68040 CPUs, the CPU executes a LONG move
from the peripheral. This causes the CPU’s SIZ0 and SIZ1 to request a LONG
read cycle from the peripheral. The peripheral would, however, indicate a WORD
size at the end of the cycle. The CPU then automatically initiates another cycle
with size WORD in order to get the missing data. This second cycle is the dummy
cycle. The actual value read by the CPU contains only one valid byte from the
peripheral (in D23..D16 or D31..D24, depending on where the peripheral is
located on the data bus). The remaining three bytes read are invalid. If the SI1Z0
and SIZ1 lines are properly decoded, generating a bus error for all other sizes, this
method is safe even in the case of software faults.

For the MC68000, MC68010 and MC68012, such dynamic bus resizing is not
possible. However, the data bus size of the peripheral is limited to WORD size
anyway for these CPUs. Unfortunately, these CPUs do not provide SIZ0 and SIZ1
lines to indicate the size of a cycle. Instead, the A1 address line has to be decoded
in order to distinguish between the first cycle towards the peripheral and the
following dummy cycle. This method is not entirely safe though: by mistake, one
might access the address for the dummy cycle first.

Finally, for the MC68008, which has a 8 bit data bus only, the same method as for
the MC68000 can be used, except that a WORD read cycle instead of a LONG
read cycle is executed, and address line AO is used instead of A1. The CPU splits
this WORD read cycle into two BYTE read cycles automatically. Surprisingly,
this method is safe again, because a word read to an odd address causes an
address error trap.

In any case, some part of the data bus is undefined. The CPUs of the MC68000
family may change their Z (zero) and N (negative) flag depending on the data
read. There is a negligeable chance that these flags become metastable inside the
CPU when the floating part of the data bus changes just in the moment when the
data lines are latched by the CPU. Although most likely this has no effect in
practice, one should usenaove instruction that does not change any status bits,

for example MOVEM. It is primarily intended for moving several registers, but
can serve for this particular purpose as well. In the case of a MC68008 CPU, i.e
when using MOVEM.W, be aware of a strange inconsistency of the MOVEM
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instruction that causes the lower word of a data register to be sign-extended into
the upper word. That is, .W refers to the source size only. Failing to save the upper
word of the register is a common mistake that is hard to detect, since it usually
occurs in an interrupt service routine.

As a resultcrt0.S contains the following two lines for all CPUs of the MC68000
family except for MC68008:

136 MOVEM.L rDUART_ISR, D7 | get interrupt sources
137 SWAP D7 |
For the MC68008, the above lines need to be replaced by the following code:

MOVEM.W rDUART_ISR, D7 | CCAUTION: D7.W is sign-extended !!!
ASR.W #8, D7 |



3. Kernel Implementation 39

3.3  Task Switching

The MC68000 family of microprocessors which is used for our implementation
provides two basic modes of operation: ter modeand thesupervisor mode

(The 68020 microprocessors and higher also feature a sub-mode of the supervisor
mode, themaster modewhich allows for a cleaner implementation of interrupt
handling. But for compatibility reasons, we did not use it here.) In user mode,
only a subset of the instructions provided by the microprocessor can be executed.
An attempt to execute privileged instruction(that is, an instruction not allowed

in user mode) causespaivilege violation exceptioto be executed instead of the
instruction. Usually, C++ compilers do no generate any privileged instructions.
The microprocessor indicates its present mode also to the hardware by its FC2
output. This way, certain hardware parts, such as the DUART in our
implementation, are protected against inadvertent accesses from user mode.

One could ignore the user mode feature and run the whole system in supervisor
mode. A task could then e.g. write to a hardware register at adorgstirectly
from C++:

*(unsigned char *)reg = data;

This method is commonly used for processors that have no separate user and
supervisor modes. But the price paid for this simplicity is a considerable loss of
protection.

The MC68000 family evolved in such a way that the distinction between user and
supervisor mode could be applied to memory accesses also by using a hardware
memory management unit (MMU). From the MC68040 on, this MMU was even
integrated in the microprocessor chip. By using a MMU, tasks are completely
protected against each other. Therefore, we chose not to take the easy way, but to
used the separate user and supervisor modes: regular task code is run in user
mode, while code accessing critical resources is run in supervisor mode. Such
critical resources are peripherals as for example our DUART, or the interrupt
mask of the processor.

Sometimes, plotting the mode&) (is user modesS is supervisor mode) together
with the interrupt level against time proves to be useful. A typical plot is shown in
Figure 3.3. In our system, we use only one interrupt at level 2. Thus the only
interrupt mask levels that make sense in our system are O (all interrupts will be
served), 2 (only interrupts above level 2 will be served), and 7 (only non-
maskable interrupts will be served). Regular task code runs in user mode, with all
interrupts enabled (indicated by0). In some cases, in particular when
performing operations on queues, interrupt service routines must be prevented
from changing a queue’s variables. The can be easily achieved by disabling
interrupts even in user mod¥&7. In user mode, other interrupt levels than the
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ones cited above are rarely used, because one would have to analyze carefully
which data structures could be modified at which interrupt level. Changing
interrupt levels would then mean repeating this analysis, which is an error-prone
procedure.

FIGURE 3.3 Modes and Interrupts vs. Time

As shown in the above figure, the system starf§=Q in supervisor mode, with

all interrupts disabled. After initialization, the first task (which is the idle task
explained later) starts execution Bt1, with interrupts still disabled. The idle

task sets up other tasks and enables interrupts in the hardwafe2Athe idle

task wants to lower the interrupt mask to 0. Since this is a privileged instruction, it
has to enter supervisor mode, change interrupt mask and return to user mode with
interrupts enabled at=3. At this point, that is atT=4, interrupts from the
hardware are accepted by the CPU. The interrupt changes to supervisor mode and
automatically sets the interrupt level to 2. As we will see later, in our
implementation we will always check for possible task switches before returning
to user mode. This check is made with interrupts disabled. Hence every return to
user mode is fron87 Thus atT=5, the interrupt processing is finished, and a
check for task switching is made with interrupts disabledTA®6, this check is
finished, and the CPU returns to user mode, which may be code of the same task
or a different one. AflT=7, a task performs a protected operation in supervisor
mode, such as writing to a hardware register. Like before, it returns to user mode
(via S7atT=8) at T=9. Next, we see a task intending to raise the interrupt level in
order to modify a critical data structure. It does so by entering supervisor mode at
T=10 and returning to user mode in the usual way (8iaat T=11), but with
interrupts disabled, aff=12. After finishing the critical section, it enters
supervisor mode again at13 and returns to user mode with interrupts enabled
(viaS7atT=14) atT=15.
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As already mentioned, we check for tasks switches at every return to user mode.
Instead, it would also be possible to switch tasks immediately, whenever desired.
However, it is of no use to switch tasks while in supervisor mode, as the task
switch would come into effect only at return to user mode. Switching tasks
immediately could lead to several task switches while in supervisor mode, but
only one of these task switches would have any effect. It is thus desirable to avoid
unnecessary task switches and delay the decision whether to switch tasks until
returning to user mode. Since task switching affects critical data structures,
interrupts are disabled when tasks are actually switched.

As explained in Section 2.3, each task is represented by a Task Control Block,
TCB. This TCB is implemented as an instance of the claask. This class
contains all functions necessary for managing tasks. For task switching, the
following members of clasBask are relevant:

25 class Task
26 {

30 Task * next; /1 0x00
32 unsigned long Task_DO, Task_D1, Task_D2, Task_D3; // 0x08..

33 unsigned long Task_D4, Task_D5, Task_D6, Task_D7; // 0x18..
34 unsigned long Task_AO, Task_A1l, Task A2, Task_A3; // 0x28..

35 unsigned long Task_A4, Task_A5, Task_A6; /1 0x38..
36 unsigned long * Task_USP; /1 0x44..

37 void (*Task_PC)(); /] 0x48

38 unsigned long TaskSleep; /I Ox4C

40 unsigned short priority; /] 0x54

41 unsigned char Task_CCR; /1 0x56

42 unsigned char TaskStatus; /1 0x57

71 static void Dsched()

72 {asm("TRAP #1"); };

108 enum { RUN = 0x00,

109 BLKD =0x01,

110 STARTED =0x02,

111 TERMINATED = 0x04,
112 SLEEP  =0x08,

113 FAILED =0x10,

114 I

132 static Task * currTask;
139 %

The variablesTask_DO0.Task_D7, Task AO.. Task A6, Task USR Task PC
andTask_CCR provide space for saving the corresponding CPU registers when a
task is swapped out.

The Task pointernext is used to find the next TCB, while the task’s priority and
status are analyzed in order to find the next task to be run at a task switch.
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currTask points to the task currently running. This variable is static, i.e. it is
shared by all instances of the cldask.

The easiest way to trigger a task switch is to explicitly de-schedule a task, which
is implemented as the inline functiddsched() This function merely executes a
Trap #1 instruction. This instruction causes the CPU to enter supervisor mode
and to continue execution at an address specified by a vector associated with the
instruction (see alsort0.S in Appendix A.1).

58 .LONG _deschedule | 33  TRAP #1 vector

228 |

229 | TRAP #1 (SCHEDULER)
230 |

231 |

232  _deschedule: |

233 ST  _consider_ts | request task switch

234 |

235  _return_from_exception: | check for task switch

418  _consider_ts: BYTE O | true if task switch need be checked

So executingTrap #1 causes the CPU to proceed in supervisor mode at label
_descheduleThere, a flag calledconsider_tsis set, and the common code for

all returns to user mode is executed. It is this common code that may actually
perform the task switch.

Upon entering supervisor mode, the CPU automatically createscaption stack
frameon itssupervisor stackas shown in Figure 3.4:

PC low
PC high

SSP

SSR | CCR

FIGURE 3.4 Exception Stack Frame

Let us have a closer look at the code after lalveturn_from_exception. First of
all, all interrupts are disabled, so that this code is not interrupted before the
exception is completely handled:
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235  _return_from_exception: | check for task switch
236 OR.W #0x0700, SR | disable interrupts

Then the stack frame is analyzed to determine in which mode the exception
occurred. If the supervisor bit is set (0x2000 in the SR), then the exception
occurred in supervisor mode, and the task switch shall thus be deferred until
returning to user mode. If the exception occurred in user mode, but with nonzero
interrupt level (SR & 0x0700) in user mode, then the task switch shall be deferred
as well, since the task has disabled interrupts. That is, whenever (SR & 0x2700) is
nonzero, the task switch shall not be performed, and the CPU directly returns
from the exception:

237 MOVE.W (SP), -(SP) | get status register before exception
238 AND.W  #0x2700, (SP)+ | supervisor mode or ints disabled ?
239 BNE L_task_switch_done | yes dont switch task

304  L_task_switch_done: |
305 RTE |

Otherwise, it is checked whether a task switch is required at all. In our case, this
was true, since we have unconditionally sebnsider_ts In certain situations,
_consider_tsis not set; for example when unblocking a task that has a lower
priority than the current task. Then case the CPU merely returns from the
exception:

240 TST.B _consider_ts | task switch requested ?
241 BEQ L_task switch_done |no

At this point, we initiate a task switch. Firstconsider_tsis reset to prevent
further task switches. Then the CPU registers are stored in the current TCB. Since
we may not destroy any CPU registers here, we save A6 onto the stack and restore
it back to the TCB afterwards:

242 CLR.B _consider_ts | reset task switch request

243 |

244 | |

245 | swap out current task by saving

246 | all user mode registers in TCB

247 | |

248 [

249 MOVE.L A8, -(SP) | save A6

250 MOVE.L __ 4Task$currTask, A6 |

251 MOVEM.L DO-D7/A0-A5, Task_DO(A6)| store DO-D7 and A0-A5 in TCB
252 MOVE.L (SP)+, Task_A6(A6) | store saved A6 in TCB

Swapping out the task is completed by saving the USP (i.e., A7 when in user
mode), the CCR, and the PC of the current task into the TCB:

253 MOVE USP, A0 |

254 MOVE.L A0, Task_USP(A6) | save USP in TCB

255 MOVE.B 1(SP), Task_CCR(A6) |save CCR from stack in TCB
256 MOVE.L 2(SP), Task_PC(A6) |save PC from stack in TCB

257 |
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Now all data belonging to the current task are saved in their TCB. We are free to
use the CPU registers from here on. The next step is to find the next task to run:
by chasing thenext pointer of the current task, until the current task is reached
again. We use A2 to mark where the search started. The task we are looking for is
the one with the highest priority in state RUN (i.e. 0). If the current task is in state
RUN, then we need not consider tasks with lower priority, which speeds up the
search loop. Otherwise we make sure that at least the idle task will run in case no
other task can:

258 |
257 find next task to run
260 A2: marker for start of search

|
I
I
|
261 | AB6: best candidate found
I
|
|
|
I

262 D6: priority of task A6

263 AO: next task to probe

264 DO: priority of task AO

265 |

266 |

267 MOVE.L __ 4Task$currTask, A2 |

268 MOVE.L A2, A6 |

269 MOVEQ #0, D6 |

270 TST.B TaskStatus(A6) | status = RUN ?
271 BNE L_PRIO_OK | no, run at least idle task
272 MOVE.W TaskPriority(A6), D6 |

273 L_PRIO_OK: |

274 MOVE.L TaskNext(A6), A0 | next probe
275 BRA L_TSK_ENTRY |

The search loop skips all tasks which are not in state RUN or have a lower priority

than the last suitable task found. If several tasks in state RUN have the same
priority, the first of these tasks is chosen. The best candidate found is stored in
AG:

276 L_TSK_LP: |

277 TST.B TaskStatus(A0) | status = RUN ?
278 BNE L_NEXT_TSK | no, skip

277 MOVEQ #0, DO

280 MOVE.W TaskPriority(A0), DO |

281 CMP.L DO, D6 | D6 higher priority ?
282 BHI L_NEXT_TSK | yes, skip

283 MOVE.L A0, A6 |

284 MOVE.L DO, D6 |

285 ADDQ.L #1, D6 | prefer this if equal priority
286 L_NEXT_TSK: |

287 MOVE.L TaskNext(A0), AO | next probe
288 L_TSK_ENTRY: |

289 CMP.L A0, A2 |

290 BNE L_TSK_LP |

291 |

Here, A6 points to the TCB of the next task which is to run and which is set as
current task. In the same way as the previous task was swapped out, the new
current task is swapped in. First, the CCR and PC in the exception stack frame are
replaced by that of the new current task:
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292 | |

293 | next task found (A6)

294 | swap in next task by restoring

295 | all user mode registers in TCB

296 | |

297 |

298 MOVE.L A6, _ 4Task$currTask | task found.

299 MOVE.L Task_PC(A6), 2(SP) | restore PC on stack
300 MOVE.B Task_CCR(A6), 1(SP) | restore CCR on stack

Then the USP and registers for the new current task are restored, and the CPU
returns from exception processing. This way, the execution would normally be
continued where the former current task was interrupted. But since we have
replaced the return address and CCR of the stack frame by that of the new current
task, execution proceeds where the new current task was interrupted instead:

301 MOVE.L Task_USP(A6), A0 |
302 MOVE A0, USP | restore USP
303 MOVEM.L Task_DO(A6), DO-D7/A0-A6| restore DO-D7, AO-A5 (56 bytes)

304  L_task_switch_done: |
305 RTE |
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3.4 Semaphores

Semaphores are declared in fikemaphore.hh Although they could be
implemented in C++, we will see that they are best implemented in assembler.
Thus, there is no Semaphore.cc file. The interface to the assembler routines is
specified inline irsemaphore.hh

3.4.1 Semaphore Constructors

One of the most common special cases for semaphores are semaphores
representing a single resource that is available from the outset. We have chosen
this case for the default constructor. Semaphores representing O or more than one
resources initially can be constructed by providing the initial count:

13 Semaphore() :count(l), nextTask(0) {};
14 Semaphore(int cnt) : count(cnt), nextTask(0) {};

3.4.2 Semaphore Destructor

There is no destructor for semaphores. In general, it is dangerous to destruct
semaphores at all. If a semaphore with a counter value < 0 is deleted, then the
tasks in the waiting queue would either be unblocked (although most likely the
resource they are waiting for would not be available), or blocked forever. In the
first case, the semaphore would need to return an error code which would need to
be checked after an() operation. This is not very handy, so we mdeg a
function returning no value at all. Generally, semaphores should have an infinite
lifetime, i.e. they should be static.

However, sometimes dynamic semaphores can be useful. In these cases, it is the
responsibility of the programmer to make sure that the semaphore dies in the
correct way.

3.4.3 Semaphore P()

The P() member function could be written in C++. While the semaphore and
possibly the chain of waiting tasks is modified, interrupts must be disabled:

void Semaphore::P()
oldintMask = os::set_INT_MAK(7); // disable interrupts
counter --;

if (counter < 0) /l'if no resource available

{
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consider_ts = 1; /I task switch required
CurrentTask->Status |= BLKD; // block current task
CurrentTask->nextWaiting = 0; // current task is end of waiting chain

if (nextTask ==0)  // no other task waiting

{

nextTask = CurrentTask; /I head of task waiting chain

}

else

{

Task * t = nextTask;

/I find end of task waiting chain...
while (t->nextWaiting;) t = t->nextWaiting;

/I here tis the last task in the waiting chain
t->nextWaiting = CurrentTask;

}
}

os::set_INT_MASK(oldIntMask); // restore interrupt level
return;

}

Note that the actual task switch would happen at the sesendNT_MASK()

call, when the corresponding exception processing changes back to user mode.
Disabling and enabling interrupts would cause two TRAP instructions for the
set_INT_MASK() calls and for the relevant check for task switches at the end of
exception processing. Compared to an assembler implementation, this would be a
significant overhead. Considering that semaphores are used by higher level data
structures, such as queues, as well as in every character I/O interrupt service
routine /() only), this overhead should be avoided by implementing all
Semaphoremember functions in assembler (see atsi®).S in Appendix A.1).

For theP() function, we use TRAP #3 to switch to supervisor mode, passing the
semaphore in register AO and telling the compiler that DO might be changed, so
that we do not need to save it.

15 void P() {

16 asm volatile ("MOVE.L %0, A0
17 TRAP #3"::"g"(this) : "d0", "a0");
18 k

In crt0.S, the TRAP #3 vector points to the actual assembler cod®&Yor

60 .LONG _Semaphore_P |35 TRAP #3 vector

The assembler code is only slightly longer than the C++ code. Since this is an
exception handling routine, we do not need to restore the interrupt level at the
end.

307 |

308 | TRAP #3 (Semaphore P operation)
|
|

309
310 [
311 _Semaphore_P: | AO -> Semaphore
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312 OR  #0x0700, SR | disable interrupts

313 SUBQ.L #1, SemaCount(A0) | count down resources
314 BGE _return_from_exception | if resource available
315 ST  _consider_ts | request task switch

316 MOVE.L SemaNextTask(AO), DO | get waiting task (if any)
317 BNE.S Lsp_append | got a waiting task

318 MOVE.L __ 4Task$currTask, DO | get current Task
319 MOVE.L DO, SemaNextTask(AQ) | store as first waiting
320 MOVE.L DO, A0 |

321 BSET #0, TaskStatus(AO) | block current task

322 CLR.L TaskNextWaiting(AO) | say this is last waiting
323 BRA _return_from_exception | done

324 |

325  Lsp_append: | goto end of waiting list

326 MOVE.L DO, A0 |

327 MOVE.L TaskNextWaiting(A0), DO | get next waiting (if any)
328 BNE.S Lsp_append | if not last waiting

329 |

330 MOVE.L __4Task$currTask, DO | get current task

331 MOVE.L DO, TaskNextWaiting(AO) | store as last waiting
332 MOVE.L DO, A0 |

333 BSET #0, TaskStatus(AO) | block current task

334 CLR.L TaskNextWaiting(AO) | say this is last waiting
335 BRA _return_from_exception | done

336 |

3.4.4 Semaphore Poll()

ThePoll() member function is the simplest semaphore. In C++ we would have the
following lines of code:

void Semaphore::Poll()

{

intresult = 1; // assume no resource avaliable
oldIintMask = os::set_INT_MAK(7); /I disable interrupts

if (counter > 0)

{
counter--;
result = 0;

}

os::set_INT_MASK(oldIntMask); // restore interrupt level
return result;

}

Like for P(), we implement this in assembler, using TRAP #5:

23 int Poll() {

24 intr;

25

26 asm volatile ("MOVE.L %1, AO

27 TRAP #5

28 MOVE.L DO, %0"

29 1 "=g"(r) : "g"(this) : "d0", "a0");

30 returnr;
31 h
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In crt0.S, the TRAP #5 vector points to the actual assembler cod@ofig):

62 .LONG _Semaphore_Poll | 37  TRAP #5 vector

And the code is straightforward:

363 | |
364 | TRAP #5 (Semaphore Poll operation)

365 | |
366 |

367 _Semaphore_Poll: | AO -> Semaphore
368 OR  #0x700, SR | disable interrupts
369 MOVEQ #1, DO | assume failure

370 TST.L SemaCount(A0) | get count

371 BLE _return_from_exception | failure

372 SUBQ.L #1, SemaCount(A0) |

373 MOVEQ #0, DO | success

374 BRA _return_from_exception | check for task switch
375 |

3.4.5 Semaphore V()

The last member function required i¥(). Again, we provide a C++
iImplementation first to understand the assembler code:

void Semaphore::V()

{
oldIintMask = os::set_INT_MAK(7); // disable interrupts

counter ++;

if (counter <= 0) /I if any task waiting

{

Task * head = nextTask

nextTask = head->nextWaiting; // remove head of waiting chain
head>Status &= ~BLKD; /I unblock head of waiting chain

if (CurrentTask->priority < head->priority)
consider_ts = 1; /I task switch required

}

os::set_INT_MASK(oldIntMask); // restore interrupt level
return;

}

The comparisoncurrentTask->priority < head->priority) is crucial for the entire
system performance. If we always sebnsider ts then e.g. any character
received, for which a lower priority task is waiting, would swap out and in again
every higher priority task. In contrast RY(), V() may be used in interrupt service
routines. Thus performance is even more critical, &l is implemented in
assembler:
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19 void V() {

20 asm volatile ("MOVE.L %0, A0
21 TRAP #4"::"g"(this) : "d0", "a0");
22 h

This time, TRAP #4 is used:

61 .LONG _Semaphore_V |36 TRAP #4 vector

The assembler code fuK) is as follows:

337 | |

338 | TRAP #4 (Semaphore V operation)

339 | |

340 |

341  _Semaphore_V: | AO -> Semaphore

342 OR  #0x0700, SR | disable interrupts

343 ADDQ.L #1, SemaCount(A0) |

344 BLE.S Lsv_unblock | unblock waiting task

345 CLR.L SemaNextTask(A0) |

346 BRA _return_from_exception | done

347 |

348  Lsv_unblock: |

349 EXG DO, Al |

350 MOVE.L SemaNextTask(AO), A1 | get next waiting task
351 MOVE.L TaskNextWaiting(Al), SemaNextTask(AO)

352 MOVE.L Al, A0 |

353 EXG DO, Al

354 BCLR #0, TaskStatus(AO) | unblock the blocked task
355 CLR.L TaskNextWaiting(AO) | justin case

356 MOVE.W TaskPriority(A0), DO | get priority of unblocked Task
357 MOVE.L _ 4Task$currTask, AO | get current Task

358 CMP.W TaskPriority(AO), DO | current prio >= unblocked prio ?
359 BLS _return_from_exception |yes, done

360 ST  _consider_ts | no, request task switch

361 BRA _return_from_exception | done

362 |

Up to now, we have presented almost all of the code written in assembler. So it is
time to relax by looking at some simple C++ code.
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3.5 Queues

As we already saw, there are different kinds of queues, depending on where
semaphores are used. But common to all queues is a ring buffer. Hence we
implement ring buffers as a separate class from which the different queues are
derived. Since a ring buffer may contain any kind of items, we make a template
class calledRingBuffer.

1  // Queue.hh

12  template <class Type> class RingBuffer

13 {

14 public:

15 RingBuffer(unsigned int Size);

16 ~RingBuffer();

17

18 int ISEmpty() const { return (count) ?20:-1;}
19 int IsFull() const { return (count <size) ?0:-1; };
20

21 int Peek(Type & dest) const;

22

23  protected:

24 enum { QUEUE_OK =0, QUEUE_FAIL = -1}
25

26 virtual int PolledGet(Type & dest) = 0;

27 virtual int PolledPut(const Type & dest) = 0;

28 inline void Getltem(Type & source);
29 inline void Putltem(const Type & src);
30

31 unsigned int size;

32 unsigned int count;

33

34  private:

35 Type * data;
36 unsigned int get;
37 unsigned int put;
38 K

3.5.1 Ring Buffer Constructor and Destructor

The constructor initializes theut andgetindices to 0, theount of items in the
buffer to 0, and stores thsize of the buffer. Then the constructor allocates a
buffer big enough to stozeinstances of clasb/pe.

1 /I Queue.cc

9 template <class Type> RingBuffer<Type>::RingBuffer(unsigned int Size)

10 : size(Size), get(0), put(0), count(0)
11

12 {

13 data = new Type[size];

14 :

The destructor releases the memory allocated for the buffer.

1  // Queue.cc
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16  template <class Type> RingBuffer<Type>::~RingBuffer()

17 {
18 delete [] data;
19 }

3.5.2 RingBuffer Member Functions

The member functionssEmpty() andlIsFull() are self-explanatoryPeek(Type

& dest) returnsQUEUE_FAIL (i.e. nonzero) if the queue is empty. Otherwise, it
stores the next item in the queuedast, but without removing it from the queue.

The Peek() function is useful for scanners which usually require a single
character look-ahead. Traditionally, a character looked ahead is pushed back into
a queue by means of a functiomput(char) if the character is not required. But

this solution causes several problem2? Which problems ?®®@ providing a
look-ahead function like’eek()is the better solution, as it does not remove any
item from the queue.

1 /I Queue.cc

21  template <class Type> int RingBuffer<Type>::Peek(Type & dest) const

22 {

23 int ret = QUEUE_FAIL;

24

25 {

26 0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
27 if (count) {dest = data[get]; ret=QUEUE_OK;}

28 os::set_INT_MASK(old_INT_MASK);

29 }

30 return ret;

31}

The member functioRutltem() inserts, andsetltem() removes an item from the
queue. HoweverRutltem() assumes that the queue is not full when it is called,

and Getltem() assumes that the queue is not empty. This condition is not
checked, because the check as such is different for queues that use semaphores
and queues that do not use semaphores. Apart from that, interrupts are in general
to be disabled when these functions are called. To avoid direct usage of these
functions, they are made protected so that only classes derived_nogBuffer

can use them.

33 template <class Type> inline void RingBuffer<Type>::Getltem(Type & dest)

34

35 dest = data[get++];

36 if (get >=size) get=0;
37 count--;

38}
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40 template <class Type> inline void RingBuffer<Type>::Putltem(const Type &src)
41

42 data[put++] = src;

43 if (put >=size) put=0;

44 count++;

45 }

Finally, it has shown to be useful to provide polled access to both ends of a queue,
even if semaphores are used. For this purpose, the member furetibedGet()

and PolledPut() are used. Their implementation depends on where semaphores
are used; thus they are purely virtual.

3.5.3 Queue Put and Get Functions

The polled and semaphore-controlledt() andGet() for the four possible types
of queues result in a total of 12 functions. Rather than explaining them all in
detail, we only present the basic principles:

. Interrupts are disabled while the ring buffer is accessed.

. For polled operation, if a semaphore is used at the polled end of the
gueue, the semaphore is polled as well in order to keep the semaphore
synchronized with the item count.

. It is always checked if the queue is full before Putltem is called, and if
the queue is empty before Getltem is called. This check is explicit if no
semaphore is used at the respective ends, or implicit by polling the
semaphore.

3.5.4 Queue Put and Get Without Disabling Interrupts

In the implementation shown, the manipulation of the queue is always performed
with interrupts enabled. Considering the short code, this causes a significant
overhead. Often interrupts are already disabled anyway, e.g. in interrupt service
routines. In those cases, one can derive other queue classes from RingBuffer that
do not disable interrupts.

It should also be noted that the get and put ends of the queue are more or less
independent of each other. As we have seeRuitem() and Getltem(), the

count is always modifiedfter putting or getting an item. If incrementing or
decreasingount is atomic (which is the case for most compilers), and if there is
only one task or interrupt service routine at all (which is the case for most
queues), then it is not necessary at all to disable interrupts. It may as well be the
case that interrupts need to be disabled only at one end of a queue, e.g. for one
task that receives messages from several other tasks. A good candidate for such
optimizations are the character input and output queues for serial 1/0O.
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3.6 Interprocess Communication

So far, we have considered different tasks as being independent of each other.
Most often, however, some of the tasks in an embedded system have to exchange
information. The simplest way for the tasks to enable this exchange is to share
memory. One task updates a variable in the memory while another task reads that
variable. Although shared memory is considered as the fastest way of exchanging
information, this is only true for the information exchange as such. In addition to
exchanging the information, the tasks have to coordinate when the information is
valid (i.e. when it is provided by the sending task) and how long it is processed by
the receiving task. This coordination could be implemented as a valid flag, which
is initially set to invalid. After a task has provided information, it sets the flag to
valid. The receiving task then processes the information and sets the flag back to
invalid, so that the memory can be used again. Obviously, this procedure means
busy wait for both tasks involved and is thus inefficient.

A much better way is to use queues containing messages for exchanging
information. To avoid busy waiting at either end, both put and get semaphores are
used. If the queue is full, the sending task is blocked until the receiving task has
removed items. For small information quantities, such as characters or integers,
the information can be stored in the message itself; for larger quantities, pointers
to the information are used. This way, the performance of shared memory for the
information exchange as such can be maintained. Using pointers is tricky in
detail, since it needs to be defined whether the receiver or the sender must release
the memory. For example, the receiver must release the memory if the memory is
allocated with thenew operator. The sender has to release the memory, e.g. if the
memory is allocated on the senders stack; in this case, the sender needs to know
when the receiver has finished processing of the message. If the memory is
released by the sender, then the receiver typically sends an acknowledgment back
to the sender to indicate that the memory is no longer needed. As a consequence,
the receiver needs to know which task has sent the message.

Rather than defining a specific queue for each particular purpose, it is convenient
to have the same data structure for messages in the whole system, as defined in
Message.hih(see also Appendix A.9).

1 /I Message.hh

5 class Message

6 {

7  public:

8 Message() : Type(0), Body(0), Sender(0) {};

9 Message(int t, void * b) : Type(t), Body(b), Sender(0) {};
10 int  Type;

11 void * Body;

12 const Task * Sender;

13 %
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This data structure contains a type that indicates the kind of message, a body that
is optionally used for pointers to larger data structures, and a task pointer
identifying the sender of the task.

Communication between tasks being so common, every task is provided with a
message queue:

/I Task.hh
25 class Task

26 {
138 Queue_Gsem_Psem<Message> msgQ;
139  };

The size of the message queue can be specified individually for each task in order
to meet the task’s communication requirements.

1 /I Task.cc

33  Task:Task(void (*main)(),

35 unsigned short gsz,
38 )

39 : US_size(usz),

44 msgQ(gsz),

As we know by now, every task executing code must be the current task. Thus a
message sent is always sent®yrrentTask . SinceMessagaétself is a very small
data structure, we can copy the Type, Body and Sender members without loosing
much of the performance. This copy is made by Ehe() function for queues.
The code for sending a message becomes so short that it makes sense to have it
inline.

/I Task.hh

96 void SendMessage(Message & msg)
97 {msg.Sender = currTask; msgQ.Put(msg); };

Note thatSendMessage(ls a hon-static member function of class task. That is,

the instance of the class for whi@dendMessage(is called is the receiver of the
message, not the sender. In the simplest case, only a message type is sent, e.g. to
indicate that an event has occurred:

void informReceiver(Task * Receiver, int Event)

{

Message msg(Event, 0);
Receiver->SendMessage(msg);

}

The sender may return fromformReceiver() before the receiver has received
the message, since the message is copied into the message queue. It is also safe to
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send pointers to th&EXT section of the program to the receiver (unless this is
not prevented by hardware memory management):

void sayHello(Task * Receiver)

{
Message msg(0, "Hello");
Receiver->SendMessage(msg);

}

This ??? structure/function/code ?#&?valid since “Hello” has infinite
lifetime. It is illegal, however, to send dangling pointers to the receiver; as it is
illegal to use dangling pointers in general:

void DONT_DO_THIS(Task * Receiver)

{
char hello[6] = "Hello";
Message msg(0, hello);
Receiver->SendMessage(msg); // DON'T DO THIS !!!

}

After the above function has returned, the pointer sent to the receiver points to the
stack of the sender which is not well defined when the receiver gets the message.

The receiving task may cabetMessage()n order to get the next message it has
been sent. This function is even shorter, so it is declared inline as well:
/I Task.hh

56 static void GetMessage(Message & msg)
57 { currTask->msgQ.Get(msg); };

The receiver useSetMessage(ps follows:

void waitForMessage()

{
Message msg();
Task::GetMessage(msg);
switch(msg.Type)

=
}

This usage pattern of th&lessageclass explains its two constructors: the
constructor withType and Body arguments is used by the sender, while the
receiver uses the default constructor without any arguments that is updated by
GetMessage(Jater on. A scenario where the sender allocates memory which is
released by the receiver could be as follows: the sender sends integers 0, 1 and 2
to the receiver. The memory is allocated by new, rather 2@ pointing ???

on the stack like in the bad example above.

void sendData(Task * Receiver)

{
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int * data = new int[3];

data[0] = 0; data[l]=1; data[2] =2;
Message msg(0, data);
Receiver->SendMessage(msg);

}

The receiver would then release the memory after having received the message:

void receiveData()

{
Message msg();
Task::GetMessage(msg);

aélete [] (int *)(msg.Body);
}

If a system uses hardware memory management (which is rarely the case for
embedded systems today, but may be used more frequently in the future), the data
transmitted must of course be accessible by both tasks.

The last scenario using new/delete is safe and provides sufficient flexibility for
large data structures. Unfortunately, using new/delete is a bad idea for embedded
systems in general. While resetting a PC twice a day is not uncommon, resets
cannot be accepted for a robot on the mars. The safest but least flexible way of
allocating memory is by means of static variables. Automatic allocation on the
stack is a bit more risky, because the stack might overflow; but this solution is
much more flexible. The ultimate flexibility is provided by new/delete, but it is
rather difficult to determine the memory requirements beforehand, which is partly
due to the fragmentation of the memory. The problem in the bad example above
was the lifetime of the variableello, which was controlled by the sender. This
problem can be fixed by using a semaphore that is unlocked by the receiver after
having processed the message:

class DataSemaphore
{
public:
DataSemaphore() : sem(0) {}; // resource not available
int data[3];
Semaphore sem;

}

void sendMessageAndWait(Task * Receiver)
{
DataSemaphore ds;
Message msg(0, ds);
ds.data[0] =0; ds.data[l]=1; ds.data[2] = 2;
Receiver->SendMessage(msg);
ds.sem.P();

}
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The sender is blocked as soon as it has sent the message, since the semaphore was
initialized with its counter set to 0, indicating that the resource (i.e. the data) is not
available. The receiver processes the message and unlocks it, which causes the
sender to proceed:

void receiveDataAndUnlock()
{

Message msg();
Task::GetMessage(msg);

((Datasemaphore *)msg.Body).V();

Unfortunately, blocking the sender is a disadvantage of this otherwise perfect
method. The sender may, however, proceed its operation as long as it does not
return from the function. This is also one of the very few examples where a
semaphore is not static. It does work here because both sender and receiver
cooperate in the right way. Although we have not shown any perfect solution for
any situation of interprocess communication, we have at least seen a set of
different options with different characteristics. Chances are good that one of them
will suit the particular requirements of your application.
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3.7 Serial Input and Output

The basic model for serial input and output has already been discussed in Section
2.5.3 and presented in Figure 2.14. In principle, the input and output directions
are completely independent of each other, except for the software flow control
(e.g. XON/XOFF protocol) at the hardware side of the receive buffer, and
possibly line editing functions (e.g. echoing of characters) at the task side of the
receive buffer.

This section deals with the task side of both the receive and transmit buffers; the
hardware side is discussed in Section 3.8. Strictly speaking, the aspects of serial
input and output discussed here are not part of the operating system itself. But
they are so commonly used that it is appropriate to include them in the kernel.

Several tasks sharing one serial input or output channel is a common source of
trouble. A typical example is a router that receives data packets on several serial
ports and transmits them (after possibly modifying them) on other serial ports.
??? What is the trouble ?2&Yimplementation with three serial ports could

be as shown in Figure 3.5.

Packet
Rx Buf 0 ""il" Tx Buf 0
Rx Buf 1 @ Tx Buf 1
Packet
Rx Buf 2 @ Tx Buf 2

Queue of idle Packet Handlers

-

Packet Packet Packet Packet
Handler Handler/ \Handler Handler

FIGURE 3.5 Serial Router (Version A)
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For each serial port, there is a receive taBK(TO0..2) that receives characters

from its serial port. If a complete packet is received, the receive task fetches a
pointer to an idle packet handler task and sends a message containing the packet
to that task. The packet handler task processes the packet and may create other
packets that are sent as messages to some of the transmitftasks. ). When

a packet handler has finished processing a packet, it puts itself back into the queue
of idle packet handlers. The transmit tasks merely send the packets out on their
respective serial outputs. In this implementation, each serial input is handled by
one taskRx Ti, and each serial output is handled by a tagK'i dedicated to that

port. The main purpose of these tasks is to maintain atomicity at packet level.
That is, these tasks are responsible for assembling and de-assembling sequences
of characters into packets and vice versa. Since the receive and transmit tasks are
statically bound to their serial ports, there is no conflict between tasks with regard
to ports.

Now assume there is some mechanism by which a task can temporarily claim a
serial input and output port for a period of time so that no other task can use that
port at the same time. Then the number of tasks involved could be reduced as
shown in Figure 3.6.

Packet

Rx Buf 0 Tx Buf O
Handler
Packet

Rx Buf 1 Tx Buf 1
Handler
Packet Packet

Rx Buf 2 Handler Handler Tx Buf 2

Queue of unserved input ports

Packet Packet Packet Packet
Handler/ \Handler/ \Handler/ \Handler

FIGURE 3.6 Serial Router (Version B)
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At the output side, a packet handler merely claims a serial output port when it
needs to transmit a packet. The queue of idle packet handlers has been replaced
by a queue of input ports that have no packet handlers assigned; this queue
initially contains all serial input ports. A packet handler first gets an unserved
input port, so that shortly after start-up of the system each input port is served by
a packet handler; the other packet handlers are blocked at the queue for unserved
inputs. A packet handler serving an input first claims that input port and starts
collecting the characters of the next packet. When a complete packet is received,
the packet handler releases the input port (which causes the next idle packet
server to take over that port), puts it back into the queue of unserved input ports,
and continues processing of the packet. Like in router version A, this scheme
schedules the packet handlers between the ports in a fair way. Sometimes, in
particular if the serial ports need to have different priorities (e.g. due to different
communication speeds), a scheduling on a per-port basis is required. This leads to
an even simpler implementation shown in Figure 3.7.

Packet

Rx Buf 0 Tx Buf O
Handler
Packet

Rx Buf 1 Tx Buf 1
Handler
Packet Packet

Rx Buf 2 Handle Handler Tx Buf 2

FIGURE 3.7 Serial Router (Version C)

With this implementation, one can e.g. assign different priorities to each input
port and use different numbers of packet servers. The packet servers queue
themselves by claiming the input port, so that the queue of unserved input ports
used in version B becomes obsolete. As a consequence, no initialization of that
gueue is required. The code for the packet handler becomes as simple as that:

Semaphore Port_0_Input, Port_0_Output;
Semaphore Port_1_Input, Port_1_Output;
Semaphore Port_2_Input, Port_2_Output;

void packet_handler_main(Semaphore & Port_i_Input)
{
for (3;)
{
Port_i_Input.P();
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char * Packet = getPacket(port);
Port_i_Input.V();
handlePacket(Packet); Il deletes Packet

}
}

The semaphores control the claiming and releasing of the serial input and output
ports. Using semaphores explicitly is not very elegant though. First, it must be
assured that any task using a serial port is claiming and releasing the
corresponding semaphore. Also it is often desirable to have a “dummy” port (such
as/dev/nulin UNIX) that behaves like a real serial port. Such a dummy port could
be used e.g. to turn logging information on and off. But claiming and releasing
dummy ports makes little sense. In general, the actual implementation of a port
should be hidden from the interface using the port. Thus for a clean object-
oriented design, the semaphores should be maintained by the port rather than by
an application using the port. This leads to the kernel implementation of serial
input and output described in the following sections.

3.7.1 Channel Numbers

It is convenient to refer to serial ports by channel numbers. In our hardware
model, we assumed one DUART with two serial ports, which weSBRIAL_0

and SERIAL_1. These are normally operated in an interrupt-driven manner.
Sometimes however, it is required to have a polled operation available, in
particular before the interrupt system has been initialized, and in the case of fatal
system errors. For achieving this polled operation, the channels
SERIAL_O POLLED and SERIAL_1 POLLED are provided. Finally, the
DUMMY_SERIAL channel is used when the actual serial output needs to be
suppressed.

1 /I Channels.hh

5 enum Channel {

6 SERIAL_O =0,

7 SERIAL_1 =1,

8 SERIAL_0_POLLED =4,
9 SERIAL_1_POLLED =5,
10 DUMMY_SERIAL =8,
1 h

Often, one would like to turn the serial output on and off, e.g. for debugging
purposes. Therefore, channel variables rather than explicit channels are used:

1 /I Channels.hh

13 extern Channel Monitorin;
14 extern Channel MonitorOut;
15 extern Channel ErrorOut;
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16 extern Channel GeneralOut;

If the variableErrorOut is used for e.g. debugging information, then this output
can be suppressed or directed to any serial port by settingrtoeOut variable

to DUMMY_SERIAL or SERIAL_0/1. This can be done in a dynamic way and
can be extended to several debugging levels by introducing Gaannel
variables in accordance with the various debugging levels.

3.7.2 Serialln and SerialOut Classes and Constructors/Destructors

Since the serial input and output are mainly independent of each other, they are
implemented as separate classes. The constructors and destructors are so similar,
however, that they are described together.

As we already saw, a mechanism allowing a task to exclusively claim a serial
(input or output) port for a certain period of time is required. Clearly, this
mechanism will be based on a semaphore. A particularly elegant implementation
of this mechanism is to create an object with a lifetime that is exactly the period
during which the port is being claimed. The lifetime of an object is the time
between the construction and the destruction of the object. Thus if we perform the
semaphord®() operation inside the constructor and @ operation inside the
destructor,??? was dann ??For theSerialOut class, we get the following
constructor:

1 /*SerialOut.cc */

16 Semaphore SerialOut::Channel_0;
17 Semaphore SerialOut::Channel_1;

20 SerialOut::SerialOut(Channel ch) : channel(ch)

21 {

22 switch(channel)

23 {

24 case SERIAL_O:

25 if (Task::SchedulerRunning()) Channel_0.P();

26 else channel = SERIAL_O_POLLED;
27 return;

28

29 case SERIAL_1:

30 if (Task::SchedulerRunning()) Channel_1.P();

31 else channel = SERIAL_1 POLLED;
32 return;

33

34 case SERIAL_O_POLLED:

35 case SERIAL_1_POLLED:

36 return;

37

38 default:

39 channel = DUMMY_SERIAL; /I dummy channel
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40 return;
41 }
42 '}

Basically, the constructor performs B() operation on theChannel 01
semaphore associated with the channel. If another task tries to créat@mbDut

object, then that task is blocked until the task that createdstreaalOut object

first has destroyed it again. Tl&erialOut object also stores for which channel it

has been constructed, so that subsequent changes e.g. of a channel variable do not
affect aSerialOut object. Note that th®() operation is only performed for those
channels that are subject to access conflicts. If multitasking is not yet in effect (i.e.
during system start-up), the construction is creating a polled serial port. Thus the
code creating 8ERIAL_0/1 object will work even at system start-up.

The semaphores must be static and private to prevent abuse of the semaphores:

1 /* SerialOut.hh */

12 class SerialOut
13 {

23 private:

36 static Semaphore Channel_0;
37 static Semaphore Channel_1;

44}

The destructor performs thé() operation only for those ports for which the
constructor has performed R() operation. Thus if 8SSERIAL_0/1 object is
created before multitasking has started, tbeannelis mapped to a polled port
in the constructor, and the destructor will not perfornv@ operation on the
semaphore later on.

1 /*SerialOut.cc */

44  SerialOut::~SerialOut()

45 {

46 switch(channel)

47 {

48 case SERIAL_0: Channel_0.V(); return;
49 case SERIAL_1: Channel_1.V(); return;
50 }

51 }

The constructor and destructor for t8erialln class are conceptionally identical

to those of theSerialOut class, so that we do not repeat them here. The only
difference is a simplification in th&erialln constructor: it does not check
whether multitasking is already running, because during system start-up, there is
typically no serial input, while serial output for debugging purposes is quite
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common. It would do no harm, however, to make t8Berialln constructor
identical to that oSerialOut.

3.7.3 Public SerialOut Member Functions

The simplest public member function of th®erialOut class is Putc(int
character). The purpose oPutc() is to transmit its argument character on the
channel. Since the way how this transmission has to be done is different for the
channels (interrupt driven f@ERIAL_0/1, polled forSERIAL_0/1_POLLED,

or just discarding the character fdtUMMY _SERIAL ), Putc() simply decodes

the channel and then calls the appropriate function that actually transmits the
character.

1 /*SerialOut.cc */

104 void SerialOut::Putc(int c)

105 {

106 switch(channel)

107 {

108 case SERIAL_O: Putc_0(c); return;

109 case SERIAL_1: Putc_1(c); return;

110 case SERIAL_O0_POLLED: Putc_0_polled(c); return;
111 case SERIAL_1_POLLED: Putc_1 polled(c); return;
112 case DUMMY_SERIAL: return;

113 default: return;

114 }

115 }

ThusPutc() provides a unified interface towards the different channels.

If a channel is interrupt driven (as f&ERIAL_0/1), then the character is put into
the corresponding output buffer. As we will see in Section 3.8, transmit interrupts
need to be disabled if the output queue becomes empty. If this situation is
indicated by theTxEnabled_0/1variable, then the interrupts must be turned on
again by writing a certain command into the DUART.

1 /*SerialOut.cc */

53 void SerialOut::Putc_0(int ¢)
54 {

55 unsigned char cc = c;

56

57 outbuf_0.Put(cc);

58 if {TxEnabled_0)

59 {

60 TxEnabled_0 =1,

61 os::writeRegister(WDUART_CR_A, CR_TXENA); // enable Tx
62 }

63 }
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If a channel is polled, then the polledutc() function makes sure that the
initialization of the hardware has reached a sufficient lefellleéd_IO, i.e. the
DUART has been initialized, but interrupts are not yet enabled), and then it polls
the DUART's status register until it is able to accept a new character.

1 /*SerialOut.cc */

77 void SerialOut::Putc_0_polled(int c)

;g { if (os::initLevel() < os::Polled_IO) os::init(os::Polled_lO);

gg while (!(os::readDuartRegister(rDUART_SR_A) & SR_TxRDY)) /**/ ;
gé os::writeRegister(WDUART_THR_A, c);

gg while (!(os::readDuartRegister(rDUART_SR_A) & SR_TxRDY)) /*¥/ ;
86 }

In the case of theDUMMY_SERIAL channel, the correspondingutc()
function does not do anything.

1 /* SerialOut.cc */

99 void SerialOut::Putc_dummy(int)
100 {

101 /I dummy Putc to compute length
102 }

Although Putc_dummy() is not called inPutc(), it will be required later on,
where any of the above speciftutc_() functions will be passed as an argument
to a print function discussed below.

Note that in the case of interrupt-driven serial output, Bec() function may
return long before the character has been transmitted by the DUART, since the
Putc() only places the character into the output buffer. Sometimes we also want to
know if the character has indeed been transmitted. For this purpose, the
IsEmpty() function returns true if the output buffer of a channel is empty.

Based on thé&utc() function, we can implement more sophisticated functions for
formatted output similar to théprintf() in C libraries. There are both a static
Print() function taking a channel as an argument and a non-sktict()
function.

1 /*SerialOut.hh */

12 class SerialOut
13 {

18 static int Print(Channel, const char *, ...);

21 int Print(const char *, ...);
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a4 kh

The staticPrint() function creates &erialOut object for the channel and then
proceeds exactly like the non-sta@idnt() function.

1 /*SerialOut.cc */

132 int SerialOut::Print(Channel channel, const char * format, ...)
133 {
134  SerialOut so(channel);

The SerialOut object is automatic in the statierint() function so that it is
automatically destructed wheRrint() returns. This way it is ensured that
anything being printed is not interrupted by other tasks calliRgiat() function
for the same channel.

The non-statid®rint() function selects the prop&utc_() function for its channel
and either calls thiButc_() function (for those characters of the format string that
are to be copied to the output), or calisnt_form() for format characters. The
implementation oprint_form() is straightforward, but somewhat lengthy, so that
we skip it here and refer to Appendix A.12. Any of tReint() functions return
the number of characters printed on the channel.

1 /*SerialOut.cc */

159 int SerialOut::Print(const char * format, ...)

160 {

161 void (*putc)(int);

162 const unsigned char ** ap = (const unsigned char **)&format;
163 const unsigned char * f = *ap++;

164 intlen=0;

165 intcc;

166

167 switch(channel)

168 {

169 case SERIAL_O: putc = Putc_0; break;

170 case SERIAL_1: putc = Putc_1; break;

171 case SERIAL_O_POLLED: putc = Putc_0_polled; break;
172 case SERIAL_1_POLLED: putc = Putc_1_polled; break;
173 case DUMMY_SERIAL:  putc = Putc_dummy; break;
174 default: return O;

175 }

176

177 while (cc = *f++)

178 if (cc 1='%") {putc(cc); len++;}

179 else len += print_form(putc, ap, f);

180

181 return len;

182 }
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So, why are two differentPrintf() functions needed? The reason is that
sometimes not all information to be printed together is easily available
beforehand. Consider two tasks running the same code and using the same
channel:

void task_main(Channel ch)

{
for (;;)
{

Message msg;
char * p = (char *)(msg.Body);
Task::GetMessage(msg);
for (unsigned int i = 0; msg.Bodyf[i]; i++)
SerialOut::Print(ch,"%c ",p[i]);
}
}

In this example, each message character with its trailing blank from any task is
printed as a whole, since the lifetime of th®erialOut objects created
automatically by the statirint() function is basically the time it takes for the
print function to execute. If one task receives "AAA” and the other tasks receives
“BBB” as the body of a message at the same time, then the lines of both tasks
may be intermixed, producing e.g. the following output:

AABBBA
In contrast, the output
AABBB A

would never be produced, since the trailing blank is always “bound” to its
preceding character by the single invocation of the sttiot() function. If we
want to print a whole message, i.e. produce A4.AB B B instead of AABB

B A, then we have to extend the lifetime of tierialOut object. This is where
the non-stati®rint() function is used, like in the following code:

void task_main(Channel ch)

for (3;)
{
Message msg;
char * p = (char *)(msg.Body);
Task::GetMessage(msg);
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{
SerialOut so(ch);

for (unsigned int i = 0; msg.Body][i]; i++)
so.Print(ch,"%c ",pli]);
}

}

Now there is only on&erialOut object instead of one for each message character
which causes an entire message to be printed. Thus the Btatt€) is typically

used when the item to be printed can be expressed by a single format string, while
the non-stati®rint() is used otherwise.

3.7.4 Public Serialln Member Functions

The simplest public member function of tl&erialln class isGetc() which
returns the next character received on a channel. If no characters are available,
then the task callingsetc() is blocked until the next character is received. In
contrast to theSerialOut class,Getc() returns useful results only for interrupt
driven I/O and indicates EOF (-1) otherwisgetc() returnsint rather tharchar

in order to distinguish the EOF condition from the regakar OxFF (i.e. -1).

1 /*Serialln.cc */

34 int Serialln::Getc()

35 {

36 unsigned char cc;

37

38 switch(channel)

39 {

40 case SERIAL_O: inbuf_0.Get(cc); return cc;
41 case SERIAL_1: inbuf_1.Get(cc); return cc;
42 default: return -1;

43 }

4 }

If it is not desired to block the taskollc() can be used insteaollc() returns
EOF wherPutc() would block the task.

1 /*Serialln.cc */

46 int Serialln::Pollc()

47 |

48 unsigned char cc;

49

50 switch(channel)

51 {

52 case SERIAL_O: return inbuf_0.PolledGet(cc) ?-1: cc;
53 case SERIAL_1: return inbuf_1.PolledGet(cc) ?-1: cc;
54 default: return -1;

55 }
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56}

Often one wants to receive characters up to, but not including a terminating
character; e.g. if decimal numbers of unknown length are entered. UNIX has a
unputc() function which undoes the lagtutc(). We have not adopted this
scheme, but instead provide a functieekc()which works likePollc(), but does

not remove the character from the receive queue. Bothnipetc() approach and

the Peekc()approach have their advantages and disadvantages, and one can easily
implementunputc() in the Serialln class.

1 /*Serialln.cc */

58 int Serialln::Peekc()

59 {

60 unsigned char cc;

61

62 switch(channel)

63 {

64 case SERIAL_O: return inbuf_0.Peek(cc) ?-1: cc;
65 case SERIAL_1: return inbuf_1.Peek(cc) ?-1: cc;
66 default: return -1;

67 }

68 }

GetDec() and GetHex() are based on th@ollc() and Peekc() functions and
collect decimal ('0’..’9’) or hexadecimal ('0’..'9'/A..’F and 'a’..f") sequences

of characters, and return the resulting integer value. These functions do not
necessarily belong to an operating system, but are provided since they are
commonly required.

For serial output, characters can never get lost, since tasks performing output
would block before the transmit buffer overflows. For serial input however, the
receive buffer may overflow, e.g. if no task is performi@gtc() for some time.

The functiongetOverflowCounter() returns the number of characters lost due to
buffer overflow, and O for polled or dummy serial input where this condition can
not be easily detected.
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3.8 Interrupt Processing

As shown in Section 3.2.4, the only device generating interrupts is the DUART
using interrupt level 2, which corresponds to autovector #2 in the CPU’s vector
table. After reset, interrupts from the DUART are disabled in the DUART, and in

addition, the CPU'’s interrupt mask is set to level 7, thus preventing interrupts
from the DUART. Before discussing the interrupt processing, we shall have a look
at the hardware initialization.

3.8.1 Hardware Initialization

Hardware initialization is performed in two steps, which are controlled by the
variableos::init_level and by the functioms::init() which performs initialization
up to a requested level.

1 /*os.hh*

18 class os

19 {

30 enum INIT_LEVEL {

31 Not_|Initialized = 0,
32 Polled_IO =1,
33 Interrupt_10 =2
34 h

35

36 static void init(INIT_LEVEL new_level);
49 static INIT_LEVEL init_level;

88 ¥

After RESET, theinit_level is Not_initialized. The Polled_IO level refers to a
hardware state, where the DUART is initialized, but interrupts are masked. The
final level isInterrupt_IO , where interrupts are also enabled. If an initialization

to Interrupt_IO is requested, then the initialization for levBblled IO is
automatically performed by thes:init() function. During normal system start-up,

the Polled_IO level is never requested; instead, the initialization jumps directly
from Not_initialized to Interrupt_IO . This happens at a rather late stage in the
start-up of the system. If debugging printouts are inserted during system start-up,
then thePutc_0'1_polled) functions request initialization to levieblled_10.

128  void os::init(INIT_LEVEL iLevel)

129 {

130 enum{green =1<<7}; // green LED, write to BCLR turns LED on
131

132 if (init_level < Polled_lO)

133 {

134 initDuart(DUART, CSR_9600, CSR_9600);

135 init_level = Polled_IO;

136 }

137
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138 if (iLevel == Interrupt_lO && init_level < Interrupt_|O)

139 {

140 readDuartRegister ((DUART_STOP); /I stop timer
141 writeRegister(xDUART_CTUR, CTUR_DEFAULT); // set CTUR
142 writeRegister(xDUART_CTLR, CTLR_DEFAULT); // set CTLR
143 readDuartRegister(rDUART_START); /I start timer
144

145 writeRegister(WDUART_IMR, INT_DEFAULT);

146 init_level = Interrupt_|O;

147 }

148 }

Initialization to levelPolled_ 10O basically sets the baud rate and data format for
both DUART channels to 9600 Baud, 8 data bits, two stop bits, and enables the
receivers and transmitters of both serial channels. Thus after reaching this
initialization level, the DUART can be operated in a polled mode.

Initialization to level Interrupt_ IO programs the DUART timer to generate

interrupts every 10ms. This is the rate at which task scheduling is performed.
Then interrupts from all internal interrupt sources of the DUART that are used are
enabled: the timer interrupt as well as receive and transmit interrupts for all
channels. These interrupts are never turned off afterwards. If a transmit buffer
gets empty, then the corresponding transmit interrupt is disabled by disabling the
transmitter rather than masking its interrupt (otherwise, one would need to
maintain a copy of the interrupt mask register, which would be less elegant).

At this point, the interrupts are enabled in the DUART, but the CPU’s interrupt
mask is still at level 7, so that interrupts have no effect yet.

1 /I Task.cc

78  void main()

79 |

80 if (Task::SchedulerStarted) return -1;
81

82 for (inti=0;i < TASKID_COUNT; i++) Task::TaskIDs[i] = 0;
83 setupApplicationTasks();

84

85 for (Task * t = Task::currTask->next; t |= Task::currTask; t = t->next)
86 t->TaskStatus &= ~Task::STARTED;

87

88 Task::SchedulerStarted = 1;

89 os::init(os::Interrupt_IO); // switch on interrupt system
90 os::set_INT_MASK(os::ALL_INTS);

91

92 Task::Dsched();

93

94 for (;;) os::Stop();

95

96 return O; /* not reached */

97 1}

The initialization to levelnterrupt_IO is done in functionrmain(). This function
first sets up all tasks that are supposed to run after systems start-up, initializes the
hardware to levelnterrupt_IO, and finally lowers the CPU’s interrupt mask so
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that all interrupts are accepted. Thwin() function is actually executed by the
idle task, which deschedules itself and then enters an infinite loop. Since the idle
task has the lowest priority of all tasks, it only executes if all other tasks are
blocked. It thus stops the CPU until the next interrupt occurs.

3.8.2 Interrupt Service Routine

As we already saw, the only interrupt that could occur in our system is an
autolevel 2 interrupt. Of course, the system can be easily extended to support
more peripherals. Thus if an interrupt occurs, the CPU fetches the corresponding
interrupt vector and proceeds at the addredsart_isr, where the interrupt
service routine for the DUART starts. The CPU is in supervisor mode at this
point.

1 | crt0.S

52 .LONG _duart_isr | 26 level 2 autovector

The CPU first turns on a LED. This LED is turned off each time the CPU is
stopped. The brightness of the LED thus shows the actual CPU load, which is
very useful sometimes. The CPU then saves its registers onto the system stack
and reads the interrupt status from the DUART which indicates the source(s) of
the interrupt.

133  _duart_isr: |

134 MOVE.B #LED_YELLOW, wLED_ON | yellow LED on
135 MOVEM.L DO-D7/A0-A8, -(SP) | save all registers
136 MOVEM.L rDUART_ISR, D7 | get interrupt sources
137 SWAP D7 |

138 MOVE.B D7, _duart_isreg |

139 |

If the interrupt is caused by the receiver fBERIAL_O, then the received
character is read from the DUART and put into the receive que SESIAL_O.

This queue has a get semaphore, so that as a consequence, a task blocked on the
receive queue may be unblocked. Reading the received character from the
DUART automatically clears this interrupt.

140 BTST #1, _duart_isreg | RXRDY_A ?

141 BEQ LnoRxA | no

142 MOVEM.L rDUART_RHR_A, DO | get char received
143 MOVE.L DO, -(SP) |

144 PEA 1(SP) | address of char received

145 PEA _ 8Serialln$inbuf_0 | inbuf_0 object

146 JSR _PolledPut__t10Queue_Gsem1ZUcRCUc

147 LEA 12(SP), SP | cleanup stack

148  LnoRxA: [
149 [
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The same applies for an interrupt from the receiveStRIAL_1.

150
151
152
153
154
155
156
157
158
159

BTST #5, _duart_isreg | RxRDY_B ?

BEQ LnoRxB | no

MOVEM.L rDUART_RHR_B, DO | get char received
MOVE.L DO, -(SP) |

PEA 1(SP) | address of char received
PEA _ 8Serialln$inbuf_1 | inbuf_1 object

JSR _PolledPut__t10Queue_Gsem1ZUcRCUc

LEA 12(SP), SP | cleanup stack

LnoRxB: |

If the interrupt is caused by the transmitter fSERIAL_O, then the next
character from the transmit queue BERIAL_O is fetched. The transmit queue
may be empty, however; in this case, the transmitter is disabled to clear the
interrupt. This is also indicated towards theutc _O() function by the
SerialOut::TxEnabled_0 variable (see also Section 3.7.3). If the queue is not
empty, then the next character is written to the DUART which clears this
interrupt.

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

BTST #0, _duart_isreg | TXRDY_A ?

BEQ LnoTxA | no

LEA -2(SP), SP | space for next char
PEA 1(SP) | address of char received
PEA _ 9SerialOut$outbuf_0 | outbuf_O object

JSR PolledGet__t10Queue_Psem1ZUcRUc

LEA 8(SP), SP | cleanup stack

MOVE.W (SP)+, D1 | next output char (valid if DO = 0)
TST.L DO | char valid ?
BEQ Ld1i1l | yes

CLR.L _ 9SerialOut$TxEnabled_0| no, disable Tx
MOVE.B #0x08, WDUART_CR_A | disable transmitter

BRA LnoTxA |
Ld1li11: MOVE.B D1, wDUART_THR_A | write char (clears int)
LnoTxA: |

The same is true for an interrupt from the transmitteStiRIAL_1.

176
177
178
179
180
181
182
183
184
185
186

BTST #4, _duart_isreg | TXRDY_B ?

BEQ LnoTxB | no

LEA -2(SP), SP | space for next char
PEA 1(SP) | address of char received

PEA _ 9SerialOut$outbuf_1 | outbuf_1 object
JSR PolledGet__t10Queue_Psem1ZUcRUc

LEA 8(SP), SP | cleanup stack

MOVE.W (SP)+, D1 | next output char (valid if DO = 0)
TST.L DO | char valid ?
BEQ Ld1i21 | yes

CLR.L _ 9SerialOut$TxEnabled_1| no, disable Tx
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187 MOVE.B #0x08, WDUART_CR_B | disable transmitter
188 BRA LnoTxB |

189  Ld1i21: MOVE.B D1, wDUART_THR_B | write char (clears int)
190 LnoTxB: |

191 |

The last option is a timer interrupt. In this case, the interrupt is cleared by writing
to the DUART's stop/start registers. Next, a pair of variables indicating the system
time since power on in milliseconds is updated. This implements a simple system
clock:

192 BTST #3, _duart_isreg | timer ?

193 BEQ LnoTim | no

194 MOVEM.L rDUART_STOP, D1 | stop timer
195 MOVEM.L rDUART_START, D1 | start timer
196 |

197 | increment system time

198 ADD.L #10, _sysTimelLo | 10 milliseconds
199 BCC.S Lsys_time_ok |

200 ADDQ.L #1, _sysTimeHi |

201  Lsys_time_ok: |

202 |

A common problem is to poll a peripheral (e.g. a switch) in regular intervals or to
wait for certain period of time. Neither blocking a task or busy wait is appropriate
for this purpose. Instead, we implement a functi@ask::Sleep() which will be
explained later on. ThiSleep()function uses a variabléaskSleepCountfor

each task which is decremented with every timer interrupt. If the variable reaches
0, the task return to stateUN by clearing a particular bit in the task’s status
register.

203 MOVE.L __ 4Task$currTask, D1 |

204 MOVE.L D1, AO |

205 L_SLEEP_LP: | decrement sleep counters...
206 SUBQ.L #1, TaskSleepCount(AO) |

207 BNE L_NO_WAKEUP |

208 BCLR #3, TaskStatus(AO) | clear sleep state

209 L_NO_WAKEUP: |

210 MOVE.L TaskNext(AO), AO |

211 CMP.L A0, D1 |

212 BNE L_SLEEP_LP |

213 ST  _consider_ts | request task switch anyway
214  LnoTim: |

215 |

Now all interrupt sources causing the present interrupt are cleared. During this
process, new interrupts may have occurred. In that case, the interrupt service
routine will be entered again when returning from exception processing. The

interrupt processing is finished by restoring the interrupts saved at the beginning.
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The variable_consider_tsmay or may not have been set during the interrupt
service routine. The final step is to proceed at latelrn_from_exception.

216 MOVEM.L (SP)+, DO-D7/A0-A6 | restore all registers
217 BRA _return_from_exception |

The processing at labeleturn_from_exception has already been described in
Section 3.3, i.e. it will be checked whether a task switch is required. Note that for
the code starting atreturn_from_exception it makes no difference whether a
task switch was caused by an interrupt or not.



3. Kernel Implementation 77

3.9 Memory Management

As we will see in Section 6.4, a libratipgcc2 has to be provided in order to link
the kernel. This library contains in particular the code for the global C++
operatorsnew and delete The code inlibgcc2 basically calls two functions,
malloc() (for operatomew) andfree() (for operatodelets).

One way to provide these functions is to compile the GNU malloc package and to
link it to the kernel. But this method consumes considerable memory space. It
should also be noted that the malloc package contains uninitialized variables and
would thus result in a non-empty BSS section. Since we do not use the BSS
section, the source code of the malloc package needs to be modified by
initializing all uninitialized variables to O.

As you may have noticed, we never used tieav operator in the kernel code,
except for creating new tasks and their associated stacks. The main reason for not
using this operator is that in an embedded system, there is most likely no way to
deal with the situation whenmew (i.e. malloc()) fails due to lack of memory. The
malloc package allocates memory in pages (e.g. 4kByte; the page size can be
adjusted) and groups memory requests of similar size (i.e. rounded up to the next
power of 2) in the same page. Thus if there are requests for different sizes, a
significant number of pages could be allocated. For conventional computers with
several megabytes of memory this is a good strategy, since the waste of memory
in partly used pages is comparatively small. For embedded systems, however, the
total amount of memory is typically much smaller, so that the stanaiattbc() is

not the right choice.

We actually used the standardalloc() in the early kernel versions, but replaced it
later on by the following.

1 /* os.cc */

17  extern int edata;
18  char * os::free_RAM = (char *)&edata;

The labeledatais computed by the linker and indicates the end of the .DATA
section; i.e. past the last initialized variable. The char poifieex_RAM is thus
initialized and points to the first unused RAM location.

21  extern "C" void * sbrk(unsigned long size)
22 |

23  void * ret = os::free_RAM;

24

25 os::free_RAM += size;

26

27 if (os::free_RAM > (char *)RAMend) // out of memory
28 {
29 os::free_RAM -= size;

30 ret = (void *) -1;
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31 }

32

33 return ret;
34 }

The functionsbrk(unsigned long size)ncreases théree_ RAM pointer bysize
and returns its previous value. That is, a memory block of sizeis allocated
and returned bgbrk().

36  extern "C" void * malloc(unsigned long size)

37

{
38  void * ret = sbrk((size+3) & OXFFFFFFFC);
39

40 if (ret == (void *)-1) return O;
41 return ret;
42 }

Our malloc() implementation rounds the memory request size up to a multiple of
four bytes so that the memory is aligned to a long word boundary.
45  extern "C" void free(void *)

46
47 )

Finally, ourfree() functiondoes nofree the memory returned. As a consequence,
deletemust not be used. As long as tasks are not created dynamicallyeawid

not used elsewhere, this scheme is most efficient and adequate. Otherwise, one
should use the standard malloc package or write an own version meeting specific
requirements. A better solution than the globalw operator is to overload the

new operator for specific classes. For example, memory for certain classes could
be allocated statically and the class specific new operator (which defaults to the
global new operator) could be overloaded. This gives more control over the
memory allocation.

Finally, it should be noted that embedded systems with hardware memory
management need a memory management scheme that is written specifically for
the memory management unit used.
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3.10 Miscellaneous Functions

So far, we have discussed most of the code comprising the kernel. What is
missing is the code for starting up tasks (which is described in Section 4.3) and
some functions that are conceptually of minor importance but nevertheless of
certain practical use. They are described in less detail in the following sections.

3.10.1Miscellaneous Functions in Task.cc

TheMonitor class uses member functions that are not used other@iseent()
returns a pointer to the current tagksched()explicitly deschedules the current
task. MyName() returns a string for the current task that is provided as an
argument when a task is starteMame() returns that string for any task.
MyPriority() returns the priority of the current taslriority() returns the
priority for any task.userStackBase(yeturns the base address of the user stack;
userStackSize(yeturns the size of the user sta@dnduserStackUsed(yeturns

the size of the user stack that has already been used by a task. When a task is
created, its user stack is initialized to contain characters udérStackUsed()
scans the user stack from the bottom until it finds a character which differs from
'U’ and so computes the size of the used part of the st8tktus() returns the
task status bitmap.

Next() returns the next task in the ring of all existing tasks. If we need to perform
a certain function for all tasks, we could do it as follows:

for (const Task * t = Task::Current();;)

{

t = t->Next();
if (t == Task::Current()) break;
}

Sleep(unsigned int ticks)puts the current task into sleep mode fiaks timer
interrupts. That is, the task does not execute for a timac&s*10ms without
wasting CPU time.

When a task is created, its state is SeBMARTED; i.e. the task is not in state
RUN. This allows for setting up tasks before multitasking is actually enabled.
Start() resets the task stateR&N.

Terminate() sets a task’s state tdERMINATED . This way, the task is
prevented from execution without the task being deleted.

GetMessage(Message & destjopies the next message sent to the current task
into destand removes it from the task’s message queisgQ).
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3.10.2Miscellaneous Functions in 0s.cc

getSystemTime()returns the time in millisecond since system start-up (more
precisely since multitasking was enabled) asloag long. initChannel()
initializes the data format (data bits, stop bits) of a DUART channel,
setBaudRate()sets??? What ??2Panic() disables all interrupts, turns on the
red LED and then continuously dumps an exception stack franm&EsRIAL_O.

This function is used whenever an exception for which no handler exists is taken
(label_fatal). That s, if a fatal system error occurs, the red LED is turned on, and
we can connect a terminal ®ERIAL_0. The exception stack frame can then be
analyzed, together with the map file created by the linker, to locate the fault in the
source code.readDuartRegister() is called to read a DUART register.
writeRegister() is used to write into a hardware (i.e. DUART) register.
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4.1 Introduction

In this chapter, the start-up of the kernel is described. It contains two phases: the
initialization of the system after RESET, and the initialization of the tasks defined
in the application.

4.2  System Start-up

The compilation of the various source files and the linking of the resulting object
files results in two files containing the .TEXT and ..DATA sections of the final
system (see also Section 2.1.1). The linker has generated addresses referring to
the .DATA section, which normally starts at the bottom of the system’s RAM.
After RESET, however, this RAM is not initialized. Thus the .DATA section must

be contained in the system’s ROM and copied to the RAM during system start-up,
??7? as shown in Figure 4.1 ??7?

.DATA —| .DATA

RAM

—® DATA

TEXT P TEXT P TEXT

ROM ROM

FIGURE 4.1 ??7? .DATA and .TEXT during System Start-Up ???
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The .TEXT section, in contrast, does not need any special handling. Figure 4.1
shows the output of the linker on the left. The ROM image for the system is
created by appending the .DATA section after the .TEXT section. The address of
the .DATA section in ROM can be computed from the end of the .TEXT section;
this address is provided by the linker (symbatex?). Depending on the target
system for which the linker has been installedtextmay need to be rounded up
(e.g. to the next 2Kbyte boundary) to determine the exact address of the .DATA
section in RAM. Although it is not strictly necessary, it is generally a good idea to
initialize the unused part of the RAM to 0. This allows to reproduce faults created
by uninitialized variables.

After RESET, the CPU loads its supervisor stack pointer with the vector at
address 0 and its program counter with the next vector. In our implementation, the
vector for the supervisor stack pointer is somewhat abused, as it contains a branch
to the start of the system initialization. This allows for issuing a JMP 0 (in
supervisor mode) to restart the system, although this feature is not used yet. These
two vectors are followed by the other exception vectors. Most of them are set to
label fatal, which is the handler for all fatal system errors.

1 | ert0.S

37 _null: BRA _reset | 0 initial SSP (end of RAM)
38 .LONG _reset | 1 initial PC

39 .LONG _fatal, _fatal | 2,3 bus error, adress error
40 .LONG _fatal, _fatal | 4, 5 illegal instruction, divide/O
41 .LONG _fatal, fatal | 6,7 CHK, TRAPV instructions
42 .LONG _fatal, _fatal | 8,9 privilege violation, trace
43 .LONG _fatal, _fatal | 10,11 Line A,F Emulators
44 |

45 .LONG _fatal,_fatal,_fatal |12... (reserved)

46 .LONG _fatal,_fatal,_fatal |15... (reserved)

47 .LONG _fatal,_fatal,_fatal |18... (reserved)

48 .LONG _fatal,_fatal,_fatal |21... (reserved)

49 |

50 .LONG _fatal | 24 spurious interrupt

51 .LONG _fatal | 25 level 1 autovector

52 .LONG _duart_isr |26 level 2 autovector

53 .LONG _fatal | 27  level 3 autovector

54 .LONG _fatal, _fatal | 28,29 level 4,5 autovector
55 .LONG _fatal, _fatal | 30,31 level 6,7 autovector

56 |

57 .LONG _stop |32 TRAP #0 vector

58 .LONG _deschedule | 33  TRAP #1 vector

59 .LONG _fatal | 34 TRAP #2 vector

60 .LONG _Semaphore_P |35 TRAP #3 vector
61 .LONG _Semaphore_V |36  TRAP #4 vector
62 .LONG _Semaphore_Poll | 37  TRAP #5 vector
63 .LONG _fatal, _fatal | 38,39 TRAP #6, #7 vector
64 .LONG _fatal, _fatal | 40,41 TRAP #8, #9 vector
65 .LONG _fatal, fatal | 42,43 TRAP #10,#11 vector
66 .LONG _fatal | 44  TRAP #12 vector

67 .LONG _set_interrupt_mask |45 TRAP #13 vector
68 .LONG _readByteRegister HL |46 TRAP #14 vector

69 .LONG _writeByteRegister |47 TRAP #15 vector
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Thus after RESET, processing continues at labelset The supervisor stack
pointer is initialized to point to the top of the RAM. This is necessary because the
vector for this purpose was abused for the branchréset Next the vector base
register (VBR) is set to the beginning of the vector table. This applies only for
MC68020 chips and above and allows for relocation of the vector table. Actually,
the branch to resetis intended for jumping to the content of the VBR so that the
system can be restarted with a relocated .TEXT section, provided that the VBR
points to the proper vector table. For processors such as the MC68000 that do not
provide a VBR, this instruction must be removed. After setting the VBR, the
LEDs are turned off.

81  _reset: |

82 MOVE.L #RAMend, SP | since we abuse vector 0 for BRA.W
83 LEA _null, AO |

84 MOVEC A0, VBR | MC68020++ only

85 | enable cache

86 MOVE.B #0, wDUART_OPCR | all outputs via BSET/BCLR

87 MOVE.B #LED_ALL, wLED_OFF | all LEDs off

Then the RAM is initialized to 0. The end of the .TEXT section is rounded up to
the next 2Kbyte boundary (assuming the linker was configured to round up the
.TEXT section to a 2Kbyte boundary), which yields the start of the .DATA section
in ROM. The size of the .DATA section is computed, and the .DATA section is
then copied from ROM to the RAM.

89 MOVE.L #RAMbase, Al | clear RAM...

90 MOVE.L #RAMend, A2 |

91 L_CLR: CLR.L (Al)+ |

92 CMP.L A1, A2 |

93 BHI L _CLR |

94 | relocate data section...

95 MOVE.L #_etext, DO | end of text section

96 ADD.L #0x00001FFF, DO | align to next 2K boundary

97 AND.L #0xFFFFEOQO, DO |

98 MOVE.L DO, A0 | source (.data section in ROM)

99 MOVE.L #_sdata, Al | destination (.data section in RAM)
100 MOVE.L # edata, A2 | end of .data section in RAM

101 L_COPY: MOVE.L (AQ)+, (Al)+ | copy data section from ROM to RAM
102 CMP.L A1, A2 |

103 BHI L_COPY |

At this point, the .TEXT and .DATA sections are located at those addresses to
which they had been linked. The supervisor stack pointer is set to the final
supervisor stack, and the user stack pointer is set to the top of the idle task’s user
stack (the code executed here will end up as the idle task).

105 MOVE.L # SS_top, A7 | set up supervisor stack
106 MOVE.L #_IUS_top, AO |
107 MOVE A0, USP | set up user stack

Finally (with respect tocrt0.S), the CPU enters user mode and calls function
_main(). It is not intended to return from this call; if this would happen, then it
would be a fatal system error.
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108 |

109 MOVE #0x0700, SR | user mode, no ints
110 JSR _main |

111 |

112 _fatal: |

If for any reason label fatal is reached, then all interrupts are disabled, the red
LED is turned on, and th8ERIAL_1 transmitter is enabled to allow for polled
serial output. Then the present supervisor stack pointer, which points to the
exception stack frame created for the fatal system error, is saved and the
supervisor stack pointer is set to the end of the RAM. ThenPanic()is called
forever with the saved exception stack frame as its argunesaPanic() prints

the stack frame in a readable format on 8&eRIAL_1 channel, so that the cause

of the fault can easily be determined2P? what is it ??i3 called forever, so

that a terminal can be connected3BRIAL 1 even after a fatal system error and
the stack frame is not lost, but repeated forever.

112 fatal:

113 MOVE.W #0x2700, SR |

114 MOVE.B #LED_RED, wLED_ON | red LED on
115 MOVE.B #0x04, wDUART_CR_B | enable transmitter
116 MOVE.L SP, AO | old stack pointer

117 MOVE.L #RAMend, SP |

118  _forever: |

119 MOVE.L A0, -(SP) | save old stack pointer
120 MOVE.L A0, -(SP) | push argument

121 JSR _Panic__20sPs | print stack frame

122 LEA 2(SP), SP | remove argument

123 MOVE.L (SP)+, A0 | restore old stack pointer
124 BRA _forever |

125 |
126  _on_exit: |
127 RTS |

In general, a function name in assembler refers to a C function, whose name is the
same except for the leading underscore. This would mean that “J&&n’
would call main(), which is defined inTask.cc For the GNU C++ compiler/
linker, themain() function is handled in a special way. In this case, a function
__main() is automatically created and called just befarain(). This__main()
function basically calls the constructors for all statically defined objects so that
these are initialized properly. The way this is done may change in future, so
special attention should be paid to the compiler/linker release used. Thain
function also call®n_exit() (i.e. label_on_exitabove), which just returns. So the
call of main() in crt0.S basically initializes the static objects and proceeds in the
realmain().

Now the CPU is in user mode, but interrupts are still disabled. First, the variable
SchedulerStartedis checked to ensummain() is not called by mistake; in our
caseSchedulerStartedis O.

1// Task.cc
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78 void main()
79 |
80 if (Task::SchedulerStarted) return -1;

Then a vector containing all tasks known at system start-up is initialized to 0 and
setupApplicationTasks() is called. In setupApplicationTasks() all tasks
required by the application are created (see also Section 4.3). All tasks created
have their status set to STARTED. That is, the task ring is completely set up, but
no task is in state RUN. Next, the status for each task is set from STARTED to
RUN.

82 for (inti=0; i< TASKID_COUNT; i++) Task::TasklIDs[i] = 0;
83 setupApplicationTasks();

84
85 for (Task * t = Task::currTask->next; t |= Task::currTask; t = t->next)
86 t->TaskStatus &= ~Task::STARTED;

Here all tasks are in state RUN, but interrupts are still disabled. In the next step,
variable SchedulerStartedis set to prevent subsequent callsm@ain() (which
would have disastrous effects). Then the hardware is initialized to level
Interrupt_IO , and finally interrupts are enabled. The idle task then de-schedules
itself, which causes the task with the highest priority to execute. The idle task
itself goes into an infinite loop. Whenever the idle task is swapped in (i.e. no other
task is in state RUN), it callss::Stop()

88 Task::SchedulerStarted = 1;

89 os::init(os::Interrupt_IO); // switch on interrupt system
90 os::set_INT_MASK(os::ALL_INTS);

91

92 Task::Dsched();

93

94 for (;;) os::Stop();

95

96 return O; /* not reached */

97 1}

Functionos::Stop() merely executes TRAP #0.

1 /* os.cc */

67  void os::Stop()

68 {
69 asm("TRAP #0");
70 }

The CPU thus enters supervisor mode, fetches the corresponding vector and
proceeds at labelstop

1 | ert0.S

57 .LONG _stop | 32 TRAP #0 vector

At label _stop, the yellow LED (which is turned on at every interrupt) is turned
off. The CPU then stops execution with all interrupts enabled until an interrupt
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occurs. That is, the yellow LED is turned on whenever the CPU is not in stopped
mode, thus indicating the CPU load. After an interrupt occurred, the CPU
proceeds at labelreturn_from_exception, where it checks if a task switch is
required. Note that the interrupt itself cannot cause a task switch directly, since
the interrupt occurs while the CPU is in supervisor mode.

223  _stop: |

224 MOVE.B #LED_YELLOW, wLED_OFF | yellow LED off
225 STOP  #0x2000 |

226 BRA _return_from_exception | check for task switch

227 |

After having left supervisor mode, the idle task is again in its endless loop and
stops the CPU again, provided that no other task with higher priority is in state
RUN.



4. Bootstrap 87

4.3 Task Start-up

As already mentioned in Section 4.2, a task is started in two steps. First, a task
control block (i.e. an instance of cla$ask) is created and inserted into the task
ring. At this point, the task status is set$3dARTED (i.e. notRUN) so that the

task exists, but may not yet execute. In the second step, the task status is set to
RUN. The main reason for this two-step approach is that tasks often set up in
groups that cooperate by sending messages to each other. Suppose, for instance,
that a taskTO sets up two other taskEl andT2. Suppose further that both tasks
T1landT2 send messages to each other directly after being created. It then might
happen that task'1, provided its priority is higher than the priority oFO,
executes before task? is created by task0. Sending a message fron® to T1

would then fail. In our two-step approach, howeVvE2,would exist already, but
would not yet execute. Thus the message frointo T2 would be delivered
correctly.

4.3.1 Task Parameters

The creation of a task is controlled by a number of parameters. A task is created
by creating an instance of classk:

/I Task.hh

25 class Task

26 |

49 Task( void (* main)(),

50 unsigned long userStackSize,
51 unsigned short queuesSize,

52 unsigned short priority,

53 const char * taskName

54 );

139 %

The parameters are the function to be executed by the task, the size of the stack
for the task, the size of the task’s message queue, the priority at which the task

shall run, and a character string specifying the name of the task. The task name is
useful for debug messages generated by the task and can be retrieved by the
function Task::MyName() which returns this string:

SerialOut::Print(SERIAL_O, “\nTask %s started”, Task::MyName());

So far, tasks have only been referred toTagk pointers, since the name is only
used for printing purposes. But sometimes it is convenient to refer to tasks by an
integer task ID rather than by task pointers. Assume we want to send a message to
all tasks. One way of doing this is the following:

for (const Task * t = Current(); ; t = t->Next())
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{

Message msg(“Hello”);

t->SendMessage(msg);

if (t->Next() == Current() break;
}

Unfortunately, this approach has some drawbacks. First, the order in which this
loop is performed is different when executed by different tasks. Second, it is
assumed that all tasks are present in the task chain. Although this is the case in
our implementation, one may consider to remove tasks that are not irRifate
temporarily from the task chain in order to speed up task switching. In this case,
only tasks in stat®RUN would receive the message which is probably not what
was desired. A better approach is to maintain a table of task pointers, which is
indexed by an integer task ID. The task IDs could be defined as follows:

/I Taskld.hh

1

2

3  enum { TASKID_IDLE =0,

4 TASKID_MONITOR,

5 TASKID_COUNT /l number of Task IDs
6 .

3

More task IDs can be added before thHRASK ID COUNT, so that
TASK_ID_COUNT always reflects the proper number of tasks handled this way.
Task IDs and task pointers are mapped by a table:

1 /l Task.cc

13 Task * Task::TaskIDS[TASKID_COUNT];

As a matter of convenience, the task pointers can now be defined as macros:
1 /I Taskid.hh

8 #define IdleTask (Task::TaskIDsS[TASKID_IDLEY])
9 #define MonitorTask (Task::TaskIDS[TASKID_MONITOR])

This is nearly equivalent to defining é/pnitorTask directly as a task pointer:

Task * MonitorTask

The difference between using a table and direct declaratiorask pointers is
basically that for a table, all pointers are collected while for the direct declaration,
they are spread over different object files. For a reasonably smart compiler, the
macros can be resolved at compile time so that no overhead in execution time or
memory space is caused by the table. Instead, the code of our example is even
simplified:

for (intt_ID = 0; t_ID < TASKID_COUNT; t_ID++)

{

Message msg(“Hello”);
TaskIDs[t_ID]->SendMessage(msgQ);

}
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TheTaskIDs table is initialized to zero in the idle task'®in() function.

4.3.2 Task Creation

As a matter of style, for each task a function that starts up the task should be
provided. This way, the actual parameters for the task are hidden at the
application start-up level, thus supporting modularity. The function
setupApplicationTasks() which is called by the idle task in itmain() function,

sets the serial channels to their desired val$#sRIAL_1 in this case) and then
calls the start-up function(s) for the desired tasks. In this example, there is only
one application task; its start-up function is defined in cldemitor (see also
Chapter 5).

1 // ApplicationStart.cc

22 void setupApplicationTasks()
23 {

24 Monitorin = SERIAL_1;

25 MonitorOut = SERIAL_1;

26 ErrorOut = SERIAL_1;

27 GeneralOut = SERIAL_1;

28

29 Monitor::setupMonitorTask();
30 }

The functionsetupMonitorTask() creates a new instance of classk with task
function monitor_main, a user mode stack of 2048 bytes, a message queue of
16 messages, a priority of 240, and the name of the task set to “Monitor Task”.

1 /I Monitor.cc

13  void Monitor::setupMonitorTask()

14 {

15 MonitorTask = new Task (

16 monitor_main, // function

17 2048, I/l user stack size

18 16, /l message queue size
19 240, /I priority

20 "Monitor Task");

21 }

The priority (240) should be higher than that of other tasks (which do not exist in
the above example) so that the monitor executes even if another task does not
block. This allows for identifying such task&?? What tasks ??@reating a

new instance of clas$ask (i.e new Task(...) returns aTask pointer which is
stored in theTaskIDs table, remembering thatlonitorTask was actually a
macro defined aslaskIDS[TASKID MONITOR] . With the Task::Task(...)
constructor, a new task which starts the execution of a funetionitor_main()

is created. The functiomonitor_main() itself is not of particular interest here. It
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should be noted, however, thaonitor_main() may return (although most task
functions will not) and that this requires special attention. For task creation, we
assume that a hypothetical functionagic() exists. This function does not
actually exist as code, but only for the purpose of explaining the task creation.
Functionmagic() is defined as follows:

void magic()

Task::Terminate_0( monitor_main() );
/* not reached */

}

Note thatTerminate_0() is actually defined to have no arguments, but since
magic() is only hypothetically, this does no harm.

1 /I Task.cc

99  void Task: Terminate_0()
100

101 Terminate(0);

102}

104  void Task:Terminate(int ex)

105

106 {

107 SerialOut so(ErrorOut);

108 so.Print("\n%s Terminated", currTask->name);
109 }

110 currTask->ExitCode = ex;

111 currTask->TaskStatus |= TERMINATED;

112 Dsched();

113}

magic() calls the task’s main function, which is provided when the task is created
(in this casemonitor_main()), as well asTerminate_0() in case the main
function returns. Normally tasks do not return from their main functions; but if
they do, then this return is handled by fferminate_0() function, which merely

calls Terminate(0). The functionsTerminate_0() and Terminate(int ex) may

also be called explicitly by a task in order to terminate a task; e.g. in the case of
errors. If these functions are called explicitly, then a message is printed, an exit
code is stored in the TCB, and the task’s state is S&iEERMINATED . This
causes the task to refrain from execution forever. The TCB, however, is not
deleted, and the exit code TCB may be analyzed later on in order to determine
why the task died. Setting the task status T&ERMINATED does not
immediately affect the execution of the task; hence it is followed Bsahed()

call which causes the task to be swapped out.

Now task creation mainly means setting up the TCB and the user stack of the task.
The user stack is created as if the task had been put in SBAKRTED after
calling Terminate_0() in magic, but before the first instruction of the task’s main
function. First, several variables in the TCB are set up according to the parameters
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supplied to the constructor. At this point, the TCB is not yet linked into the task
chain.

1 /I Task.cc

33  Task:Task(void (*main)(),

34 unsigned long usz,
35 unsigned short gsz,
36 unsigned short prio,
37 const char * taskName
38 )

39 : US_size(usz),

40 priority(prio),

41 name(taskName),

42 TaskStatus(STARTED),
43 nextWaiting(0),

44 msgQ(gsz),

45 ExitCode(0)

Then the user stack of the task is allocated and initialized to the character
userStackMagic('U’). This initialization allows to determine the stack size used
by the task later on.

46 {

47  inti;

48

49 Stack = new char[US_size]; // allocate stack
50

51 for (i=0; 1< US_size;) Stack[i++] = userStackMagic;

The task’s program counter is set to the first instruction of its main function. If the
task is swapped in later on, the execution proceeds right at the beginning of the
task’'s main function. Also all other registers of the CPU in the TCB are
initialized. This is not necessary, but improves reproducibility of faults, e.g. due
to dangling pointers.

53 Task_AO = OxAAAA5555; Task_Al = 0xAAAA4444;
54 Task_A2 = 0xAAAA3333; Task_A3 = 0xAAAA2222;
55 Task_A4 = 0xAAAA1111; Task_A5 = OXAAAA0000;
56 Task_A6 = OXAAAA6666;

57 Task_DO = 0xDDDD7777; Task_D1 = OxDDDD6666;
58 Task_D2 = 0xDDDD5555; Task_D3 = 0xDDDD4444;
59 Task_D4 = 0xDDDD3333; Task_D5 = 0xDDDD2222;
60 Task_D6 =0xDDDD1111; Task_D7 = OxDDDDO00OQO;
61 Task_PC =main;

62 Task_CCR = 0x0000;

The user stack pointer of the task is set to the top of the user stack. Then the
address offerminate_0() is pushed on the user stackask::Terminate_0() is
called in case the task’s main function returns.

64 Task_USP = (unsigned long *)(Stack + US_size);
65 *--Task_USP = (unsigned long)Terminate_O0;
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If currTask is not set yet (i.e. if this is the first task that is created), then a TCB
for the idle task is created, amairrTask is set to that TCB. For this purpose, a
Task constructor without arguments is used. In view of this code, it seems more
reasonable to create the idle task from the outset rather than when the first
application task is created.

67 if (lcurrTask)
68 currTask = new Task();

Finally, the TCB is linked into the task chain directly aftanrrTask (which may
be the idle task, as in our example, or another task). This operation must not be
interrupted, so interrupts are masked here.

70 {

71 0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
72 next = currTask->next;

73 currTask->next = this;

74 os::set_INT_MASK(old_INT_MASK);

75 }

76 }

The TCB of the newly created task is in a state as if it were put in state STARTED
just before executing the first instruction of its main function.

4.3.3 Task Activation

After creating a number of tasks, these tasks need to be activated. This is done by
changing the tasks’ state fr)cBTARTED to RUN.

1// Task.cc

78  void main()

79 |
85 for (Task * t = Task::currTask->next; t |= Task::currTask; t = t->next)
86 t->TaskStatus &= ~Task::STARTED;

If an application task (rather than the idle task) creates new tasks, it should
activate the tasks after creating them in a similar way.

4.3.4 Task Deletion

If a task terminates, its TCB still exists. Deleting TCBs largely depends on the
actual application and requires great care. Since TCBs have been allocated with
the new operator, they need to be deleted with thedete operator. Also, if the
TasklIDs table is used for a task (which is probably not the case for dynamically
created tasks), théask pointer needs to be removed from the table as well. In
addition, it must be assured that no other task maintains a pointer to the deleted
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task. Finally, use of thelelete operator requires use of thealloc package, in
contrast to the simple allocation mechanism we used by default.

An alternative to deleting tasks (which is likely to be a risk due to memory
management as discussed in Section 3.9) is to provide a pool of static tasks which
put themselves in a queue when they are idletask requiring a dynamic
task would get such a task out of the queue and send a message
containing a function to be performed to it. ??? H& PR leads to
structures similar to those discussed for the serial router in Section 3.7. In
principle, static TCB can be used instead of tiew operator for TCBs. The
reason why we usedew rather than static TCBs has historical reasons. The first
application for which our kernel was used had a DIP switch that selected one of
several applications. The kernel was the same for all applications, and the actual
application was selected setupApplicationTasks() by starting different tasks
depending on the DIP switch setting. Static TCB allocation would have wasted
RAM for those tasks not used for a particular DIP switch setting, while allocation
by new used only those TCBs actually required, thus saving a significant amount
of RAM.
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5 An Application

5.1 Introduction

In this chapter, we present a simple application: a monitor program that receives
commands from a serial port, executes them, and prints the result on the same
serial port. The commands are mainly concerned with retrieving information
about the running system, such as the status of tasks, or the memory used. This
monitor has shown to be quite useful in practice, so it is recommended to include
it in any application. In order to use the monitor, a terminal or a computer running

a terminal emulation, for example the kermit program, is connected to the serial
port used by the monitor.

5.2 Using the Monitor

The monitor supports a collection of commands that are grouped in menus: the
main menu, the info menu, the duart menu, the memory menu, and the task menu.
Other menus can easily be added if required. The only purpose of the main menu
is to enter one of the other menus.
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FIGURE 5.1 Monitor Menu Structure

In each menu, the monitor prints a prompt, suchiMaith >” when the monitor is

ready to accept a command. A command consists of a single character and, for
some commands, of an additional argument. Some commands may be activated
by different characters (e.g. H or ? for help), and commands are not case-

sensitive. It is not possible to edit commands or arguments.

The two commands shown in Table 1 are valid for all menus:
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Command | Action

Hh? Print Help on commands available in menu.
QqESC Return from this menu (ignored in main menu).
TABLE 1. Commands available in all menus

The remaining commands shown in Table 2 are only valid in their specific menus.

Menu Command | Action Argument

Main li Enter Info Menu -

Main Dd Enter Duart Menu -

Main M m Enter Memory Menu -

Main Tt Enter Task Menu -

Info Os Display Overflows -

Info Ss Display Top of Memory -

Info Tt Display System Time -

Duart Bb Set Baud Rate Baud Rate
Duart Cc Change Channel -

Duart Mm Set Serial Mode Data bits and Parity
Duart Tt Transmit Character Character (hex)
Memory | D Display Memory Address (hex)
Memory | \n Continue Display Memory -

Task Ss Display all Tasks -

Task Tt Display particular Task Task number
Task Pp Set Task Priority Priority (decimal)

TABLE 2. Specific commands
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5.3 A Monitor Session

The commands of the monitor are best understood by looking at a commented
monitor session. Commands and arguments entered are shown in bold font. When
the monitor is started, it prints a start-up message:

Monitor started on channel 1.
Type H or ? for help.

Main Menu [D I M T H]

Main >

H (or ?) shows the options available in the (main) menu:

Main> h

D - Duart Menu

| - Info Menu

M - Memory Menu
T - Task Menu

D enters the duart menu amdshows the options available:

Main > d

Duart Menu[BC M T H Q]
Duart A> ?

B - Set Baud Rate

C - Change Channel

M - Change Mode

T - Transmit Character

B sets the baud rate of the duart channel A (SERIALMYets the data format.
The monitor itself is running on SERIAL_1 so that this setting does not disturb
the monitor session.

Duart A> b

Baud Rate ? 9600
Duart_A >

Duart A> m

Data Bits (5-8) ? 8
Party(NOEMS)?n
Databits = 8 / Parity = n set.

c toggles the duart channel, which changes the prompt of the duart menu.
Duart A> ¢
Duart_B >

T transmits a character. The character is entered in hex (0x44 is ASCII 'D’).

Duart B> t 44
Sending 0x44D
Duart_B >
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The last character ) in the line above is the character transmittedexits the
duart menu and enters the info menu.

Duart B> (¢
Main > i
Info > ?

O - Overflows

S - System Memory

T - System Time

Info Menu [O ST H Q]

odisplays the overflows of the serial input queues.

Info > 0
ChoOin :0
Ch1lin :0

S displays the top of the system RAM used. Since the RAM is starting at address
0x20000, the total amount of RAM required is slightly more than 4 kBytes:

Info> s
Top of System Memory: 20001050

T shows the time since system start-up in milliseconds (i.e. 23 secondg) and
leaves the info menu.

Inffo> t
System Time: 0:23140
Info> g

Menters the memory menu amdshows the available options.

Main> m

Memory Menu [D H Q]
Memory > h

D - Dump Memory

D dumps the memory from the address specified. The memory dump may be
continued after the last address by typing return (not shown). Here, the address is
0; thus dumping the vector table at the beginningmd.S. Qleaves the memory
menu.

Memory > d Dump Mamory at address 0x 0
00000000: 6000 OOFE 0000 0100 0000 0172 0000 0172 “.......... r...
00000010: 0000 0172 0000 0172 0000 0172 0000 0172 ...r...r...r..
00000020: 0000 0172 0000 0172 0000 0172 0000 0172 ...r...r...r..
00000030: 0000 0172 0000 0172 0000 0172 0000 0172 ...r...r...r..
00000040: 0000 0172 0000 0172 0000 0172 0000 0172 ...r...r...r..

r

r

r

= = = = = =

00000050: 0000 0172 0000 0172 0000 0172 0000 0172 ...r..r..r..
00000060: 0000 0172 0000 0172 0000 01A4 0000 0172 ...
00000070: 0000 0172 0000 0172 0000 0172 0000 0172 ...r..r..r..
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00000080: 0000 02F6 0000 0306 0000 0172 0000 O3AC ........... r....
00000090: 0000 O3FE 0000 0444 0000 0172 0000 0172 ....... D...r..r
000000AOQ: 0000 0172 0000 0172 0000 0172 0000 0172 ..r..r..r..r
000000B0: 0000 0172 0000 0458 0000 046A 0000 0474 ..r..X..j..t
000000CO: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................
000000D0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................
00O000EO: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................
000000F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................
Memory > (

T enters the task menu amdhows the available options.

Main > t

Task Menu [P S TH Q]
Task> h

P - Set Task Priority

S - Show Tasks

T - Show Task

S displays a list of all tasks. The current task is marked with an arrow:

Task > s Show Tasks:

TCB  Status Pri TaskName ID US Usage

--> 20000664 RUN 240 Monitor Task 1 0000014C
20000FB4 RUN O Idle Task 0 O0OO000AO

T shows details of a particular task. The task number entered is the position of the
task in the display of the previous command, starting at O, rather than the task ID.
Thus entering 1 displays the idle task rather than the monitor task.

Task > t Show Task:

Task number = 1

Task Name: Idle Task
Priority: 0O

TCB Address: 20000FB4
Status: RUN

US Base: 2000020C

US Size: 00000200

US Usage: 000000AO0 (31%)
Task >

Apparently the user stack of 512 bytes for the idle task could be reduced to 160
bytes. Finallyp sets the monitor task priority agdeturns to the main menu:

Task > p Set Task Priority:
Task number= 0
Task priority = 200
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Set Monitor Task Priority to 200
Task >

Task> q

Main >

In some cases, an additional prompt is printed after having entered numbers. The
function accepting numbers waits until a non-digit, such as carriage return, is
entered. If this carriage return is not caught, then it is interpreted as a command.
Except for the memory menu, carriage return is not a valid command; it is ignored
and a new prompt is displayed.



102 5.4 Monitor Implementation

5.4  Monitor Implementation

The different monitor commands and menus are contained in aMlasisor , see
Section A.19 for details. The monitor is included in the system by creating a task
for the monitor insetupApplicationStart() and setting the channeldonitorin
andMonitorOut to the desired serial channel, in our cBERIAL 1.

1 /I ApplicationStart.cc

22  void setupApplicationTasks()
23

24 Monitorin = SERIAL_1;

25 MonitorOut = SERIAL_1;

26 ErrorOut = SERIAL 1;

27 GeneralOut = SERIAL_1;

28

29 Monitor::setupMonitorTask();
30 }

With Monitor::setupMonitorTask() , the monitor task is created:

1 /I Monitor.cc

13  void Monitor::setupMonitorTask()

14 {

15 MonitorTask = new Task (

16 monitor_main, // function

17 2048, I/l user stack size

18 16, /l message queue size
19 240, /I priority

20 "Monitor Task");

21 }

FunctionsetupMonitorTask() creates a task with main functienonitor_main,

a user stack of 2048 bytes, a message queue for 16 messages (which is actually
not used), a task name of “Monitor Task”, and a priority of 240. The monitor
should have a priority higher than that of all other tasks. This allows the monitor
to display all tasks even if some task (of lower priority) is in busy wait (e.g by
mistake) of some kind and to identify such tasks.

Functionmonitor_main(), which is the code executed by the monitor task, prints
a message that the task has started and creates an instance bfaiées using
Monitorin andMonitorOut as channels for the serial port and enters the main
menu of the monitor.

1 /I Monitor.cc

23  void Monitor::monitor_main()

24 {
25 SerialOut::Print(GeneralOut,
26 "\nMonitor started on channel %d.",

27 MonitorOut);
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28

29 Monitor Mon(Monitorin, MonitorOut);
30 Mon.MonitorMainMenu();

31}

The constructor for clasMonitor creates aSerialln object si for its input
channel. In contrast, the output channel is merely stored, b8enalOut object

is created. As a result, the input channel is reserved for the monitor forever, while
the output channel can be used by other tasks as well. This explains why
ErrorOut and GeneralOut could have been set t8ERIAL 1 as well. The
remaining data members of clag®nitor are used to remember the state of sub-
menus even if the monitor returns from the menus.

1 /I Monitor.hh

11 class Monitor

12 {

13 public:

14 Monitor(Channel In, Channel Out)

15 . si(In), channel(Out), currentChannel(0), last_addr(0) {};

48 h

The code for the menus is straightforward and basically the same for all menus.
For instance, the main menu prints a prompt, receives the next character
(command), and calls the function corresponding to the command (if any).

1 /I Monitor.cc

59 /I
60 void Monitor::MonitorMainMenu()

61 {

62 SerialOut::Print(channel, "\nType H or ? for help.");

63 SerialOut::Print(channel, "\nMain Menu [D | M T H]\n");

64

65 for (;;) switch(getCommand("Main"))

66 {

67 case 'h': case 'H': case '"?":

68 {

69 SerialOut so(channel);

70 so.Print("\nD - Duart Menu");

71 s0.Print("\nl - Info Menu");

72 s0.Print("\nM - Memory Menu");

73 so.Print("\nT - Task Menu");

74 }

75 continue;

76

77 case 'd": case 'D": DuartMenu(); continue;
78 case 'i": case 'l': InfoMenu(); continue;
79 case 'm': case 'M'": MemoryMenu(); continue;
80 case 't case 'T": TaskMenu(); continue;
81 }

82 }
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The same??? structure/code ?@pplies for all other menus. However, we
should focus on an interesting situation in the duart menu: here, the user can
toggle the duart channel to which the commands of the duart menu apply with the
commandc; i.e. toggle between channe®ERIAL 0 and SERIAL_1. The
actual channel chosen is displayed as the prompt of the duart menu. Now consider
theT command, which reads a character to transmit (in hex), prints the character
to be transmitted, and finally transmits the character on the duart channel selected.
A naive implementation would be the following:

case 't case 'T"

{

SerialOut so(channel);
currentChar = si.Gethex(so);

so0.Print("\nSending 0x%2X", currentChar & OxFF);
Channel bc;

if (currentChannel) bc = SERIAL_1;
else bc = SERIAL_O;

SerialOut::Print(bc, "%c", currentChar);

}

continue;

Function getCurrentChannel() simply returns SERIAL_O or SERIAL_1,
depending on what has been selected withdlmmmand. This works fine if
SERIAL_O is selected. But what happens otherwise, i.getiCurrentChannel()
returnsSERIAL_17 In this case, we have already createsleaialOut objectso

for channel (which is SERIAL_1), and we are about to perform a
SerialOut::Print(bc,...) with bc set toSERIAL_1 as well. This print will try to
create anotheiSerialOut object for SERIAL_1. As we are already using
SERIAL_1, the task blocks itself forever, because it claims a resource it already
owns. This is a nice example of a deadlock. The proper way of handling the
situation is as follows:

226 case 't case T

227 {

228 SerialOut so(channel);

229 currentChar = si.Gethex(so);

230

231 so0.Print("\nSending 0x%2X", currentChar & OxFF);
232 }

233

234 Channel bc;

235

236 if (currentChannel) bc = SERIAL_1;
237 else bc = SERIAL_O;

238

239 SerialOut::Print(bc, "%c", currentChar);
240 }

241 continue;
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The lifetime of thesoobject is simply limited to merely getting the parameter and
printing the message about the character that is about to be transmitteslo The
object is then destructed, making channsb available again. The
SerialOut::Print(bc, ...) can then use channélic (whether it happens to be
SERIAL_1 or not) without deadlocking the monitor task.
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6 Development Environment

6.1 General

In this chapter, we specify a complete development environment. This
environment is based on the GNU C++ compdecwhich is available for a large
number of target systems (i.e. CPU families for the embedded system in this
context). Thegccis available on the WWW and several CD-ROM distributions,
particularly for Linux.

6.2 Terminology

In the following sections, two terms are frequently usedogtis a computer
system used for developing software, whildaaget is a computer system on
which this software is supposed to run, in our case an embedded system. In this
context, a computer system is characterized by a CPU type or family, a
manufacturer, and an operating system. Regarding the target, the manufacturer
and the operating system are of little concern, since we are building this operating
system ourselves. The basic idea here is to find an already existing target system
that is supported bgccand as similar as possible to our embedded system. This
helps to reduce the configuration effort to the minimum.

Thus we are looking for a development environment that exactly matches our host
(e.g. a workstation or a PC running DOS or Linux) and the CPU family of our
embedded system (e.g. the MC68xxx family). All of the programs required and
described below will run on the host, but some of them need to be configured to
generate code for the target.

A program for which host and target are identical is calhedive if host and

target are different, the prefotoss-is used. For instance, a C++ compiler running

on a PC under DOS and generating code to be executed under DOS as well is a
native C++ compiler. Another C++ compiler running on a PC under DOS, but
generating code for MC68xxx processors is a cross-compiler.

Due to the large number of possible systems, there are many more cross-
compilers possible than native compilers. For this reason, native compilers are
often available as executable programs in various places, while cross-compilers
usually need to be made according to the actual host/target combination required.
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It is even possible to create the cross-environment for the host on yet another
system called théuild machine. But in most cases, the host is the same as the
build machine.
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6.3 Prerequisites

In order to create the development environment, the following items are required
on the host machine:

. A suitable native C compiler, preferalggc
. Sufficient support for native program development
. A make program, preferabfymake

The termsuitablerefers to the requirements of thenutils and gcc packages

which are stated in th&README and INSTALL files provided with these
packages. Th&NSTALL file for gcc says that “You cannot install GNU C by
itself onMSDOS; it will not compile under anMSDOS compiler except itself”.

In such cases, you will need a natijye in binary form; see Section 6.3.2.

Depending on your actual host, there are mainly three scenarios which are
described in the following sections.

6.3.1 Scenario 1: UNIX or Linux Host

With a UNIX or Linux host, you already have a suitable native C compiler which
may or may not bgcc You also have several other programs suctaassed
andshinstalled as part of the normal UNIX installation.

You also have a make program installed, but it might not be the GNU make
program. In this case, you should consider to install GNU make as well and use it
for building the cross-environment. GNU make is by default installed as a
program calledmake, which may conflict with an already existingnake
program. In the following, we assume that GNU make is installedjraake
rather tharmake.

To install GNU make, proceed as follows:

. Get hold of a file callechake-3.76.1.tar.gzand store it in a separate
directory. You can get this file either from a CD-ROM, e.g. from a Linux
distribution, or from the WWW:
ftp://prep.ai.mit.edu/pub/gnu/make-3.76.1.tar.gz or
ftp://ftp.funet.fi/pub/gnu/gnu/make-3.76.1.tar.gz

. In the separate directory, unpack the file:
> tar -xvzf make-3.76.1.tar.gz or
> zcat make-3.76.1.tar.gz | tar -xvf - if your tar program does not
support the -z option

. Change to the directory created by the tar program:
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> cd make-3.76.1

. Read the fileREADME andINSTALL for instructions particular for your
host

. Configure the package:
> /configure

. Build the packet. This takes about 5 minutes:
> make

. Install the packet. This may require root privileges, depending on where
you want it to be installed. At this point, consider the name conflicts with
the existing make program. Make sure that GNU make is installed as
gmake
> make install

6.3.2 Scenario 2: DOS Host

The simplest way for ®0S host is to fetch binary versions gcc andgmake
Please refer to

ftp://prep.ai.mit.edu/pub/gnu/MicrosPorts/MSDOS.gcc
for links to sites providing such binaries.

The gcc and binutils packages provide special means for building the cross-
environment forDOS. The gmake is not strictly required, since it is not needed
for building the cross-environment, and you will have to modify hekefile for

the embedded system anyway, since mdsliX commands are not available
underDOS. You should fetch thgmake nevertheless, because this requires less
changes for the targbtakefile.

6.3.3 Scenario 3: Other Host or Scenarios 1 and 2 Failed

If none of the above scenarios discussed above succeeds, you can still survive:

. Get hold of a machine satisfying one of the above scenarios. This machine
is called thebuild machine.

. On the build machine, instajimake (not required for scenario 2) agdc
as a native C compiler for the build machine.

. On the build machine, build the cross-environment as described later on.
Observe the README and INSTALL files particularly carefully. When
configuring the packets, set thbuild, --host and--target options
accordingly.
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. Copy the cross-environment to your host.

After that, the build machine is no longer needed.
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6.4 Building the Cross-Environment

In the following, we assume that the cross-environment is created in a directory
called CROSSon aUNIX or Linux host, which is also the build machine. In
order to perform therhake install” steps below, you either need to baot or the
/CROSSdirectory exists and you have write permission for it.

Since we assume a MC68020 CPU for the embedded system, we chews8 a
machine as target. This machine has a CPU of the MC68000 family and is
referred to as m68k-sun-sunos4.1 when specifying targets. The general name for
a target has the form CPU-Manufacturer-OperatingSystem.

For a DOS host, please follow the installation instructions provided with the
binutils andgcc packages instead.

6.4.1 Building the GNU cross-binutils package

The GNUDbinutils package contains a collection of programs, of which some are
essential. The absolute minimum required is the cross-asseablgrhich is
required by the GNU C++ cross-compiler) and the cross-limdelhe Makefile
provided in this book also uses the cross-archive progrmartne name utilitynm

and theobjcopy program.

1 # Makefile for gmake

2 #

3

4  # Development environment.

5 # Replace /CROSS by the path where you installed the environment
6 #

7 AR := ICROSS/bin/m68Kk-sun-sunos4.1-ar

8 AS := /CROSS/bin/m68k-sun-sunos4.1-as

9 LD := /ICROSS/bin/m68k-sun-sunos4.1-ld

10 NM := /ICROSS/bin/m68k-sun-sunos4.1-nm

11 OBJCOPY := /CROSS/bin/m68k-sun-sunos4.1-objcopy
12 CC := /ICROSS/bin/m68k-sun-sunos4.1-gcc

13 MAKE := gmake

Since theMakefile provided with thebinutils package builds all these programs
by default, there is no use at all to build only particular programs instead of the
completebinutils suite.

To install the GNUWbinutils package, proceed as follows:

. Get hold of a file calleBinutils-2.8.1.tar.gzand store it in a separate
directory, for instancBCROSS/src You can get this file either from a CD-
ROM, e.g. from a Linux distribution, or from the WWW:
ftp://prep.ai.mit.edu/pub/gnu/binutils-2.8.1.tar.gz or
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ftp://ftp.funet.fi/pub/gnu/gnu/binutils-2.8.1.tar.gz

. In the/CROSS/srcdirectory, unpack the file:
> cd /CROSS/src
> tar -xvzf binutils-2.8.1.tar.gz or
> zcat binutils-2.8.1.tar.gz | tar -xvf - if your tar program does not
support the -z option

. Change to the directory created by tae program:
> cd binutils-2.8.1

. Read the fillREADME for instructions particular for your host

. Configure the package. There is a period of a few minutes during which no
screen output is generated. If your build machine is not the host, you need
to specify a-host=option as well:
> [configure  --target=m68k-sun-sunos4.1 \
> --enable-targets=m68k-sun-sunos4.1 \

--prefix=/CROSS

. Build the packet, which takes about 20 minutes:
> gmake all-gcc

. Install the packet, either as root or with write permission to /CROSS.
> gmake install

6.4.2 Building the GNU cross-gcc package

To install the GNWccpackage, proceed as follows:

. Get hold of a file calledjcc-2.8.1.tar.gzand store it in a separate directory,
for instance/CROSS/src You can get this file either from a CD-ROM, e.g.
from a Linux distribution, or from the WWW:
ftp://prep.ai.mit.edu/pub/gnu/gcc-2.8.1.tar.gz  or
ftp://ftp.funet.fi/pub/gnu/gnu/gcc-2.8.1.tar.gz

. In the/CROSS/srcdirectory, unpack the file:

> cd /CROSS/src
> tar -xvzf gcc-2.8.1.tar.gz or
> zcat gcc-2.8.1.tar.gz | tar -xvf - if your tar program does not

support the -z option

. Change to the directory created by the program:
>cd gce-2.8.1

. Read the fildNSTALL for instructions particular for your host
. Configure the package. If your build machine is not the host, you need to
specify a-host=option as well:
> ./configure --target=m68k-sun-sunos4.1 \
--prefix=/CROSS \
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--with-gnu-Id \
--with-gnu-as
. Build the C and C++ compilers, which takes about 30 minutes. This make is
supposed to fail when makitiggccl.cross This is on purpose, since we
have not supplied lédbgccl.aat this point:
> make LANGUAGES="C C++"

. Install the compilers, either as root or with write permissiclCROSS
> make LANGUAGES="c c++" install-common
> make LANGUAGES="c c++" install-driver

. You may optionally install man pages and/or info files as root:
> make LANGUAGES="c c++” install-man
> make LANGUAGES="c c++” install-info

Note: There are some dependencies between the agtealompiler version and

the libgcc.a library used with it. There are also dependencies between the

compiler version and the source code for the target, in particular regarding

template class instantiation and support for C++ exceptions. It might therefore be
necessary to change the source code provided in this book for different compiler
versions.

6.4.3 The libgcc.a library

The gcc compiler requires a library that contains functions generated by the
compiler itself. This library is usually calletibbgcc.a The default installation
procedure ofgcc requires that a libraryibgccl.ais provided beforehand and
creates another libraryibgcc2.a itself. These two librarieslibgccl.a and
libgcc2.aare then merged into the libralfpgcc.a Since we have not provided a
libgccl.a the build was aborted when building the make tafdpgfccl.crossas
described in Section 6.4.2. The difference betwdibgccl.a and libgcc2.a
(besides the fact that they contain entirely different functions) is lthgtc2.a

can be compiled witlgcc while libgccl.afunctions usually cannot, at least not
without in-line assembly code.

The final step in setting up the cross-environment is to clibgte.a
. Change to thgccbuild directory:
> cd /CROSS/gcc-2.8.1

. Build thelibgcc? library:
> make LANGUAGES="c c++” libgcc2.a

. Renamdibgcc2.ato libgcc.a
> mv libgcc2.a libgcc.a
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At this point, you have #ibgcc.a, but it still lacks the functions dfbgccl.a. The
functions inlibgccl.aprovide multiplication, division, and modulo operations for

32 bit and 64 bit integers. For the MC68020 and higher CPUs, these operations
are directly supported by the CPU, and tieewill use them if theemc68020flag

is present. In this case, there is nothing more to do and you may decide to leave
thelibggc.aas itis. If you do so, you should always check the fifeget.td file

for undefined symbols.

If you want to do it the proper way because you do not have a MC68020 CPU, or
if you want to make sure that your cross-environment works under all
circumstances, you have to provide the functiondifigccl.ayourself. In order

to get them compiled witlycg, you are of course not allowed to use the functions
you are implementing.

As an example, we consider the functiomulsi3, which is supposed to multiply
two signed 32 bit integers and to return the result. You may implement it as
follows (not tested)??? sollte das nicht besser doch getested sein ???

long _mulsi3(long p1, long p2)
{

long result;

int negative = 0;

if (p1 <0) {pl=-pl;negative++;}
if (p2 <0) {p2=-p2; negative++; }

asm("
MOVE.L %1,D1 | D1.L==p1
MOVE.L %2,D2 | D2.L == p2
MOVE.W D2,DO | DO.W == p1_low

MULU D1,DO | DO.L == p1_low * p2_low
MOVE.L D2,D3 | D3.L == p2

SWAP D3 | D3.W == p2_high
MULU D1,D3 | D3.L == p1_low * p2_high
SWAP D1 | D1.W == p1_high

MULU D2,D1 | D1.L==pl_high*p2_low
ADD.L D1,D3 | D3.L == p1_low * p2_high + p1_high * p2_low

SWAP D3 | shift D3.L 16 bits, D3.W dirty

CLR.W D3 | D3.L == (p1_low * p2_high + p1_high * p2_low) << 16
ADD.L D3,D0 | DO.L == pl * p2

MOVE.L D0,%0 | store result

" =g(result) : "g"(p1), "g"(p2) : "d0", "d1", "d2", "d3");

if (negative & 1) return -result;
else return result;

}

The libgcc.a contains several modules for C++ exception support. For an
embedded system, you will most probably not use any exceptions at all, since
exceptions are fatal errors in this context. When compiling C++ programgcthe
enables exception processing by default. This will increase the size of the ROM
image by about 9 kilobytes, which is slightly less than the whole operating system
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without applications. You should therefore disable exception handling with the
gccoption-fno-exceptions
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6.5 The Target Environment

The target environment is created by installing all files listed in the appendices in
a separate directory on the host. In that directory, you can compile the sources in
order to build the final ROM image, which can then be burned into an EPROM for
the embedded system. Building the ROM image is achieved by entering

. > gmake

This command invokes the build process, which is controlled byMh&efile,
and creates the ROM image both in binary format (filrtget.bin) and in
Srecord format (fil&arget).

6.5.1 The Target Makefile

The whole process of creating the ROM image is controlled byMiagefile
which is explained in this section. Thdakefile is used bygmake to start
compilers, linkers, and so on as required for building the final ROM image. The
Makefile starts with the locations where the cross-compiler and cross-binutils are
installed. In our case, thgcc and binutils packages have been installed with
prefix=/CROSS which installed them below tHEROSSdirectory.

1 # Makefile for gmake

2 #

3

4  # Development environment.

5 # Replace /CROSS by where you installed the cross-environment
6 #

7 CROSS-PREFIX:= /CROSS

8 AR := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-ar

9 AS = $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-as
10 LD := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-1d
11 NM := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-nm
12 OBJCOPY := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-objcopy
13 CC := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-gcc
14 MAKE = gmake

15

Then the target addresses for ROM and RAM are specified. These addresses are
used by the linkelROM_BASE is where theTEXT section is to be linked, and
RAM_BASE is where theDATA section is to be linked.

16 # Target memory mapping.
17 #

18 ROM_BASE:=0

19 RAM_BASE:= 20000000
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The command line options for the assembler, linker, and compiler follow. The
assembler is instructed to allow the additional MC68020 opcodes and addressing
modes. The compiler is also told to use maximum optimization and not to use a
frame pointer if none is required. The linker is instructed not to use standard
libraries (remember that we did not build standard libraries for our environments),
to use the target addresses specified above forllBXT and.DATA sections,

and to create a map file. The map file should be checked after the build is
completed.

21 # compiler and linker flags.

22 #

23 ASFLAGS :=-mc68020

24 CCFLAGS :=-mc68020 -O2 -fomit-frame-pointer -fno-exceptions
25

26 LDFLAGS := -i -nostdlib \

27 -Ttext $(ROM_BASE) -Tdata $(RAM_BASE) \

28 -Xlinker -Map -Xlinker Target.map

Our source files are the assembler start-upchit®.S and all files *.cc, assuming
that no other files with extension .cc are stored in the directory where the ROM
image is made.

30 # Source files

31 #

32 SRC_S = $(wildcard *.S)

33 SRC_CC := $(wildcard *.cc)

34 SRC := $(SRC_S) $(SRC_CC)

For each .cc file, the compiler creates a .d file later on, using the -MM option.
Rather than making a .cc file dependent of all header (.hh) files, which would lead

to re-compiling all .cc files when any header file is changed, ##% -MM
option ??%nly causes those .cc files to be compiled that include changed .hh
files, which speeds up compilation.

36 # Dependency files

37 #
38 DEP_CC := $(SRC_CC:.cc=.d)

39 DEP_S := $(SRC_S:.S=.d)

40 DEP := $(DEP_CC) $(DEP_S)

The object files to be created by the assembler or the compiler:

42  # Object files

43 #

44 OBJ_S = $(SRC_S:.S5=.0)

45 OBJ_CC := $(SRC_CC:.cc=.0)
46 OBJ := $(OBJ_S) $(OBJ_CC)

The files that are created by the build process and that may thus be deleted
without harm:

48 CLEAN = $(OBJ) $(DEP) libos.a \
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49 Target Target.bin \
50 Target.td Target.text Target.data \
51 Target.map Target.sym

The default targetd]l) for the Makefile is the ROM imageTarget) and the
corresponding map and symbol files. Other targetscbr@n which removes all
non-source files (should also be used if entire source files are deletedgrand
which creates a tar file containing the source files anM#hkefile.

Note: Lines containing a command, like line @duststart with a tab, rather than
spaces.

53 # Targets

54 #

55 .PHONY: all

56 .PHONY: clean

57 .PHONY: tar

58

59 all: Target Target.sym
60

61 clean:

62 /bin/rm -f $(CLEAN)
63

64 tar: clean

65 tar:

66 tar -cvzf ../src.tar *

The dependency files are included to create the proper dependencies between the
included .cc files and .hh files:

68 include $(DEP)

How are object and dependency files made? An object file is made by compiling a
.cc or .S file, using the compiler flags discussed above. A dependency file is made
by compiling a .cc file using the -MM option additionally. The dependency file
itself has the same dependencies as the object file, but the dependency of the
dependency file is not maintained automatically by the compiler. For this reason,
the left side of a dependency (efje.o:) is extended by the corresponding
dependency file (resulting ifile.o file.d:). This method will not work for DOS,
because DOS does not have essential commands sseth as

70 # Standard Pattern rules...

71 #

72  %.0: %.cc

73 $(CC) -c $(CCFLAGS) $< -0 3@

74

75 %.0: %.S

76 $(CC) -c $(ASFLAGS) $< -0 $@

77

78  %.d: %.cc

79 $(SHELL) -ec '$(CC) -MM $(CCFLAGS) $<\

80 | sed \"s/$*\.0/$*\.0 $@/\" > $@'
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81

82 %.d: %.S

83 $(SHELL) -ec '$(CC) -MM $(ASFLAGS) $< \
84 | sed \"s/$*\.0/$*\.0 $@/\" > $@'

All object files are placed in a library calldidbos.a. Consequently, only the code
that is actually required is included in the ROM image. If code size becomes an
issue, then one can break down the source files into smaller source files,
containing for instance only one function each. Linking is usually performed at
file level, so that for files containing both used and unused functions, the unused
functions are included in the final result as well. Splitting larger source files into
smaller ones can thus reduce the final code size.

86 libos.a:$(0OBJ)
87 $(AR) -sr libos.a $?

The final ROM imageTarget, is made by converting the corresponding binary
file, Target.bin, into Srecord format. Most EPROM programmers accept both
binary and Srecord files. However, Srecord files are more convenient to read or to
send by mail, and they also contain checksums.

89 Target: Target.bin
90 $(OBJICOPY) -l binary -O srec $< $@

The file Target.text contains theTEXT section of the linker’s outputarget.td
in binary format. It is created by instructing tlodjcopy to remove theDATA
segment and to store the result in binary format.

92 Target.text:Target.td
93 $(OBJICOPY) -R .data -O binary $< $@

The file Target.data contains theDATA section of the linker’s outputarget.td
in binary format. It is created by instructing tlodjcopy to remove theTEXT
segment and to store the result in binary format.

95 Target.data:Target.td
96 $(OBICOPY) -R .text -O binary $< $@

For the target configuration we have chosen (aout format), a 32 byte header
created is created if thd EXT segment is linked to address 0. This header must
be removed, e.g. by a small utiligkip_aout which is described below. The file
Target.bin is created by removing this header frofarget.text and appending
Target.data:

98 Target.bin:Target.text Target.data
99 cat Target.text | skip_aout | cat - Target.data > $@

The map fileTarget.symis created by them utility with the linker’s output. The
nm is instructed to create a format easier to read by humans then the default
output by the option-demangle From this output, several useless symbols are
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removed. The map file is useful to translate absolute addresses (e.g. in stack
dumps created in the case of fatal errors) to function names.

101 Target.sym:Target.td

102 $(NM) -n --demangle $<\

103 | awk {printf("%s %s\n", $$1, $$3)}' \

104 | grep -v compiled | grep -v "\.0" \

105 | grep -v "_DYNAMIC" | grep -v ""U" > $@

The object file crt0.0 for the start-up codecrt0.S is linked with libos.a
(containing all object files for our sources) and wlithgcc (containing all object
files required by thgcccompiler).

108 Target.td:crt0.0 libos.a libgcc.a
109 $(CC) -0 $@ crt0.0 -L. -los -lgcc $(LDFLAGS)

6.5.2 The skip_aout Utility

As already mentioned, th& EXT segment extracted froffarget.td by objcopy

starts with a 32 byte header if the link address is 0. This header can be removed by
the following utility skip_aout, which simply discards the first 32 bytes from
stdin and copies the remaining bytesstdout.

/I skip_aout.cc
#include <stdio.h>

enum { AOUT_OFFSET = 0x20 }; // 32 byte aout header to skip
int main(int, char *[])
{

int count, cc;

for (count = 0; (cc = getchar()) != EOF; count++)
if (count >= AOUT_OFFSET) putchar(cc);

exit(count < AOUT_OFFSET ? 1: 0);
}
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7 Miscellaneous

7.1 General

This chapter covers topics that do not fit in the previous chapters in any natural
way.

7.2 Porting to different Processors

So far, a MC68020 has been assumed as target CPU. For using a different CPU,
the assembler part of the kernel has to be rewritten. Since most of the code is
specified in C++, the amount of code to be rewritten is fairly small. The files
concerned arert0.S and the files containing in-line assembler code, 0£cG

0s.hh Task.hh, andSemaphore.hh

7.2.1 Porting to MC68000 or MC68008 Processors

If the target CPU is a MC68000 or MC68008, then only one instructiamtinS

needs to be removed. The start-up cod®.S has been written so that it can be
linked not only to base address O (i.e. assuming the code is executed directly after
a processor RESET) but also to other addresses. In this case, a jump to the start of
crt0.Sis required:

1 | ert0.S
37 _null: BRA _reset | 0 initial SSP (end of RAM)
38 .LONG _reset | 1 initial PC

Normally, exception vector O contains the initial supervisor stack pointer, but
since the supervisor stack pointer is not required from the outset, we have inserted
a branch to label resetinstead. Thus 8RA _null has the same effect as a
processor RESET. The CPU needs to know, however, where the vector table
(starting at label null) is located in the memory. For MC68010 CPUs and above,

a special register, the vector base regist&R, has been implemented. After
RESET, theVBR is set to 0. Ifcrt0.S is linked to a different address, then the
VBR has to be set accordingly. krt0.S, the vector base address is computed
automatically so that the user is not concerned with this matter:

1 |crt0.S
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81  _reset:

82 MOVE.L #RAMend, SP | since we abuse vector 0 for BRA.W
83 LEA _null, AO |
84 MOVEC A0, VBR | MC68010++ only

The first instruction after labelresetsets up the SSP, which fixes the abuse of
vector 0. Then the VBR is set to point to the actual vector table. For a MC68000
or a MC68008, there is n&BR and the instruction would cause an illegal
instruction trap at this point. For a MC68000 or MC68008 CPU, the move
instruction to theVBR must be removed. Clearly, for such CPUs it is impossible
to locate the vector table (i.ert0.S) to anywhere else than address 0.

7.2.2 Porting to Other Processor families

The only specific feature of the MC68000 family we used was the distinction
between supervisor mode and user mode. At the end of an exception processing
routine, it was checked whether a change back to user mode would happen. If so,
a pending task switch was executed.

235  _return_from_exception: | check for task switch

236 OR.W #0x0700, SR | disable interrupts

237 MOVE.W (SP), -(SP) | get status register before exception
238 AND.W  #0x2700, (SP)+ | supervisor mode or ints disabled ?
239 BNE L_task_switch_done | yes dont switch task

If a processor, e.g a Z80, does not provide different modes, then these modes can
be emulated by a counter which is initialized to 0. For every exception, i.e.
interrupts and also the function calls using the TRAP interface such as
Semaphore::P() this counter is incremented. At the end of every exception
processing, the counter is decremented, and reaching O is equivalent to returning
to user mode.
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7.3 Saving Registers in Interrupt Service Routines

An interrupt service routine must not alter any registers. For a simple interrupt
service routine, this can be achieved by saving those registers that the interrupt
service routine uses and by restoring them after completion.

1|crt0.S

133  _duart_isr: |

134 MOVE.B #LED_YELLOW, wLED_ON | yellow LED on
135 MOVEM.L DO-D7/A0-A6, -(SP) | save all registers
216 MOVEM.L (SP)+, DO-D7/A0-A6 | restore all registers

This is a safe way, but not the most efficient one. Considering the code between
line 135 and 216, only registers DO, D1, D7, and AO are modified by the interrupt
service routine. So it would be sufficient to save and restore only these registers.
However, the interrupt service routine calls other functions which may alter other
registers, and these need to be saved as well. In order to save only those registers
changed by the interrupt service routine and the functions it calls, one needs to
know which registers are altered by the functions generated by the compiler. For
some compilers, there is a convention such as “any function generated by the
compiler may alter registers DO through D3 and AO through A3 and leaves all
other registers intact”. The register preserving convention is usually documented
for a compiler in a chapter like “function calling conventions”. In casegof

there is a file config/<machine>/<machine>.h in the directory where the compiler
sources are installed, where <machine> stands for the target for which the
compiler was configured. In our case, this would be the file config/m68k/m68k.h.
In this file, a macraCALL_USED_ REGISTERS is defined, which marks those
registers with 1 that are changed by a function call. The first line refers to data
registers, the next line to address registers and the third line to floating point
registers.

/I config/m68k/m68Kk.h

#define CALL_USED_REGISTERS\
{4,1,0,0,0,0,0,0, \

» Uy Yy

That s, if the compiler is configured to use the file m68k.h, then registers DO, D1,
A0, A1, A7, and floating point registers FPO and FP1 may be altered by function
calls generated by the compiler. If the compiler uses other registers, it saves and
restores them automatically. Although A7 (i.e. the SP) is altered, it is restored by
the function call mechanism. With this knowledge, one could safely write

1|crt0.S

133  _duart_isr:
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134 MOVE.B #LED_YELLOW, wLED_ON | yellow LED on
135 MOVEM.L D0/D1/D7/A0/A1, -(SP) | save registers used later on
216 MOVEM.L (SP)+, DO/D1/D7/A0/A1 | restore registers

This causes only 5 instead of 15 registers to be saved and restored. Since
compilers tend to choose lower register numbers (DO, D1, A0, Al, FPO, and FP1)
for registers that they may destroy, we chose a high register (D7) for the interrupt
status so that it does not need to be saved before C++ function calls.
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7.4  Semaphores with time-out

So far, the state machine shown in Figure 7.1 is used for the state of a task.

STARTED

Start()

Terminate()
Error

Sleep() Time-out

FAILED,

TERMINATED

FIGURE 7.1 Task State Machine

Sometimes a combination of the statesEEP and BLKD is required. One
example is waiting for a character, but indicating a failure if the character is not
received within a certain period of time. With the present state machine, there are
several possibilities to achieve this, but none is perfect. We could, for instance,
first Sleep() for the period and thefroll() to check if a character has arrived
during Sleep() This would lead to bad performance, in particular if the period is
long and if time-out rarely occurs. One could increase the performance by
performingSleep()andPoll() in a loop with smaller intervals, but this would cost
extra processing time. Another alternative would be to use two additional tasks:
one that is responsible for receiving characters, and the other for sleeping. Any of
these additional tasks would send an event to the task that is actually waiting for a
character or time-out, indicating that the character has been received or that time-
out has occurred. All this is significant effort for an otherwise simple problem.
The best solution is to extend the task state machine by a newSstBIeKD, as
shown in Figure 7.2.
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STARTED

Terminate()
Error

FAILED,

TERMINATED

FIGURE 7.2 Task State Machine with new State S_BLKD

The new stat&_BLKD combines the properties of statesEEP andBLKD by
returning the task to stalRUN if either the resource represented by a semaphore

is available (the character is received in our example) or the time-out provided
with the callSemaphore::P_Timeout(unsigned int time)has expired. The task
calling P_Timeout() must of course be able to determine whether the resource is
available or time-out has occurred. Thatks, Timeout() will return e.g. anint
indicating the result rather tha®emaphore::P() which returnsvoid. The new

state can be implemented as follows, where the details are left as an exercise to
the reader. ??? willst Du die Losung nicht verraten ???

. The classlask gets two new data membens P_Timeout_Resultand
Semaphore * P_Timeout_Semaphore

. The classSemaphoreis extended by a new member function
P_Timeout(unsigned long time) This function is similar t&() with the
following differences: If a resource is availalf®e, Timeout() returns 0
indicating no time-out. Otherwise it sets the current task’s member
P_Timeout_Semaphordo the semaphore on whi€h Timeoutis
performed, sets the current task’s TaskSlegpe, and blocks the task by
setting both th&LKD and theSLEEP bits in the current task’s
TaskStatus After the task has been unblocked by eith€é()acall or time-
out, it returnd?_Timeout_Resultof the current task.
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. Semaphore::V()is modified so that it sets tHe_Timeout_Resultof a task
that is unblocked to 0, indicating no time-out. That task will then return 0 as
the result of it$?_Timeout() function call. It also clears ti&lEEP bit of
the task that is unblocked.

. If the sleep period of a task has expired (after Iab8ILEEP_LP in
crt0.S), then theBLKD bit is examined besides clearing BIeEEP bit of
the task. If it is set, i.e. if the task is in st&teBLKD, then this bit is
cleared as well, the task is removed from the semaphore waiting chain
(using theP_Timeout_Semaphoranember of the task) and
P_Timeout_Resultis set to nonzero, indicating time-out.

After the semaphore class has been extended this way, the queue classes are
extended accordingly, implementing member functions (8et_Timeout() and
Put_Timeout(). Since all these changes require considerable effort, they should
only be implemented when needed. As a matter of fact, we have implemented
quite complex applications without the need for time-outs in semaphores.
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A.1 Startup Code (crt0.S)

1 | ert0.S

2

3  #define ASSEMBLER

4

5  #include "Duart.hh"

6  #include "Task.hh"

7  #include "Semaphore.hh"

8  #include "System.config"

9 I

10 .global _null |

11 .global _on_exit |

12 .global _reset |

13 .global _fatal |

14 .global _deschedule |

15 .global _consider_ts |

16 .global _return_from_exception |

17 .global _stop |

18 .global _sdata |

19 .global _idle_stack |

20 .global _IUS_top |

21 .global _sysTimeHi |

22 .global _sysTimelLo |

23 |

24 text |

25 |

26  wLED_ON = WDUART_BCLR |

27  wLED_OFF = WDUART_BSET |

28 LED_GREEN = 0x80 |

29 LED_YELLOW = 0x40 |

30 LED_RED = 0x20 |

31 LED_ALL = OxEO |

32 |

33 |

34 | VECTOR TABLE

35 |

36 | Vector

37 _null: BRA _reset | 0 initial SSP (end of RAM)
38 .LONG _reset | 1 initial PC

39 .LONG _fatal, fatal | 2,3 bus error, adress error
40 .LONG _fatal, _fatal | 4, 5 illegal instruction, divide/O
41 .LONG _fatal, _fatal | 6,7 CHK, TRAPV instructions
42 .LONG _fatal, _fatal | 8,9 privilege violation, trace
43 .LONG _fatal, fatal | 10,11 Line A,F Emulators
44 |

45 .LONG _fatal,_fatal,_fatal |12... (reserved)

46 .LONG _fatal,_fatal, fatal |15... (reserved)

47 .LONG _fatal,_fatal,_fatal |18... (reserved)

48 .LONG _fatal,_fatal,_fatal |21... (reserved)

49 |

50 .LONG _fatal | 24 spurious interrupt

51 .LONG _fatal | 25 level 1 autovector

52 .LONG _duart_isr | 26  level 2 autovector
53 .LONG _fatal | 27  level 3 autovector

54 .LONG _fatal, fatal | 28,29 level 4,5 autovector
55 .LONG _fatal, fatal | 30,31 level 6,7 autovector
56 |

57 .LONG _stop | 32 TRAP #0 vector

58 .LONG _deschedule | 33  TRAP #1 vector
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59 .LONG _fatal | 34  TRAP #2 vector

60 .LONG _Semaphore_P |35 TRAP #3 vector

61 .LONG _Semaphore_V |36 TRAP #4 vector

62 .LONG _Semaphore_Poll | 37  TRAP #5 vector

63 .LONG _fatal, fatal | 38,39 TRAP #6, #7 vector

64 .LONG _fatal, _fatal | 40,41 TRAP #8, #9 vector

65 .LONG _fatal, _fatal | 42,43 TRAP #10,#11 vector
66 .LONG _fatal | 44  TRAP #12 vector

67 .LONG _set_interrupt_mask |45 TRAP #13 vector
68 .LONG _readByteRegister HL |46 TRAP #14 vector
69 .LONG _writeByteRegister |47 TRAP #15 vector

70 |

71 .FILL 16,4, -1 | 48 .. 63 (reserved)

72 |

73| |
74 | CODE

7% |
76 |

7| |

78 | STARTUP CODE |

79 | |

80 |

81 _reset: |

82 MOVE.L #RAMend, SP | since we abuse vector 0 for BRA.W
83 LEA _null, AO |

84 MOVEC A0, VBR | MC68010++ only

85 |

86 MOVE.B #0, wWDUART_OPCR | all outputs via BSET/BCLR
87 MOVE.B #LED_ALL, wLED_OFF | all LEDs off

88 |

89 MOVE.L #RAMbase, Al | clear RAM...

90 MOVE.L #RAMend, A2 |

91 L_CLR: CLR.L (Al)+ [

92 CMP.L A1, A2 |

93 BHI L _CLR |

94 | relocate data section...

95 MOVE.L # etext, DO | end of text section

96 ADD.L #0x00001FFF, DO | align to next 2K boundary
97 AND.L #0xFFFFEOOO, DO |

98 MOVE.L DO, AO | source (.data section in ROM)
99 MOVE.L # sdata, Al | destination (.data section in RAM)
100 MOVE.L #_edata, A2 | end of .data section in RAM
101 L_COPY: MOVE.L (AQ)+, (Al)+ | copy data section from ROM to RAM
102 CMP.L A1, A2 |

103 BHI L_COPY |

104 |

105 MOVE.L # SS_top, A7 | set up supervisor stack
106 MOVE.L #_IUS_top, AO |

107 MOVE A0, USP | set up user stack

108 |

109 MOVE #0x0700, SR | user mode, no ints

110 JSR _main |

111 |

112 _fatal: |

113 MOVE.W #0x2700, SR |

114 MOVE.B #LED_RED, wLED_ON | red LED on

115 MOVE.B #0x04, wDUART_CR_B | enable transmitter
116 MOVE.L SP, AO | old stack pointer

117 MOVE.L #RAMend, SP |

118  _forever: |

119 MOVE.L A0, -(SP) | save old stack pointer

120 MOVE.L AOQ, -(SP) | push argument
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121 JSR _Panic__20sPs | print stack frame

122 LEA 2(SP), SP | remove argument

123 MOVE.L (SP)+, A0 | restore old stack pointer
124 BRA _forever |

125 |

126  _on_exit: |

127 RTS |

128 |

129 | |

130 | Duart interrupt

131 | |

132 |

133  _duart_isr: |

134 MOVE.B #LED_YELLOW, wLED_ON | yellow LED on
135 MOVEM.L DO-D7/A0-A6, -(SP) | save all registers
136 MOVEM.L rDUART_ISR, D7 | get interrupt sources
137 SWAP D7 |

138 MOVE.B D7, _duart_isreg |

139 |

140 BTST #1, duart_isreg | RXRDY_A ?

141 BEQ LnoRxA | no

142 MOVEM.L rDUART_RHR_A, DO | get char received
143 MOVE.L DO, -(SP) |

144 PEA 1(SP) | address of char received

145 PEA _ 8Serialln$inbuf_0 | inbuf_0 object

146 JSR _PolledPut__t10Queue_Gsem1ZUcRCUc

147 LEA 12(SP), SP | cleanup stack

148  LnoRxA: |

149 |

150 BTST #5, _duart_isreg | RXxRDY_B ?

151 BEQ LnoRxB | no

152 MOVEM.L rDUART_RHR_B, DO | get char received
153 MOVE.L DO, -(SP) [

154 PEA 1(SP) | address of char received

155 PEA _ 8Serialln$inbuf_1 | inbuf_1 object

156 JSR _PolledPut__t10Queue_Gsem1ZUcRCUc

157 LEA 12(SP), SP | cleanup stack

158  LnoRxB: |

159 |

160 BTST #0, _duart_isreg | TXRDY_A?

161 BEQ LnoTxA | no

162 LEA -2(SP), SP | space for next char

163 PEA 1(SP) | address of char received

164 PEA _ 9SerialOut$outbuf_0 | outbuf_O object

165 JSR _PolledGet__t10Queue_Psem1ZUcRUc

166 LEA 8(SP), SP | cleanup stack

167 MOVE.W (SP)+, D1 | next output char (valid if DO = 0)
168 TST.L DO | char valid ?

169 BEQ Ldli1l | yes

170 CLR.L _ 9SerialOut$TxEnabled_0| no, disable Tx

171 MOVE.B #0x08, WDUART_CR_A | disable transmitter
172 BRA  LnoTxA |

173  Ld1ill: MOVE.B D1, wDUART_THR_A | write char (clears int)
174  LnoTxA: |

175 |

176 BTST #4, duart_isreg | TXRDY_B ?

177 BEQ LnoTxB | no

178 LEA -2(SP), SP | space for next char

179 PEA 1(SP) | address of char received

180 PEA _ 9SerialOut$outbuf_1 | outbuf_1 object

181 JSR PolledGet__t10Queue_Psem1ZUcRUc

182 LEA g(SP), SP | cleanup stack
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183 MOVE.W (SP)+, D1 | next output char (valid if DO = 0)
184 TST.L DO | char valid ?

185 BEQ Ldli21 | yes

186 CLR.L __ 9SerialOut$TxEnabled_1| no, disable Tx

187 MOVE.B #0x08, wDUART_CR_B | disable transmitter
188 BRA LnoTxB |

189  Ld1i21: MOVE.B D1, wDUART_THR_B | write char (clears int)
190 LnoTxB: |

191 |

192 BTST #3, _duart_isreg | timer ?

193 BEQ LnoTim | no

194 MOVEM.L rDUART_STOP, D1 | stop timer

195 MOVEM.L rDUART_START, D1 | start timer

196 |

197 | increment system time

198 ADD.L #10, _sysTimelLo | 10 milliseconds

199 BCC.S Lsys_time_ok |

200 ADDQ.L #1, _sysTimeHi |

201  Lsys_time_ok: |

202 |

203 MOVE.L __ 4Task$currTask, D1 |

204 MOVE.L D1, A0 |

205 L_SLEEP_LP: | decrement sleep counters...
206 SUBQ.L #1, TaskSleepCount(AQ) |

207 BNE L_NO_WAKEUP |

208 BCLR #3, TaskStatus(AO) | clear sleep state

209 L_NO_WAKEUP: |

210 MOVE.L TaskNext(A0), AO |

211 CMP.L A0, D1 |

212 BNE L_SLEEP_LP |

213 ST  _consider_ts | request task switch anyway
214  LnoTim: |

215 |

216 MOVEM.L (SP)+, DO-D7/A0-A6 | restore all registers
217 BRA _return_from_exception |

218 |

219 | |

220 | TRAP #0 (STOP PROCESSOR)

221 | |

222 |

223 _stop: |

224 MOVE.B #LED_YELLOW, wLED_OFF | yellow LED off
225 STOP  #0x2000 |

226 BRA _return_from_exception | check for task switch
227 |

228 | |

229 | TRAP #1 (SCHEDULER)

230 | |

231 |

232  _deschedule: |

233 ST  _consider_ts | request task switch

234 |

235  _return_from_exception: | check for task switch
236 OR.W #0x0700, SR | disable interrupts

237 MOVE.W (SP), -(SP) | get status register before exception
238 AND.W  #0x2700, (SP)+ | supervisor mode or ints disabled ?
239 BNE L_task_switch_done | yes dont switch task
240 TST.B _consider_ts | task switch requested ?
241 BEQ L_task_switch_done |no

242 CLR.B _consider_ts | reset task switch request
243 |

244 | |
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245 | swap out current task by saving

246 | all user mode registers in TCB

247 | |

248 |

249 MOVE.L A6, -(SP) | save A6

250 MOVE.L __ 4Task$currTask, A6 |

251 MOVEM.L DO-D7/A0-A5, Task_DO(A6)| store DO-D7 and A0-A5 in TCB
252 MOVE.L (SP)+, Task_A6(A6) | store saved A6 in TCB
253 MOVE USP, A0 |

254 MOVE.L A0, Task_USP(A6) | save USP from stack in TCB
255 MOVE.B 1(SP), Task_CCR(A6) |save CCR from stack in TCB
256 MOVE.L 2(SP), Task_PC(A6) |save PC from stack in TCB
257 |

258 | |

259 | find next task to run

260 | A2: marker for start of search

261 | AG6: best candidate found

262 | D6: priority of task A6

263 | AO: next task to probe

264 | DO: priority of task AO

265 | |

266 |

267 MOVE.L _ 4Task$currTask, A2 |

268 MOVE.L A2, A6 |

269 MOVEQ #0, D6 |

270 TST.B TaskStatus(A6) | status = RUN ?

271 BNE L_PRIO_OK | no, run at least idle task

272 MOVE.W TaskPriority(A6), D6 |

273 L_PRIO_OK: |

274 MOVE.L TaskNext(A6), A0 | next probe

275 BRA L_TSK_ENTRY |

276 L_TSK_LP: |

277 TST.B TaskStatus(AO) | status = RUN ?

278 BNE L_NEXT_TSK | no, skip

279 MOVEQ #0, DO |

280 MOVE.W TaskPriority(A0), DO |

281 CMP.L DO, D6 | D6 higher priority ?

282 BHI L_NEXT_TSK | yes, skip

283 MOVE.L A0, A6 |

284 MOVE.L DO, D6 |

285 ADDQ.L #1, D6 | prefer this if equal priority

286 L_NEXT_TSK: |

287 MOVE.L TaskNext(A0), AO | next probe

288 L_TSK_ENTRY: |

289 CMP.L A0, A2 |

290 BNE L_TSK_LP |

291 |

292 | |

293 | next task found (A6)

294 | swap in next task by restoring

295 | all user mode registers in TCB

296 | |

297 |

298 MOVE.L A6, _ 4Task$currTask |task found.

299 MOVE.L Task_PC(A6), 2(SP) | restore PC on stack

300 MOVE.B Task_CCR(A6), 1(SP) | restore CCR on stack
301 MOVE.L Task_USP(A6), A0 |

302 MOVE A0, USP | restore USP

303 MOVEM.L Task_DO0(A6), DO-D7/A0-A6| restore DO-D7, AD-A5 (56 bytes)
304  L_task_switch_done: |

305 RTE |

306
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307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

365
366
367

TRAP #3 (Semaphore P operation)

_Semaphore_P: | AO -> Semaphore

OR  #0x0700, SR | disable interrupts
SUBQ.L #1, SemaCount(AQ) | count down resources
BGE _return_from_exception | if resource available

ST  _consider_ts | request task switch
MOVE.L SemaNextTask(AO), DO | get waiting task (if any)
BNE.S Lsp_append | got a waiting task

MOVE.L __ 4Task$currTask, DO | get current Task
MOVE.L DO, SemaNextTask(AO) | store as first waiting
MOVE.L DO, A0 |

BSET #0, TaskStatus(AO) | block current task
CLR.L TaskNextWaiting(AO) | say this is last waiting
BRA _return_from_exception | done

Lsp_append: | goto end of waiting list

MOVE.L DO, A0
MOVE.L TaskNextWaiting(A0), DO | get next waiting (if any)
BNE.S Lsp_append | if not last waiting

|
MOVE.L _ 4Task$currTask, DO | get current task
MOVE.L DO, TaskNextWaiting(AO) | store as last waiting
MOVE.L DO, A0
BSET #0, TaskStatus(AO) | block current task
CLR.L TaskNextWaiting(AO) | say this is last waiting
BRA _return_from_exception | done

TRAP #4 (Semaphore V operation)

_Semaphore_V: | AO -> Semaphore
OR  #0x0700, SR | disable interrupts
ADDQ.L #1, SemaCount(A0) |
BLE.S Lsv_unblock | unblock waiting task

CLR.L SemaNextTask(A0) |
BRA _return_from_exception | done

Lsv_unblock: |

EXG DO, Al |
MOVE.L SemaNextTask(AO), A1 | get next waiting task
MOVE.L TaskNextWaiting(Al), SemaNextTask(A0)
MOVE.L Al, A0 |
EXG DO, Al
BCLR #0, TaskStatus(AO) | unblock the blocked task
CLR.L TaskNextWaiting(AO) | justin case
MOVE.W TaskPriority(A0), DO | get priority of unblocked Task
MOVE.L _ 4Task$currTask, AO | get current Task
CMP.W TaskPriority(AO), DO | current prio >= unblocked prio ?
BLS _return_from_exception | yes, done
ST  _consider_ts | no, request task switch
BRA _return_from_exception | done

|

TRAP #5 (Semaphore Poll operation)

_Semaphore_Poll: | AO -> Semaphore
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368 OR  #0x700, SR | disable interrupts

369 MOVEQ #1, DO | assume failure

370 TST.L SemaCount(A0) | get count

371 BLE _return_from_exception | failure

372 SUBQ.L #1, SemaCount(A0) |

373 MOVEQ #0, DO | success

374 BRA _return_from_exception | check for task switch
375 |

376 | |

377 | TRAP #13 (SET INTERRUPT MASK)

378 | |

379 |

380  _set_interrupt_mask: |

381 MOVEQ #7, DO |

382 AND.B (SP), DO | get old status register
383 AND.B #7,D1 | interrupt bits only

384 AND.B #OxF8, (SP) | clear interrupt bits

385 OR.B D1, (SP) | set interrupt bits from D1
386 BRA _return_from_exception | check for task switch
387 |

388 | |

389 | TRAP #14 (READ DUART REGISTER)

390 | |

391 |

392 _readByteRegister HL: | (emulated)

393 MOVEM.L (A0), DO | .L to force dummy cycle
394 SWAP DO | D23..D16 -> D7..DO

395 BRA _return_from_exception | check for task switch
396 |

397 | |

398 | TRAP #15 (WRITE HARDWARE REGISTER)
399 | |

400 |

401  _writeByteRegister: | (emulated)

402 MOVE.B DO, (A0) |

403 BRA _return_from_exception | check for task switch
404 |

405 | |
406 | DATA

407 | |
408 |

409 .data |

410 |

411  _sdata: .LONG 0 |

412  _sysTimeHi: .LONG O | system time high

413  _sysTimeLo: .LONG O | system time low

414  _super_stack: .FILL 512,1,'S' | supervisor stack

415  _SS_top: | top of supervisor stack

416  _idle_stack: .FILL 512,1,'U" |idle task user stack

417  _IUS_top: | top of idle task user stack
418 _consider_ts: .BYTE O | true if task switch need be checked
419  _duart_isreg: .BYTE 0 |

420 |

421 ALIGN 2 |

422 .END
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A.2 Task.hh
1  #ifdef ASSEMBLER
2
3 #define TaskNext
4  #define TaskNextWaiting 0x04
5  #define Task_DO 0x08
6  #define Task_A6 0x40
7  #define Task_USP 0x44
8  #define Task_PC 0x48
9  #define TaskSleepCount 0x4C
10  #define TaskHitCount  0x50
11  #define TaskPriority = 0x54
12  #define Task_CCR 0x56
13  #define TaskStatus 0x57
14
15  #else
16
17  #ifndef _ TASK_HH_DEFINED__
18  #define _ TASK_HH_DEFINED__
19  #include "Semaphore.hh"
20  #include "Message.hh"
21  #include "Queue.hh"
22
23  void setupApplicationTasks();
24
25  class Task
26
27 friend class Monitor;
28  private:
29 /I Make sure the following locations match the assembler defs above !!!
30 Task * next; // 0x00
31 Task * nextWaiting; // 0x04
32 unsigned long Task_DO, Task_D1, Task_D2, Task_D3; // 0x08..
33 unsigned long Task_D4, Task_D5, Task_D6, Task_D7; // 0x18..
34 unsigned long Task_AO, Task_A1, Task_A2, Task_A3; // 0x28..
35 unsigned long Task_A4, Task_A5, Task_AG6; /] 0x38..
36 unsigned long * Task_USP; 1/ 0x44..
37 void (*Task_PC)(); /] 0x48
38 unsigned long TaskSleep; /I 0x4C
39 unsigned long TaskHitCount; // 0x50
40 unsigned short priority; /] 0x54
41 unsigned char Task_CCR; /1 0x56
42 unsigned char TaskStatus; 1/ 0x57
43 /I End of definitions also used in assembler
44
45 friend main();
46 friend class Semaphore;
47
48 public:
49 Task( void (* main)(),
50 unsigned long userStackSize,
51 unsigned short queueSize,
52 unsigned short priority,
53 const char * taskName
54 );
55
56 static void GetMessage(Message & msg)
57 { currTask->msgQ.Get(msg); };
58
59 static int PolledGetMessage(Message & msg)
60 { return currTask->msgQ.PolledGet(msg); };
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61

62 static const char * const MyName()
63 {return currTask->name; };

64

65 static unsigned short MyPriority()

66 { return currTask->priority; };

67

68 static Task * Current()

69 {return currTask; };

70

71 static void Dsched()

72 {asm("TRAP #1"); };

73

74 static int SchedulerRunning() { return SchedulerStarted; };
75 static unsigned int Sleep(unsigned int);
76 static void Terminate(int);

7

78 const char * const Name() const

79 { return name; };

80

81 unsigned short Priority() const

82 { return priority; };

83

84 void setPriority(unsigned short newPriority)
85 { priority = newPriority; };

86

87 Task * Next() const

88 { return next; };

89

90 unsigned char Status() const

91 { return TaskStatus; };

92

93 void Start()

94 { TaskStatus &= ~STARTED; };
95

96 void SendMessage(Message & msg)
97 {msg.Sender = currTask; msgQ.Put(msg); };
98

99 int checkStacks();

100 unsigned int userStackUsed() const;
101

102 unsigned int userStackBase() const
103 { return (unsigned int)Stack; };

104

105 unsigned int userStackSize() const
106 { return US_size; };

107

108 enum { RUN = 0x00,

109 BLKD =0x01,

110 STARTED =0x02,

111 TERMINATED = 0x04,

112 SLEEP  =0x08,

113 FAILED =0x10,

114 %

115

116 static Task * TaskIDs[];

117  private:

118 Task();

119 ~Task();

120

121 void clearHitCount()
122 { TaskHitCount = 0; };
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123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

unsigned int HitCount() const
{ return TaskHitCount; };

enum { userStackMagic = 'U', superStackMagic ='S'};

static void Terminate_0();

static int SchedulerStarted;
static Task * currTask;
char * Stack; /Il user stack base
const unsigned long US_size; /I user stack size
const char * name;
int ExitCode;
Queue_Gsem_Psem<Message> msgQ;
h

#endif _ TASK_HH_DEFINED__

#endif ASSEMBLER
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A.3 Task.cc
1 /I Task.cc
2
3 #include "Task.hh"
4 #include "Taskld.hh"
5  #include "System.config"
6  #include "os.hh"
7  #include "SerialOut.hh"
8
9
10 int Task::SchedulerStarted = 0;
11
12 Task * Task::currTask = 0;
13  Task* Task:: TaskIDS[TASKID_COUNT];
14
15 /I
16  extern char idle_stack;
17  extern char IUS_top;
18
19  Task:Task()
20 1 US_size(&IUS_top - &idle_stack),
21 priority(0),
22 name("ldle Task"),
23 TaskStatus(RUN),
24 next(this),
25 nextWaiting(0),
26 Stack(&idle_stack),
27 msgQ(1),
28 ExitCode(0)
29
30 TaskIDs[TASKID_IDLE] = this;
31}
32 I
33  Task:Task(void (*main)(),
34 unsigned long usz,
35 unsigned short gsz,
36 unsigned short prio,
37 const char * taskName
38
39 1 US_size(usz),
40 priority(prio),
41 name(taskName),
42 TaskStatus(STARTED),
43 nextWaiting(0),
44 msgQ(gsz),
45 ExitCode(0)
6 |
47  intj;
48
49 Stack = new char[US_size]; // allocate stack
50
51 for (i=0; i< US_size;) Stack[i++] = userStackMagic;
52
53 Task_AO = OxAAAA5555; Task_Al = OxAAAA4444;
54 Task_A2 = 0xAAAA3333; Task_A3 = 0xAAAA2222;
55 Task_A4 = 0xAAAA1111; Task_A5 = OxAAAA0000;
56 Task_A6 = OxAAAAGGG6;
57 Task_DO = 0xDDDD7777; Task_D1 = 0xDDDD6666;
58 Task_D2 = 0xDDDD5555; Task_D3 = 0xDDDD4444;
59 Task_D4 = 0xDDDD3333; Task_D5 = 0xDDDD2222;
60 Task_D6 = 0xDDDD1111; Task_D7 = 0xDDDDO000O;
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61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

Task_PC =main;
Task_CCR = 0x0000;

Task_USP = (unsigned long *)(Stack + US_size);
*--Task_USP = (unsigned long)Terminate_0;

if (lcurrTask)
currTask = new Task();

{
0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
next = currTask->next;
currTask->next = this;
os::set_INT_MASK(old_INT_MASK);
}
}
I
void main()

{
if (Task::SchedulerStarted) return -1;

for (inti=0;i<TASKID_COUNT; i++) Task::TasklIDs[i] = 0;
setupApplicationTasks();

for (Task * t = Task::currTask->next; t |= Task::currTask; t = t->next)
t->TaskStatus &= ~Task::STARTED;

Task::SchedulerStarted = 1,
os::init(os::Interrupt_IO); // switch on interrupt system
os:set INT_MASK(os:ALL_INTS);

Task::Dsched();
for (;;) os::Stop();

return O; /* not reached */
}
It
void Task::Terminate_0()
{

Terminate(0);
}
I
void Task:: Terminate(int ex)

{

SerialOut so(ErrorOut);
s0.Print("\n%s Terminated", currTask->name);
}
currTask->ExitCode = ex;
currTask->TaskStatus |= TERMINATED;
Dsched();
}
11
int Task::checkStacks()

if ((char *)Task_USP < Stack ) return1;
if ((char *)Task_USP >= Stack + US_size) return 2;
return O;

}
"
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122 unsigned int Task::Sleep(unsigned int ticks)

123

124 if (!SchedulerStarted) return O;

125 if (ticks == 0) ticks++;

126

127 {

128 0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
129 currTask->TaskStatus |= SLEEP;

130 currTask->TaskSleep = ticks;

131 os::set_INT_MASK(old_INT_MASK);
132 }

133 Dsched();

134 return ticks;

135}

136 I/

137  unsigned int Task::userStackUsed() const
138 {

139 for (int i = 0; Stack[i] == userStackMagic; i++) /* empty */ ;
140 return US_size - i;

141}
142 /I
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A.4 0s.hh
1 /*os.hh*
2
3 #include "Channels.hh"
4
5  #ifndef __ OS_HH_DEFINED__
6  #define __ OS_HH_DEFINED__
7
8  extern "C" void * sbrk(unsigned long);
9 template <class Type> class RingBuffer;
10 template <class Type> class Queue;
11  template <class Type> class Queue_Gsem;
12 template <class Type> class Queue_Psem;
13  template <class Type> class Queue_Gsem_Psem;
14  class Semaphore;
15
16  typedef unsigned long HW_ADDRESS;
17
18 class os
19 {
20 public:
21 friend class Monitor;
22 friend class Serialln;
23 friend class SerialOut;
24 friend void * sbrk(unsigned long);
25
26 static void Stop(); /I for Idle Task only
27
28 static unsigned long long getSystemTime(); // system time in ms
29
30 enum INIT_LEVEL {
31 Not_|Initialized = 0,
32 Polled_I10 =1,
33 Interrupt_I0 =2
34 h
35
36 static void init(INIT_LEVEL new_level);
37 static int setBaudRate(Channel, int);
38 static int setSerialMode(Channel, int databits, int parity);
39 static INIT_LEVEL initLevel() {return init_level; };
40 static void *  top_of RAM() {return free_RAM; }
41
42 private:
43 os(); // dont instantiate
44
45 static char * free_ RAM,;
46
47 static void Panic(short * SP);
48

49 static INIT_LEVEL init_level,

50 static void initDuart(HW_ADDRESS base, int baudA, int baudB);
51 static void initChannel(HW_ADDRESS base, int baud);

52 static void resetChannel(HW_ADDRESS base);

53

54 static unsigned int readDuartRegister(HW_ADDRESS req)
55 {

56 int result;

57 asm volatile (

58 "MOVE.L %1, A0

59 TRAP #14
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60 MOVE.L DO, %0" : "=g"(result) : "g"(reg) : "d0", "a0"
61 )i

62 return result;

63 j#

64

65 static void writeRegister(HW_ADDRESS reg, int val);
66

67  public:

68 enum INT_MASK {

69 NO_INTS = 0x07,

70 ALL_INTS = 0x00

71 h

72

73 static INT_MASK set_INT_MASK(INT_MASK new_INT_MASK)
74 {

75 INT_MASK old_INT_MASK;

76

77 asm volatile (

78 "MOVE.B %1, D1

79 TRAP #13

80 MOVE.B DO, %0"

81 :"=g"(old_INT_MASK)
82 : "g"(new_INT_MASK)
83 :"do", "d1"

84 );

85

86 return old_INT_MASK;

87 I

88

89

90  #endif _OS_HH_DEFINED__

91
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A5 o0s.cc
1 [*os.cc*
2 #include "System.config"
3 #include "os.hh"
4 #include "Task.hh"
5  #include "Semaphore.hh"
6  #include "SerialOut.hh"
7  #include "Channels.hh"
8  #include "Duart.hh"
9
10  os:INIT_LEVEL os::init_level = Not_lInitialized;
11
12 /I
13/
14 /I functions required by libgcc2.a...
15
16
17  extern int edata;
18  char * os::free_RAM = (char *)&edata;
19
20 /I
21  extern "C" void * sbrk(unsigned long size)
22 |
23 void * ret = os::free_RAM;
24
25 os::free_RAM += size;
26
27 if (0s::free_RAM > *(char **)0) // out of memory
28 {
29 os::free_RAM -= size;
30 ret = (void *) -1;
31 }
32
33 return ret;
34}
35
36  extern "C" void * malloc(unsigned long size)
37 |
38  void * ret = sbrk((size+3) & OXFFFFFFFC);
39
40 if (ret == (void *)-1) return O;
41 return ret;
42 }
43
44 I
45  extern "C" void free(void *)
6 |
47 '}
48 |/
49  extern "C" void write(int, const char *text, int len)
50
51  SerialOut so(SERIAL_1);
52 so.Print(text, len);
53 }
54 I
55  extern "C" void _exit(int ex)
56
57 Task::Terminate(ex);
58 /* not reached */
59 for (;);
60 }
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61

62 /I

63 /I

64  // crt0.S interface functions...

65 /I

66

67  void os::Stop()

68 {

69 asm("TRAP #0");

70 }

1

72 void os::writeRegister(HW_ADDRESS reg, int v)

73 {

74 asm("MOVE.L %0,A0; MOVE.L %1,D0; TRAP #15": : "g"(reg), "g"(v) :
"do","a0");

7%}

76

77 [/l return time since power on (or reload) in milliseconds
78

79

80  extern volatile unsigned long sysTimeLo; //in crt0.S
81  extern volatile unsigned long sysTimeHi; //in crt0.S

82

83  unsigned long long os::getSystemTime()

84 {

85 for (;;)

86 {

87 unsigned long sys_high_1 = sysTimeHi;

88 unsigned long sys_low = sysTimeLo;

89 unsigned long sys_high_2 = sysTimeHi;

90

91 /I sys_low overflows every 49.86 days. If this function is
92 /I hit by that event (very unlikely) then it may be that

93 /I sys_high_1 != sys_high_2. If so, we repeat reading
94 /I the system time.

95 if (sys_high_1 !=sys_high_2) continue;

96

97 unsigned long long ret = sys_high_1;

98 ret <<= 32,

99 return ret + sys_low;

100 }

101 }

102 /1

103 /I print stack frame in case of fatal errors

104 /I

105  void os::Panic(short * SP)

106 {

107  SerialOut so(SERIAL_O_POLLED);

108 inti;

109

110 s0.Print("\n\n ");
111 s0.Print("\nFATAL ERROR STACK DUMP: SP=%8X", SP);
112 s0.Print("\n ");

113 /I for (i=-5;i<0;i++)

114 /I s0.Print("\n[SP - 0x%2X] : %4X" , -2*i, SP[i] & OXFFFF);

115 s0.Print("\n[SP + 0x00] : %4X  (SR)", SP[0] & OxFFFF);

116 so.Print("\n[SP + 0x02] : %4X%4X (PC)" , SP[1] & OxFFFF, SP[2] & OxFFFF);
117 so.Print("\n[SP + 0x06] : %4X  (FType/Vector)", SP[3] & OxFFFF);

118 for (i=4;i<10; i++)

119 s0.Print("\n[SP + 0x%2X] : %4X" , 2*, SP[i] & OXFFFF);

120 so.Print("\n \n");

121}
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122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

I/
I
/I hardware initialization functions...
1

void os::init(INIT_LEVEL iLevel)

{
enum { green = 1<<7}; // green LED, write to BCLR turns LED on

if (init_level < Polled_|O)
{
initDuart(DUART, CSR_9600, CSR_9600);
init_level = Polled_10;

}
if (iLevel == Interrupt_lO && init_level < Interrupt_lO)
{
readDuartRegister ((DUART_STOP); /I stop timer

writeRegister(xDUART_CTUR, CTUR_DEFAULT); // set CTUR
writeRegister(xDUART_CTLR, CTLR_DEFAULT); // set CTLR
readDuartRegister(rDUART_START); // start timer

writeRegister(WDUART_IMR, INT_DEFAULT);
init_level = Interrupt_IO;

}
I

void
os:initDuart(HW_ADDRESS base, int baudA, int baudB)
{
I/ setup outputs
writeRegister((HW_ADDRESS)(base + w_OPCR), OPCR_DEFAULT);

resetChannel(base + _A);
resetChannel(base + _B);

writeRegister(base + w_ACR, ACR_DEFAULT);

initChannel(base + _A, baudA);
initChannel(base + _B, baudB);
}
Il
void os::resetChannel(HW_ADDRESS channel_base)

{
const HW_ADDRESS cr = channel_base + w_CR;

writeRegister(cr, CR_RxXRESET); // reset receiver
writeRegister(cr, CR_TXRESET); // reset transmitter
}
1l
void os::initChannel(HW_ADDRESS channel_base, int baud)
{
const HW_ADDRESS mr = channel_base + x_MR;
const HW_ADDRESS cr = channel_base + w_CR;
const HW_ADDRESS csr = channel_base + w_CSR;

writeRegister(cr, CR_MR1); Il select MR1

writeRegister(mr, MR1_DEFAULT); // set MR1
writeRegister(mr, MR2_DEFAULT); // set MR2
writeRegister(csr, baud); /I set baud rate
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183 writeRegister(cr, CR_TXENA); // enable transmitter
184 writeRegister(cr, CR_RxENA);  // enable receiver

185 }

186 /I

187  int os::setSerialMode(Channel ch, int databits, int parity)

188 {

189  intmrl = MR1_DEFAULT & ~(MR1_P_MASK | MR1_BITS_mask);
190

191 switch(databits)

192 {

193 case 5: mrl |= MR1_BITS_5; break;

194 case 6: mrl [= MR1_BITS_6; break;

195 case 7: mrl |= MR1_BITS_7; break;

196 case 8: mrl |= MR1_BITS_8; break;

197 default: return -1;

198 }

199

200 switch(parity)

201

202 case 0: mrl|=MR1_P_EVEN ; break;

203 case 1: mrl|=MR1_P_ODD ; break;

204 case 2: mrl|=MR1_P_LOW ; break;

205 case 3: mrl|=MR1_P_HIGH ; break;

206 case 4: mrl |= MR1_P_NONE ; break;

207 default: return -1;

208 }

209

210 switch(ch)

211

212 case SERIAL_O:

213 writeRegister(WDUART_CR_A, CR_MR1); I/l select MR1
214 writeRegister(xDUART_MR_A, mrl); /I set MR1
215 return O;

216

217 case SERIAL_1:

218 writeRegister(WDUART_CR_B, CR_MR1); /I select MR1
219 writeRegister(xDUART_MR_B, mrl); /l set MR1
220 return O;

221 }

222

223 return -1;

224 }

225 /f

226  int os::setBaudRate(Channel ch, int baud)

227 |

228 intcsr;

229

230 switch(baud)

231 {

232 case 38400: if (ACR_DEFAULT & ACR_BRG_1) return-1;
233 csr = CSR_38400; break;

234 case 19200: if (~ACR_DEFAULT & ACR_BRG_1) return -1;
235 csr= CSR_19200; break;

236 case 9600: csr=CSR_9600; break;

237 case 4800: csr=CSR_4800; break;

238 case 2400: csr=CSR_2400; break;

239 case 1200: csr=CSR_1200; break;

240 case 600: csr=CSR_600; break;

241 default: return -1;

242 }

243

244 switch(ch)
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245 {
246 case SERIAL_O: writeRegister(WDUART_CSR_A, csr); return O;
247 case SERIAL_1: writeRegisterf(WDUART_CSR_B, csr); return O;
248 }

249 return -1;
250 }
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A.6 Semaphore.hh

1 #ifdef ASSEMBLER

2 #define SemaCount

3 #define SemaNextTask 4

4  #else |ASSEMBLER

5  #ifndef _ SEMAPHORE_HH_DEFINED _

6 #define SEMAPHORE_HH_DEFINED

7

8  class Task;

9

10  class Semaphore

1 {

12 public:

13 Semaphore() :count(l), nextTask(0) {};
14 Semaphore(int cnt) : count(cnt), nextTask(0) {};
15 void P() {

16 asm volatile ("MOVE.L %0, A0

17 TRAP #3"::"g"(this) : "d0", "
18 ¥

19 void V() {

20 asm volatile ("MOVE.L %0, A0

21 TRAP #4": :"g"(this) : "d0", "a0");
22 h

23 int Poll() {

24 intr;

25

26 asm volatile ("MOVE.L %1, AO

27 TRAP #5

28 MOVE.L DO, %0"

29 1 "=g"(r) : "g"(this) : "d0", "a0");
30 returnr;

31 h

32  private:

33 long count;

34 Task * nextTask;

3Bk

36 #endif _ SEMAPHORE_HH_DEFINED

37 #endif ASSEMBLER

w
[e2)
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A.7 Queue.hh
1 /I Queue.hh
2
3 #ifndef _ QUEUE_HH_DEFINED__
4 #define __ QUEUE_HH_DEFINED__
5
6  #include "os.hh"
7  #include "Semaphore.hh"
8
9  #pragma interface
10
11
12  template <class Type> class RingBuffer
13 {
14 public:
15 RingBuffer(unsigned int Size);
16 ~RingBuffer();
17
18 int ISEmpty() const { return (count) ?20:-1;}
19 int IsFull() const { return (count <size) ?0:-1; };
20
21 int Peek(Type & dest) const;
22
23  protected:
24 enum { QUEUE_OK =0, QUEUE_FAIL =-1};
25
26 virtual int PolledGet(Type & dest) = 0;
27 virtual int PolledPut(const Type & dest) = 0;
28 inline void Getltem(Type & source);
29 inline void Putltem(const Type & src);
30
31 unsigned int size;
32 unsigned int count;
33
34  private:
35 Type * data;
36 unsigned int get;
37 unsigned int put;
338 %
39 I/
40  template <class Type> class Queue : public RingBuffer<Type>
41 |
42 public:
43 Queue(unsigned int sz)
44 : RingBuffer<Type>(sz), overflow(0), underflow(0)
45 s
46
a7 unsigned int getUnderflowCount() const { return underflow; };
48 void clearUnderflowCounter()  { underflow =0; };
49 unsigned int getOverflowCount() const  { return overflow; };
50 void clearOverflowCounter()  { overflow =0; };
51
52 int PolledGet(Type & dest);
53 int PolledPut(const Type & dest);
54
55  private:
56 unsigned int underflow;
57 unsigned int overflow;
58 k
59 /I
60 template <class Type> class Queue_Gsem : public RingBuffer<Type>
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61 {

62  public:

63 Queue_Gsem(unsigned int sz)

64 : RingBuffer<Type>(sz), overflow(0), GetSemaphore(0)
65 3

66

67 unsigned int getOverflowCount() const  { return overflow; };
68 void clearOverflowCounter() {overflow=0; }

69

70 int PolledGet(Type & dest);

71 int PolledPut(const Type & dest);

72 void Get(Type & dest);

73

74  private:

75 Semaphore GetSemaphore;

76 unsigned int overflow;

7%

78

79  template <class Type> class Queue_Psem : public RingBuffer<Type>
80 {

81  public:

82 Queue_Psem(unsigned int sz)

83 : RingBuffer<Type>(sz),

84 PutSemaphore(sz),

85 underflow(0)

86 {;

87

88 unsigned int getUnderflowCount() const { return underflow; };
89 void clearUnderflowCounter() {underflow=0; }
90

91 int PolledGet(Type & dest);

92 int PolledPut(const Type & dest);

93 void Put(const Type & dest);

94

95  private:

96 unsigned int underflow;

97 Semaphore PutSemaphore;

98

99 /I

100 template <class Type> class Queue_Gsem_Psem : public RingBuffer<Type>
101

102  public:

103 Queue_Gsem_Psem(unsigned int sz)

104 : RingBuffer<Type>(sz), PutSemaphore(sz), GetSemaphore(0)
105 3

106

107 int PolledGet(Type & dest);

108 int PolledPut(const Type & dest);

109 void Get(Type & dest);
110 void Put(const Type & dest);

111

112 private:

113 Semaphore GetSemaphore;
114 Semaphore PutSemaphore;
115 )

116 /1

117  #endif__ QUEUE_HH_DEFINED__
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A.8 Queue.cc

1 /I Queue.cc

2

3 #pragma implementation "Queue.hh"

4

5  #include "Queue.hh"

6  #include "Message.hh"

7

8 I

9 template <class Type> RingBuffer<Type>::RingBuffer(unsigned int Size)
10 : size(Size), get(0), put(0), count(0)

11

12 {

13 data = new Type[size];

14 }

15 |/

16  template <class Type> RingBuffer<Type>::~RingBuffer()

17

18 delete [] data;

19 }

20 /I

21  template <class Type> int RingBuffer<Type>::Peek(Type & dest) const
22 |

23  intret= QUEUE_FAIL;

24

25 {

26 0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
27 if (count) {dest =data[get]; ret=QUEUE_OK;}

28 os::set_INT_MASK(old_INT_MASK);

29 }

30 return ret;

31}

32 I

33 template <class Type> inline void RingBuffer<Type>::Getltem(Type & dest)
34

35 dest = data[get++];

36 if (get >=size) get=0;

37 count--;

38 }

39 I/

40 template <class Type> inline void RingBuffer<Type>::Putltem(const Type &src)
41 |

42 data[put++] = src;

43 if (put >=size) put=0;

44 count++;

45 }

46

47  template <class Type> int Queue<Type>::PolledGet(Type & dest)

48 {

49 int ret;

50

51 {

52 0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
53 if (count) { Getltem(dest); ret= QUEUE_OK;}

54 else {'underflow++; ret = QUEUE_FAIL; }

55 os::set_INT_MASK(old_INT_MASK);

56 }

57 return ret;

58 }

59 /I

60 template <class Type> int Queue<Type>::PolledPut(const Type & dest)
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61 {

62 intret;

63

64 {

65 0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
66 if (count < size) {Putltem(dest); ret= QUEUE_OK; }

67 else { overflow++; ret=QUEUE_FAIL;}

68 os::set_INT_MASK(old_INT_MASK);

69 }

70 return ret;

71}

72

73  template <class Type> void Queue_Gsem<Type>::Get(Type & dest)

74 {

75 GetSemaphore.P();

76 {

77 0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
78 Getltem(dest);

79 os::set_INT_MASK(old_INT_MASK);

80 }

81 }

82 /I

83  template <class Type> int Queue_Gsem<Type>::PolledGet(Type & dest)
84 {

85 if (GetSemaphore.Poll()) return QUEUE_FAIL;

86 {

87 0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
88 Getltem(dest);

89 os::set_INT_MASK(old_INT_MASK);

90 }

91 return QUEUE_OK;

922 }

93 /I

94  template <class Type> int Queue_Gsem<Type>::PolledPut(const Type & dest)
95 {

96 intret= QUEUE_FAIL;

97

98 {

99 0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
100 if (count < size)

101 {

102 Putltem(dest);

103 GetSemaphore.V();

104 ret = QUEUE_OK;

105 }

106 os::set_INT_MASK(old_INT_MASK);

107 }

108 return ret;

109 }

110 /f

111 template <class Type> int Queue_Psem<Type>::PolledGet(Type & dest)
112

113  intret = QUEUE_FAIL;

114

115 {

116 0s:INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
117 if (count)

118 {

119 Getltem(dest);

120 PutSemaphore.V();

121 ret = QUEUE_OK;

122 }
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123
124
125
126
127
128
129
130
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133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
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152
153
154
155
156
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160
161
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164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

else

underflow++;
ret = QUEUE_FAIL;
}
os::set_INT_MASK(old_INT_MASK);
}
return ret;
}
Il
template <class Type> void Queue_Psem<Type>::Put(const Type & dest)
{
PutSemaphore.P();
{
0s:INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
Putltem(dest);
os::set_INT_MASK(old_INT_MASK);
}

}
I

template <class Type> int Queue_Psem<Type>::PolledPut(const Type & dest)
{
if (PutSemaphore.Poll()) return QUEUE_FAIL;
{
0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
Putltem(dest);
os::set_INT_MASK(old_INT_MASK);
}
return QUEUE_OK;
}
I
template <class Type> void Queue_Gsem_Psem<Type>::Get(Type & dest)
{
GetSemaphore.P();
{
0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
Getltem(dest);
os::set_INT_MASK(old_INT_MASK);
}
PutSemaphore.V();
}
1l
template <class Type> int Queue_Gsem_Psem<Type>::PolledGet(Type & dest)
{
if (GetSemaphore.Poll()) return QUEUE_FAIL;
{
0s:INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
Getltem(dest);
os::set_INT_MASK(old_INT_MASK);
}
return QUEUE_OK;
}
1l
template <class Type> void Queue_Gsem_Psem<Type>::Put(const Type & dest)
{
PutSemaphore.P();
{
0s::INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
Putltem(dest);
os::set_INT_MASK(old_INT_MASK);
}
GetSemaphore.V();
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185 }

186 //

187  template <class Type> int Queue_Gsem_Psem<Type>::PolledPut(const Type &
dest)

188 {

189 if (PutSemaphore.Poll()) return QUEUE_FAIL;

190 {

191 0s:INT_MASK old_INT_MASK = os::set_INT_MASK(0s::NO_INTS);
192 Putltem(dest);

193 os::set_INT_MASK(old_INT_MASK);

194 }

195 GetSemaphore.V();
196 return QUEUE_OK;
197 }
198 /1
199  typedef Queue_Gsem_Psem<Message> MessageQueue;
200 typedef Queue_Gsem<unsigned char> seriallnQueue;

201  typedef Queue_Psem<unsigned char> serialOutQueue;
202 /f
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A.9 Message.hh

O~NO O~ WNPRE

e )
O WNRO

/ Message.hh

#ifndef __ MESSGAE_HH_DEFINED__
#define __ MESSGAE_HH_DEFINED__
class Message
{
public:
Message() : Type(0), Body(0), Sender(0) {};
Message(int t, void * b) : Type(t), Body(b), Sender(0) {};
int  Type;
void * Body;
const Task * Sender;

%

#endif _ MESSGAE_HH_DEFINED__
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A.10 Channels.hh

1 /I Channels.hh

2 #ifndef __ CHANNELS_HH_DEFINED__
3 #define __ CHANNELS HH_DEFINED__
4

5 enum Channel {

6 SERIAL_O =0,

7 SERIAL_1 =1,

8 SERIAL_O_POLLED =4,

9 SERIAL_1 POLLED =5,

10 DUMMY_SERIAL =8,

1 I8

12

13 extern Channel MonitorIn;

14  extern Channel MonitorOut;

15 extern Channel ErrorOut;

16 extern Channel GeneralOut;

17

[En
[ee]

#endif _ CHANNELS_HH_DEFINED__
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A.11 SerialOut.hh

/* SerialOut.hh */

#ifndef _ SERIALOUT _HH_DEFINED__
#define  SERIALOUT HH_DEFINED__

#include "Channels.hh"
/I forward declarations...

class Semaphore;
template <class Type> class Queue_Psem;

O©oO~NOOODSWNEPE

[EnY
o

11

12 class SerialOut

13 {

14  public:

15 SerialOut(Channel);

16 ~SerialOut();

17

18 static int Print(Channel, const char *, ...);
19 static int ISEmpty(Channel);

20

21 int Print(const char *, ...);

22 void Putc(int character);

23 private:

24 static int print_form(void (*)(int),

25 const unsigned char **&,
26 unsigned const char * &);
27

28 static void Putc_0O(int c);

29 static void Putc_1(int c);

30 static void Putc_0_polled(int ¢); // Putc_0 before scheduler is
running

31 static void Putc_1_polled(int ¢); // Putc_1 before scheduler is
running

32 static void Putc_dummy(int ¢);  // dummy Putc to compute
length

33

34 Channel channel;

35

36 static Semaphore Channel_0;

37 static Semaphore Channel_1;

38

39 static Queue_Psem<unsigned char> outbuf_0;

40 static Queue_Psem<unsigned char> outbuf_1;

41

42 static int TxEnabled_0;

43 static int TxEnabled_1;

44 %

45

46 #endif _ SERIALOUT_HH_DEFINED__



160

A.12 SerialOut.cc

A.12 SerialOut.cc

1 /*SerialOut.cc */
2
3 #include "System.config"
4 #include "0s.hh"
5 #include "Task.hh"
6 #include "SerialOut.hh"
7  #include "Duart.hh"
8
9 /I
10 Queue_Psem<unsigned char> SerialOut::outbuf 0 (OUTBUF_0_SIZE);
11 Queue_Psem<unsigned char> SerialOut::outbuf_1 (OUTBUF_1_SIZE);
12
13 int SerialOut::TxEnabled_0 = 1; /I pretend Transmitter is enabled
at startup
14 int SerialOut::TxEnabled_1 = 1;
15
16 Semaphore SerialOut::Channel_0O;
17 Semaphore SerialOut::Channel_1;
18
19 /I
20 SerialOut::SerialOut(Channel ch) : channel(ch)
21
22 switch(channel)
23 {
24 case SERIAL_O:
25 if (Task::SchedulerRunning()) Channel_0.P();
26 else channel = SERIAL_O_POLLED;
27 return;
28
29 case SERIAL_1:
30 if (Task::SchedulerRunning()) Channel_1.P();
31 else channel = SERIAL_1_POLLED;
32 return;
33
34 case SERIAL_O_POLLED:
35 case SERIAL_1_POLLED:
36 return;
37
38 default:
39 channel = DUMMY_SERIAL; /[l dummy channel
40 return;
41 }
42 }
43 |/l
44  SerialOut::~SerialOut()
45 {
46 switch(channel)
47 {
48 case SERIAL_0: Channel_0.V(); return;
49 case SERIAL_1: Channel_1.V(); return;
50 }
51 }
52 I
53 void SerialOut::Putc_0(int ¢)
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
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79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

{

unsigned char cc = c;

outbuf_0.Put(cc);
if (ITxEnabled_0)
{
TxEnabled_0 = 1;
os::writeRegister(WDUART_CR_A, CR_TxENA); // enable Tx
}

}
I

void SerialOut::Putc_1(int c)
{

unsigned char cc = c;

outbuf_1.Put(cc);
if ({TxEnabled_1)
{
TxEnabled_1 =1;
os::writeRegister(WDUART_CR_B, CR_TxENA); // enable Tx
}

}
I

void SerialOut::Putc_0_polled(int c)

if (os::initLevel() < os::Polled_IO) os::init(os::Polled_lO);

while (!(os::readDuartRegister(rDUART_SR_A) & SR_TxRDY)) /**/ ;
os::writeRegister(WDUART_THR_A, c¢);

while (!(os::readDuartRegister(rDUART_SR_A) & SR_TxRDY)) /*¥/ ;

}
I

void SerialOut::Putc_1_polled(int c)

if (os::initLevel() < os::Polled_IO) os::init(os::Polled_lO);
while (!(os::readDuartRegister(rDUART_SR_B) & SR_TxRDY)) /**/ ;
os::writeRegister(WDUART_THR_B, c¢);

while (!(os::readDuartRegister(rDUART_SR_B) & SR_TxRDY))  /**/ ;
}
1
void SerialOut::Putc_dummy(int)
{
/I dummy Putc to compute length
}
I
void SerialOut::Putc(int c)
{
switch(channel)
{
case SERIAL_O: Putc_0(c); return;
case SERIAL_1: Putc_1(c); return;
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110 case SERIAL_O0 POLLED: Putc_0_polled(c); return;
111 case SERIAL_1 POLLED: Putc_1 polled(c); return;
112 case DUMMY_SERIAL: return;

113 default: return;

114 }

115 }

116 /I

117

118 const char * const hex = "0123456789abcdef";
119 const char * const HEX = "0123456789ABCDEF";

120

121 /I

122  int SerialOut::ISEmpty(Channel channel)

123

124 switch(channel)

125 {

126 case 0: return outbuf_0.ISEmpty();

127 case 1: return outbuf_1.ISEmpty();

128

129 return 1; // Polled, dummy and remote IO is always empty
130 }

131 /I

132 int SerialOut::Print(Channel channel, const char * format, ...)
133 {

134  SerialOut so(channel);

135

136 void (*putc)(int);

137 const unsigned char ** ap = (const unsigned char **)&format;
138 const unsigned char *f = *ap++;

139 intlen=0;

140 intcc;

141

142 switch(channel)

143 {

144 case SERIAL_O: putc = Putc_0; break;

145 case SERIAL_1: putc = Putc_1; break;

146 case SERIAL_O_POLLED: putc = Putc_0_polled; break;
147 case SERIAL_1_POLLED: putc = Putc_1_polled; break;
148 case DUMMY_SERIAL: putc = Putc_dummy; break;
149 default: return O;

150 }

151

152 while (cc = *f++)

153 if (cc !='%") { putc(cc); len++;}

154 else len += print_form(putc, ap, f);

155

156 return len;

157 }

158 /I

159 int SerialOut::Print(const char * format, ...)

160

{
161 void (*putc)(int);
162 const unsigned char ** ap = (const unsigned char **)&format;
163 const unsigned char * f = *ap++;
164 intlen=0;
165 intcc;
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166

167 switch(channel)

168 {

169 case SERIAL_O: putc = Putc_0; break;

170 case SERIAL_1: putc = Putc_1; break;

171 case SERIAL_O0_POLLED: putc = Putc_0_polled; break;
172 case SERIAL_1_POLLED: putc = Putc_1_polled; break;
173 case DUMMY_SERIAL: putc = Putc_dummy; break;
174 default: return O;

175 }

176

177 while (cc = *f++)

178 if (cc 1="%") {putc(cc); len++;}

179 else len += print_form(putc, ap, f);

180

181 return len;

182 }

183 /I

184 int

185 SerialOut::print_form(void (*putc)(int),

186 const unsigned char **& ap,

187 const unsigned char * & f)

188 {

189 intlen =0;

190 intmin_len=0;

191 int buf_idx =0;

192 union { const unsigned char * cp;

193 const char * scp;

194 long lo;

195 unsigned long ul; } data;

196 intcc;

197 unsigned char buf[10];

198

199 for (;})

200 {

201 switch(cc = *f++)

202 {

203 case '0". min_len *=10; continue;

204 case 'l min_len*=10; min_len+=1; continue;
205 case '2". min_len*=10; min_len +=2; continue;
206 case '3" min_len *=10; min_len +=3; continue;
207 case '4: min_len*=10; min_len +=4; continue;
208 case '5". min_len*=10; min_len +=5; continue;
209 case '6". min_len*=10; min_len +=6; continue;
210 case'7". min_len*=10; min_len +=7; continue;
211 case '8 min_len*=10; min_len +=8; continue;
212 case'9" min_len*=10; min_len +=9; continue;
213

214 case '%"

215 putc('%");

216 return 1,

217

218 case 'c"

219 data.cp = *ap++;

220 putc(data.lo);

221 return 1,
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222

223 case 'd"

224 data.cp = *ap++;

225 if (data.lo < 0)

226 {

227 data.lo = -data.lo;

228 putc(-); len++;

229 }

230

231 do { buf[buf_idx++] ='0' + data.ul%10;

232 data.ul = data.ul/10;

233 } while (data.lo);

234

235 while (min_len-- > buf_idx) { putc( ); len++;
}

236

237 do { cc = buf[--buf_idx]; putc(cc); len++;}
238 while (buf_idx);

239 return len;

240

241 case's"

242 data.cp = *ap++;

243 if (data.scp == 0) data.scp ="(null)";

244 while (cc = *data.cp++)

245 { putc(cc); len++; min_len--;}

246

247 while (min_len-- > 0)

248 {putc(""); len++;}

249 return len;

250

251 case 'X':

252 data.cp = *ap++;

253 do { buf[buf_idx++] = hex[Ox0OF & data.ul];
254 data.ul >>= 4;

255 } while (data.ul);

256

257 while (min_len-- > buf_idx) { putc('0"); len++;
}

258

259 do { cc = buf[--buf_idx]; putc(cc); len++;}
260 while (buf_idx);

261 return len;

262

263 case 'X"

264 data.cp = *ap++;

265 do { buf[buf_idx++] = HEX[OXOF & data.ul];
266 data.ul >>= 4;

267 } while (data.ul);

268

269 while (min_len-- > buf_idx) { putc('0"); len++;
}

270

271 do { cc = buf[--buf_idx]; putc(cc); len++;}
272 while (buf_idx);

273 return len;

274 }
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275 }
276}
277 I
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A.13 Serialln.hh

1 /* Serialln.hh */

2

3 #ifndef __ SERIALIN_HH_DEFINED__
4 #define __SERIALIN_HH_DEFINED__
5

6 #include "Channels.hh"

7

8 // forward declarations...

9 class Semaphore;

10 class SerialOut;

11 template <class Type> class Queue_Gsem;
12

13 class Serialln

14 {

15 public:

16 Serialln(Channel);

17 ~Serialln();

18

19 static unsigned int getOverflowCounter(Channel);
20

21 int Getc();

22 int Pollc();

23 int Peekc();

24 int Gethex(SerialOut &);

25 int Getdec(SerialOut &);

26

27 enum SerialError

28 {

29 OVERRUN_ERROR =1,

30 PARITY_ERROR =2,

31 FRAME_ERROR =3,

32 BREAK_DETECT =4

33 h

34 private:

35 Channel channel;

36

37 static Semaphore Channel_0;

38 static Semaphore Channel_1;

39

40 static Queue_Gsem<unsigned char> inbuf_0;
41 static Queue_Gsem<unsigned char> inbuf_1;
42 %

43

IN
N

#endif _ SERIALIN_HH_DEFINED__
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A.14 Serialln.cc

O©oO~NOOODSWNEPE
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50
51
52
53
54

/* Serialln.cc */

#include "System.config"
#include "Serialln.hh"
#include "SerialOut.hh"
#include "Task.hh"
#include "Queue.hh"

Queue_Gsem<unsigned char> Serialln::inbuf_0 (INBUF_0_SIZE);
Queue_Gsem<unsigned char> Serialln::inbuf_1 (INBUF_1_SIZE);

Semaphore Serialln::Channel_0;
Semaphore Serialln::Channel_1;

Il
Serialln::Serialln(Channel ch) : channel(ch)
{
switch(channel)
{
case SERIAL_O: Channel_0.P(); break;
case SERIAL_1: Channel_1.P(); break;
}
}

I

Serialln::~Serialln()

switch(channel)
{
case SERIAL_0: Channel_0.V(); break;
case SERIAL_1: Channel_1.V(); break;
}
}

I
int Serialln::Getc()

{

unsigned char cc;

switch(channel)
{
case SERIAL_O: inbuf_0.Get(cc); return cc;
case SERIAL_1: inbuf 1.Get(cc); return cc;
default: return -1;
}
}

I

int Serialln::Pollc()

{

unsigned char cc;

switch(channel)
{
case SERIAL_O: return inbuf_0.PolledGet(cc) ?-1: cc;
case SERIAL_1: return inbuf_1.PolledGet(cc) ? -1 : cc;
default: return -1;
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55 }

56 }

57 I

58 int Serialln::Peekc()

59 {

60 unsigned char cc;

61

62 switch(channel)

63 {

64 case SERIAL_O: return inbuf_0.Peek(cc) ?-1: cc;
65 case SERIAL_1: return inbuf_1.Peek(cc) ?-1: cc;
66 default: return -1;

67 }

68 }

69 |/

70 int Serialln::Gethex(SerialOut &s0)

71 |

72 intret=0;

73 intcc;

74

75 for (;;) switch(cc = Peekc())

76 {

77 case -1: // no char arrived yet

78 Task::Sleep(1);

79 continue;

80

81 case '0": case '1": case '2": case '3" case '4"
82 case '5': case '6": case '7": case '8" case '9":
83 ret <<= 4;

84 ret += cc-'0";

85 s0.Print("%c", Pollc()); // echo char
86 continue;

87

88 case 'A". case 'B": case 'C":

89 case 'D'": case 'E'": case 'F"

90 ret <<= 4;

91 ret += cc+10-'A’;

92 s0.Print("%c", Polic()); // echo char
93 continue;

94

95 case 'a": case 'b'": case 'c":

96 case 'd": case 'e": case 'f".

97 ret <<= 4;

98 ret += cc+10-'a’;

99 so.Print("%c", Polic()); // echo char
100 continue;

101

102 default:

103 return ret;

104 }

105 }

106 //

107 int Serialln::Getdec(SerialOut &s0)

108 {

109 intret=0;

110 intcgc;
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111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

for (;;) switch(cc = Peekc())
{
case -1: // no char arrived yet
Task::Sleep(1);
continue;

case '0": case '1": case '2". case '3". case '4".
case 'b": case '6'": case '7": case '8'": case '9"

ret *= 10;
ret += cc-'0";
so0.Print("%c", Pollc()); // echo char
continue;
default:
return ret;
}
}
I
unsigned int Serialln::getOverflowCounter(Channel channel)
{
switch(channel)
{
case SERIAL_O: return inbuf_0.getOverflowCount();
case SERIAL_1: return inbuf_1.getOverflowCount();
default: return 0;
}
}
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A.15 Taskld.hh

1 // Taskld.hh

2

3 enum { TASKID_IDLE =0,

4 TASKID_MONITOR,

5 TASKID_COUNT /I number of Task IDs
6 8

7

8 #define IdleTask (Task::TaskIDsS[TASKID_IDLEY])
9

#define MonitorTask (Task::TaskIDS[TASKID_MONITOR])
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A.16 duart.hh
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#ifndef _ DUART_HH_DEFINED__
#define _ DUART_HH_DEFINED__

/* DUART base address */

#define DUART

0xA0000000

/* DUART channel offsets */

#define _A
#define _B

0x00
0x20

/* DUART register offsets */

#define x_MR
#define r_SR
#define w_CSR
#define w_CR
#define r RHR
#define w_THR
#define r_IPCR
#define w_ACR
#define r_ISR
#define w_IMR
#define x_CTUR
#define x_CTLR
#define x_IVR
#define r_IPU
#define w_OPCR
#define r_START
#define w_BSET
#define r_STOP
#define w_BCLR

0x00
0x04
0x04
0x08
0x0C
0x0C
0x10
0x10
0x14
0x14
0x18
0x1C
0x30
0x34
0x34
0x38
0x38
0x3C
0x3C

/* DUART read/write registers */

#define xXDUART_MR_A
#define xXDUART_MR_B
#define xXDUART_IVR

#define xXDUART_CTUR
#define xXDUART_CTLR

/* DUART read only registers */

#define - DUART_SR_A
#define - DUART_RHR_A (DUART +r_RHR + _A)
#define rDUART_IPCR
#define rDUART_ISR

#define - DUART_SR_B
#define -DUART_RHR_B (DUART +r_RHR + _B)
#define rDUART _IPU
#define -DUART_START (DUART +r_START )
#define -IDUART_STOP

/* DUART write only registers */

#define WDUART_CSR_A (DUART +w_CSR + _A)
#define WDUART_CR_A
#define wWDUART_THR_A (DUART +w_THR + _A)
#define WDUART_ACR

(DUART + x_MR + _A)
(DUART + x_MR + _B)
(DUART + x_IVR)
(DUART + x_CTUR)
(DUART + x_CTLR)
(DUART +r_SR +_A)
(DUART +r_IPCR
(DUART +r_ISR
(DUART +r_SR +_B)
(DUART +r_IPU

(DUART +r_STOP

(DUART +W_CR + _A)

(DUART +w_ACR
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55 #define wDUART_IMR  (DUART +w_IMR )
56 #define WDUART_CSR_B (DUART +w_CSR + _B)
57 #define WDUART CR_B (DUART+w_CR + _B)
58 #define WDUART_THR_B (DUART +w_THR + _B)
59 #define WDUART_OPCR (DUART +w_OPCR )
60 #define WDUART_BSET (DUART +w_BSET )
61 #define wDUART_BCLR (DUART +w_BCLR )
62

63 /* DUART MR1 bit definitions */

64 #define MR1_RxRTS (1<<7)

65 #define MR1_FFUL (1<<6)

66 #define MR1_EBLOCK  (1<<5)

67

68 #define MR1_P_EVEN  (0<<2)

69 #define MR1_P_ODD  (1<<2)

70 #define MR1_P_LOW (2<<2)

71 #define MR1_P_HIGH  (3<<2)

72 #define MR1_P_NONE  (4<<2)

73 #define MR1_P_void  (5<<2)

74  #define MR1_M_DATA  (6<<2)

75 #define MR1_M_ADDR  (7<<2)

76 #define MR1_P_MASK  (7<<2)

77

78 #define MR1_BITS_ 5  (0<<0)

79 #define MR1_BITS_6  (1<<0)

80 #define MR1_BITS_7  (2<<0)

81 #define MR1_BITS 8  (3<<0)

82 #define MR1_BITS_mask (3<<0)

83

84 #define MR1_DEFAULT (MR1_P_NONE | MR1_BITS_8)
85

86 /* DUART MR2 bit definitions */

87 #define MR2_NORM (0<<6)

88 #define MR2_ECHO (1<<6)

89 #define MR2_LOLO (2<<6)

90 #define MR2_RELO (3<<6)

91

92 #define MR2_TxRTS (1<<5)

93 #define MR2_TxCTS (1<<4)

94 #define MR2_STOP_2  (15<<0)

95 #define MR2_STOP_1  (7<<0)

96

97 #define MR2_DEFAULT MR2_STOP_2

98

99 /* DUART SR bit definitions */

100 #define SR_BREAK (1<<7)

101 #define SR_FRAME (1<<6)

102 #define SR_PARITY (1<<5)

103 #define SR_OVERRUN  (1<<4)

104 #define SR_TXEMPTY  (1<<3)

105 #define SR_TxRDY (1<<2)

106 #define SR_RxFULL (1<<1)

107 #define SR_RxRDY (1<<0)

108

109 /* DUART CSR bit definitions */

110 #define BD_600 5
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111  #define BD_1200
112 #define BD_2400
113 #define BD_4800
114 #define BD_9600 1

115 #define BD_19200 12

116 #define BD_38400 BD_19200

117 #define BD_TIMER 13

118

119 #define CSR_600 (BD_600 |BD_600 <<4)

120 #define CSR_1200 (BD_4800 | BD_4800 <<4)
121  #define CSR_2400 (BD_2400 | BD_2400 <<4)
122  #define CSR_4800 (BD_4800 | BD_4800 <<4)
123 #define CSR_9600 (BD_9600 | BD_9600 <<4)
124  #define CSR_19200 (BD_19200 | BD_19200<<4)
125 #define CSR_38400 (BD_38400 | BD_38400<<4)
126 #define CSR_TIMER (BD_TIMER | BD_TIMER<<4)

= O 0o,

127
128 /* DUART CR bit definitions */
129 #define CR_NOP (0<<4)

130 #define CR_MR1 (1<<4)

131 #define CR_RXRESET  (2<<4)

132 #define CR_TXRESET  (3<<4)

133 #define CR_EXRESET  (4<<4)

134 #define CR_BXRESET  (5<<4)

135 #define CR_B_START  (6<<4)

136 #define CR_B_STOP (7<<4)

137

138 #define CR_TXENA (1<<2)

139 #define CR_TxDIS (2<<2)

140

141 #define CR_RXENA (1<<0)

142 #define CR_RxDIS (2<<0)

143

144  /* DUART ACR bit definitions */

145 #define ACR_BRG_O (0<<7)

146 #define ACR_BRG_1 (1<<7)

147

148 #define ACR_CNT_IP2 (0<<4)

149 #define ACR_CNT_TxCA (1<<4)
150 #define ACR_CNT_TxCB (2<<4)
151 #define ACR_CNT_XTAL (3<<4)
152 #define ACR_TIM_IP2  (4<<4)

153 #define ACR_TIM_IP2_16 (5<<4)
154 #define ACR_TIM_XTAL (6<<4)
155 #define ACR_TIM_XTAL_16 (7<<4)
156

157 #define ACR_INT_IP3  (1<<3)

158 #define ACR_INT_IP2 (1<<2)

159 #define ACR_INT_IP1  (1<<1)

160 #define ACR_INT_IPO  (1<<0)

161

162 #define ACR_DEFAULT (ACR_TIM_XTAL_16 | ACR_BRG_0)
163 #define XTAL_FREQ (3686400/2)
164 #define XTAL_FREQ_16 (XTAL_FREQ/16)
165 #define TS_RATE 100

166 #define CT_DEFAULT  (XTAL_FREQ_16/TS_RATE)
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167 #define CTUR_DEFAULT (CT_DEFAULT / 256)
168 #define CTLR_DEFAULT (CT_DEFAULT & 255)
169

170 /* DUART IMR/ISR bit definitions */

171 #define INT_IPC (1<<7)

172  #define INT_BxB (1<<6)

173 #define INT_RxB (1<<5)

174  #define INT_TxB (1<<4)

175 #define INT_CT (1<<3)

176  #define INT_BxA (1<<2)

177  #define INT_RxA (1<<1)

178  #define INT_TxA (1<<0)

179

180 #define INT_DEFAULT  (INT_RxB | INT_TxB | INT_RXA | INT_TxA |
INT_CT)

181

182 /* DUART OPCR bit definitions */
183 #define OPCR_7_TxRDY_B (1<<7)
184 #define OPCR_6_TxRDY_A (1<<6)
185 #define OPCR_5_RxRDY_B (1<<5)
186 #define OPCR_4 RxRDY_A (1<<4)
187

188 #define OPCR_3 _OPR_3 (0<<2)
189 #define OPCR_3 _CT (1<<2)
190 #define OPCR_3 TxC_B (2<<2)
191 #define OPCR_3_RxC B (3<<2)
192

193 #define OPCR_2_OPR_2 (0<<0)
194 #define OPCR_2_TxC_Al16 (1<<0)
195 #define OPCR_2_TxC_A (2<<0)
196 #define OPCR_2_RxC_A (3<<0)
197

198 #define OPCR_DEFAULT 0

199

200 #endif _ DUART_HH_DEFINED__
201
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A.17 System.config

1
2
3
4
5
6
7
8
9

10

#define ROMbase 0x00000000

#define ROMsize 0x00040000

#define RAMbase 0x20000000

#define RAMsize 0x00040000

#define RAMend (RAMbase+RAMSsize)

#define OUTBUF_0_SIZE 80
#define OUTBUF_1_SIZE 80
#define INBUF_0_SIZE 80

#define INBUF_1_SIZE 80
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A.18 ApplicationStart.cc
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/I ApplicationStart.cc

#include "o0s.hh"
#include "Channels.hh"
#include "Serialln.hh"
#include "SerialOut.hh"
#include "Task.hh"
#include "Taskld.hh"
#include "Monitor.hh"

Channel Monitorin = DUMMY_SERIAL;
Channel MonitorOut = DUMMY_SERIAL;
Channel ErrorOut = DUMMY_SERIAL;
Channel GeneralOut = DUMMY_SERIAL;

1
1
/I Note: do not Print() here !

/l Multitasking and interrupt 10 is not yet up and running
1

1

void setupApplicationTasks()

Monitorin = SERIAL_1;
MonitorOut = SERIAL_1;
ErrorOut = SERIAL_1;
GeneralOut = SERIAL_1;

Monitor::setupMonitorTask();
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A.19 Monitor.hh

O©oO~NOOODSWNEPE

R =
N RO

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50

/I Monitor.hh

#ifndef MONITOR_HH_DEFINED
#define MONITOR_HH_DEFINED

#include "Channels.hh"

class Serialln;
class SerialOut;

class Monitor

{

public:

Monitor(Channel In, Channel Out)

. si(In), channel(Out), currentChannel(0), last_addr(0) {};

static void setupMonitorTask();

private:

h

static void monitor_main();

/ menus...

void MonitorMainMenu();
void InfoMenu();

void DuartMenu();

void TaskMenu();

void MemoryMenu();

int getCommand(const char * prompt);

int getCommand(const char * prompt, char arg);

int echoResponse();

/I complex functions...

void setTaskPriority();

void showTasks();

void showTask();

void showTask(SerialOut &, const Task *, const char *);
const char * const showTaskStatus(const Task * t);
void displayMemory(int cont);

Serialln si;
const Channel channel;

int currentChannel; // used in DuartMenu()
int currentChar; // used in DuartMenu()
unsigned long last_addr;  // used in MemoryMenu()

enum { ESC = 0x1B };

#endif MONITOR_HH_DEFINED
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A.20 Monitor.cc
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49
50
51
52
53
54

/I Monitor.cc

#include "System.config"
#include "o0s.hh"
#include "Serialln.hh"
#include "SerialOut.hh"
#include "Channels.hh"
#include "Task.hh"
#include "Taskld.hh"
#include "Monitor.hh"

Il

void Monitor::setupMonitorTask()

{

MonitorTask = new Task (

monitor_main, // function
2048, /l user stack size
16, /I message queue size
240, /I priority
"Monitor Task");

}

Il

void Monitor::monitor_main()

{

SerialOut::Print(GeneralOut,
"\nMonitor started on channel %d.",
MonitorOut);

Monitor Mon(MonitorIn, MonitorOut);
Mon.MonitorMainMenu();
}
Il
int Monitor::getCommand(const char * prompt)
{
SerialOut::Print(channel, "\n%s > ", prompt);
return echoResponse();
}
Il
int Monitor::getCommand(const char * prompt, char arg)

SerialOut::Print(channel, "\n%s_%c > ", prompt, arg);
return echoResponse();

}
/I
int Monitor::echoResponse()
{
int cc = si.Getc() & Ox7F;
switch(cc)
{
case ESC: SerialOut::Print(channel, "ESC "); break;
case '\n": break;
case '\r': break;

default: if (cc<'") break;
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55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

SerialOut::Print(channel, "%c ", cc);

}

return cc;

}
I

void Monitor::MonitorMainMenu()

SerialOut::Print(channel, "\nType H or ? for help.");
SerialOut::Print(channel, "\nMain Menu [D | M T H]\n");

for (;;) switch(getCommand("Main"))

case 'h": case 'H': case '?"

{
SerialOut so(channel);
s0.Print("\nD - Duart Menu");
so.Print("\nl - Info Menu");
so.Print("\nM - Memory Menu");
So.Print("\nT - Task Menu");

}

continue;

case 'd": case 'D': DuartMenu(); continue;
case 'i": case 'l': InfoMenu(); continue;

case 'm': case 'M": MemoryMenu(); continue;
case 't case 'T": TaskMenu(); continue;

}
}
1
void Monitor::InfoMenu()
{

SerialOut::Print(channel, "\ninfo Menu [O S T H QI");
for (;;) switch(getCommand("“Info"))

case 'h': case 'H": case '?":

SerialOut so(channel);
s0.Print("\nO - Overflows");
s0.Print("\nS - System Memory");
S0.Print("\nT - System Time");

}

continue;

case ESC: case 'Q". case '('":
return;

case '0": case 'O"
{
SerialOut so(channel);
so.Print("\nCh 0 in : %d",
Serialln::getOverflowCounter(SERIAL_O0));
so.Print("\nCh 1 in : %d",
Serialln::getOverflowCounter(SERIAL_1));
}

continue;
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111
112
113
%8X",
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

case 's': case 'S"

SerialOut::Print(channel, "\nTop of System Memory:

os::top_of RAM());
}

continue;

case 't case 'T"
{
unsigned long long time = os::getSystemTime();
unsigned long t_low = time;
unsigned long t_high = time>>32;

SerialOut::Print(channel, "\nSystem Time: %d:%d",
t_high, t_low);
} .
continue;
}

}
It

void Monitor::DuartMenu()
{

int currentChar;

int databits;

int parity;

int baud;

SerialOut::Print(channel, "\nDuart Menu [BC M T H Q]");
for (;;) switch(getCommand("Duart”, ‘A’ + currentChannel))

case 'h': case 'H'": case '?"
{
SerialOut so(channel);
so.Print("\nB - Set Baud Rate");
so.Print("\nC - Change Channel");
so.Print("\nM - Change Mode");
s0.Print("\nT - Transmit Character");

}

continue;

case ESC: case 'Q": case 'q':
return;

case 'b": case 'B":
{
SerialOut so(channel);
so.Print("\nBaud Rate ? ");
baud = si.Getdec(so);
Channel bc;

if (currentChannel) bc = SERIAL_1;
else bc = SERIAL_O;

if (os::setBaudRate(bc, baud))
so.Print("\nlllegal Baud Rate %d", baud);
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166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

}

continue;

case 'c": case 'C"
currentChannel = 1 & ++currentChannel;
continue;

case 'm': case 'M"
SerialOut::Print(channel, "\nData Bits (5-8) ? );
databits = echoResponse() - '0';
if (databits < 5 || databits > 8)
{
SerialOut::Print(channel,
"\nlllegal Data bit count %d",
databits);
continue;

}

SerialOut::Print(channel, "\nParity (NOE M S) ? ");
parity = echoResponse();

{

SerialOut so(channel);
Channel bc;

if (currentChannel) bc = SERIAL_1;
else bc = SERIAL_O;

switch(parity)

case 'E": case 'e":
os::setSerialMode(bc, databits, 0);
break;

case 'O": case '0"
os::setSerialMode(bc, databits, 1);
break;

case 'M". case 'm":
os::setSerialMode(bc, databits, 2);
break;

case 'S': case 's"
os::setSerialMode(bc, databits, 3);
break;

case 'N': case 'n"
os::setSerialMode(bc, databits, 4);
break;

default:
so.Print("\nlllegal Parity %c", parity);
continue;

}
s0.Print("\nDatabits = %d / Parity = %c set.",
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222 databits, parity);

223 }

224 continue;

225

226 case 't case 'T":

227 {

228 SerialOut so(channel);

229 currentChar = si.Gethex(so);

230

231 so0.Print("\nSending 0x%2X", currentChar & OxFF);
232 }

233 {

234 Channel bc;

235

236 if (currentChannel) bc = SERIAL_1;

237 else bc = SERIAL_O;

238

239 SerialOut::Print(bc, "%c", currentChar);

240 }

241 continue;

242 }

243 '}
244 ||
245  void Monitor::TaskMenu()

246

247 SerialOut::Print(channel, "\nTask Menu [P S T H Q]");
248 for (;;) switch(getCommand("Task"))

249 {

250 case 'h": case 'H": case '?"

251 {

252 SerialOut so(channel);

253 s0.Print("\nP - Set Task Priority");

254 s0.Print("\nS - Show Tasks");

255 s0.Print("\nT - Show Task");

256 }

257 continue;

258

259 case ESC: case 'Q": case '(":

260 return;

261

262 case 'p": case 'P"

263 SerialOut::Print(channel, "Set Task Priority:");
264 setTaskPriority();

265 continue;

266

267 case 's" case 'S"

268 SerialOut::Print(channel, "Show Tasks:");
269 showTasks();

270 continue;

271

272 case 't: case 'T"

273 SerialOut::Print(channel, "Show Task:");
274 showTask();

275 continue;

276 }

277 1}
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278
279
280
281
282
283
284
285
286
287
288
289
290
201
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

I
void Monitor;:MemoryMenu()

{
int gotD = 0;

SerialOut::Print(channel, "\nMemory Menu [D H Q]");
for (;;) switch(getCommand(*Memory"))
{
case 'h'": case 'H': case '?"
{
SerialOut so(channel);
so.Print("\nD - Dump Memory");
gotD = 0;
}

continue;

case ESC: case 'Q": case 'q":
return;

case 'd": case 'D"
SerialOut::Print(channel, "Dump Mamory at address 0x");
displayMemory(0);
gotD =1,
continue;

case '\n"
if (gotD) displayMemory(1);
continue;

}
I

void Monitor::displayMemory(int cont)

{

unsigned int addr = last_addr;

if (cont == 0) // dont continue
{
SerialOut so(channel);
addr = si.Gethex(so);
si.Pollc(); // discard terminating char for Gethex()

}

for (int line = 0; line < 16; line++)
if ( ROMbase <= addr && addr < ROMbase+ROMsize-16
|| RAMbase <= addr && addr < RAMbase+RAMsize-16
)
{

SerialOut so(channel);
int j;

char cc;

s0.Print("\n%8X: ", addr);

for (j=0;j<8;jt++)
so.Print("%4X ", OXFFFF & (int)(((short *)addr)[j]));

for (j=0;j < 16; j++)
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334 {

335 cc = ((char *)addn)[jJ;
336 if (cc<''||cc>0x7E) cc=""
337 s0.Print("%c", cc);
338 }

339

340 addr += 16;

341

342 last_addr = addr;

343 }

344 |}

345  void Monitor::setTaskPriority()
346 {

347 Task * t = Task::Current();
348 unsigned short priority;

349 {

350 SerialOut so(channel);

351 while (si.Pollc() !=-1) /* empty */;

352 so.Print("\nTask number =");

353

354 for (int tindex = si.Getdec(so); tindex; tindex--)
355 t = t->Next();

356

357 while (si.Pollc() !=-1) /* empty */;

358 so.Print("\nTask priority =");

359 priority = si.Getdec(so);

360

361 if (priority == 0) priority++;

362 so.Print("\nSet %s Priority to %d", t->Name(), priority);
363 }

364 t->setPriority(priority);

365 }

366 //

367 void Monitor::showTask()

368 {

369 const Task * t = Task:Current();

370 SerialOut so(channel);

371

372 so.Print("\nTask number =");

373 for (int tindex = si.Getdec(so); tindex; tindex--)

374 t = t->Next();

375

376 const char * const stat = showTaskStatus(t);

377 unsigned int stackUsed = t->userStackUsed();

378

379 so.Print("\nTask Name: %s", t->Name());

380 so.Print("\nPriority:  %d", t->Priority());

381 s0.Print("\nTCB Address: %8X", t);

382 if (stat) so.Print("\nStatus:  %s", stat);

383 else so.Print("\nStatus:  %2X", t->Status());
384 so.Print("\nUS Base:  %8X", t->userStackBase());
385 so.Print("\nUS Size: %8X", t->userStackSize());
386 so.Print("\nUS Usage: %8X (%d%%)",

387 stackUsed, (stackUsed*100)/t->userStackSize());
388 1}
389 /I
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390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
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424
425
426
427
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429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

void Monitor::showTasks()

{

const Task * t = Task::Current();
SerialOut so(channel);

s0.Print(
"n )
s0.Print(
“\n TCB  Status Pri TaskName ID US Usage");
s0.Print(
"n )
for (;})
{
if (t == Task::Current()) showTask(so, t, "-->");
else showTask(so, t," ");

t = t->Next();
if (t == Task::Current()) break;
}
s0.Print(
“\n \n");

}
I

void Monitor::showTask(SerialOut & so, const Task * t,
const char * prefix)

{

const char * const stat = showTaskStatus(t);
inti;

s0.Print("\n%s %8X ", prefix, t);

if (stat) so.Print("%s", stat);

else so.Print("%4X ", t->Status());
s0.Print("%3d ", t->Priority());
s0.Print("%16s", t->Name());

for (i=0; i < TASKID_COUNT; i++)
if (t == Task::TaskIDsJ[i]) break;

if i < TASKID_COUNT) so.Print("%2d ", i);
else so.Print("--- ");

s0.Print("%8X ", t->userStackUsed());
}
1l
const char * const Monitor::showTaskStatus(const Task * t)

{
switch(t->Status())

case Task::RUN: return "RUN *;

case Task::BLKD: return "BLKD ";
case Task::STARTED: return "START ";
case Task:: TERMINATED: return "TERM *;
case Task::SLEEP: return "SLEEP ";
case Task::FAILED: return "FAILED ";
default: return O;
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446}
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A.21 Makefile

1 # Makefile for gmake

2 #

3

4  # Development environment.

5 # Replace /CROSS by where you installed the cross-environment

6 #

7 CROSS-PREFIX:= /CROSS

8 AR := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-ar

9 AS := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-as
10 LD := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-ld
11 NM := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-nm
12 OBJCOPY := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-objcopy
13 CC := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-gcc
14 MAKE = gmake

15

16 # Target memory mapping.

17 #

18 ROM_BASE:=0

19 RAM_BASE:= 20000000

20

21 # compiler and linker flags.

22 #

23 ASFLAGS :=-mc68020

24 CCFLAGS 1= -mc68020 -02 -fomit-frame-pointer -fno-exceptions
25

26 LDFLAGS := -i -nostdlib \

27 -Ttext $(ROM_BASE) -Tdata $(RAM_BASE) \

28 -Xlinker -Map -Xlinker Target.map

29

30 # Source files

31 #

32 SRC_S = $(wildcard *.S)

33 SRC_CC := $(wildcard *.cc)

34 SRC = $(SRC_S) $(SRC_CC)

35

36 # Dependency files

37 #

38 DEP_CC := $(SRC_CC:.cc=.d)

39 DEP_S = $(SRC_S:.S=.d)

40 DEP := $(DEP_CC) $(DEP_S)

41

42  # Object files

43 #

44 OBJ_S = $(SRC_S:.S=.0)

45 OBJ_CC := $(SRC_CC:.cc=.0)

46 OBJ = $(OBJ_S) $(OBJ_CC)

47

48 CLEAN = $(OBJ) $(DEP) libos.a \

49 Target Target.bin \

50 Target.td Target.text Target.data \

51 Target.map Target.sym

52

53 # Targets

54 #
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55 .PHONY: all

56 .PHONY: clean

57 .PHONY: tar

58

59 all: Target Target.sym

60

61 clean:

62 /bin/rm -f $(CLEAN)

63

64 tar: clean

65 tar:

66 tar -cvzf ../src.tar *

67

68 include $(DEP)

69

70 # Standard Pattern rules...

71 #

72 %.o: %.cc

73 $(CC) -c $(CCFLAGS) $< -0 $@

74

75 %.0: %.S

76 $(CC) -c $(ASFLAGS) $< -0 $@

77

78 %.d: %.cc

79 $(SHELL) -ec '$(CC) -MM $(CCFLAGS) $<\
80 | sed \"s/$*\.0/$*\.0 $@/\" > $@'
81

82 %.d: %.S

83 $(SHELL) -ec '$(CC) -MM $(ASFLAGS) $<\
84 | sed \"s/$*\.0/$*\.0 $@/\" > $@'
85

86 libos.a:$(0OBJ)

87 $(AR) -sr libos.a $?

88

89 Target: Target.bin

90 $(OBJICOPY) -l binary -O srec $< $@
91

92 Target.text:Target.td

93 $(OBJCOPY) -R .data -O binary $< $@
94

95 Target.data:Target.td

96 $(OBJCOPY) -R .text -O binary $< $@
97

98 Target.bin:Target.text Target.data

99 cat Target.text | skip_aout | cat - Target.data > $@
100

101 Target.sym:Target.td

102 $(NM) -n --demangle $<\

103 | awk ‘{printf("%s %s\n", $$1, $$3)}' \
104 | grep -v compiled | grep -v "\.0" \

105 | grep -v "_DYNAMIC" | grep -v "*U" > $@
106

107

108 Target.td:crt0.0 libos.a libgcc.a

109

$(CC) -0 $@ crt0.0 -L. -los -lgcc $(LDFLAGS)
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A.22 SRcat.cc

O©oO~NOOODSWNEPE

NNNNNRPRRRRRRERREE
EWNRPOOONOURNWNERO

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

/I SRcat.cc

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <assert.h>

FILE * infile;

enum { MAX_REC_SIZE = 256 };

enum { AOUT = 0x20 };

class SRecord

{

public:
SRecord() {};

int readRecord();
void writeRecord(int rtype);
enum { ERR_EOF = -1,

ERR_BAD_CHAR = -2,
ERR_CHECKSUM = -3

%

unsigned int address;
unsigned int size;

char data[MAX_REC_SIZE];

private:
int type;
int getHeader();
int getWord();
int getByte();
int getNibble();
void putByte(unsigned int);

unsigned char checksum;

kh

int load_file(const char * filename);
void store_file(unsigned int address, unsigned char * data,

unsigned int size);

41

void store_odd_even(unsigned int odd, unsigned char * data,

unsigned int size);

42
43
44
45
46
47
48
49
50
51
52

unsigned long compute_crc(unsigned char * data, unsigned int size);

unsigned char * ROM = 0;
const char * prog = 0;

int rom_index = 0O;

int skip = AOUT;

int crif = 0;

enum { ROMSIZE = 0x00020000 };

1
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53 int main(int argc, char * argv[])
54 {

55 int exit_code = 0;

56 const char * argvl = 0;

57

58 prog = argv[0];

59

60 if (argc < 2) exit(-8);

61 else argvl = argv[1];

62 if (Istrcmp(argvl, "aout")) skip = AOUT;
63 else if (Istrcmp(argvl, "noaout")) skip = 0;
64 else exit(-9);

65

66 ROM = new unsigned char[ROMSIZE];

67 if (ROM ==0) exit(-1);

68

69 for (inti =0; i < ROMSIZE; i++) ROM][i] = 0;

70

71 for (int arg = 2; arg < argc; arg++)

72 {

73 const char * av = argv[arg];

74 int address = 0;

75

76 if (Istrcmp(av, "-dsp_code"))

77 {

78 printf("// This file is automatically generated, don't
edit \n");

79 if (rom_index == (3*(rom_index/3)))

80 printf("enum { dsp_code_bytes = %d, dsp_code_words =
%d };\n",

81 rom_index, rom_index/3);

82 else

83 printf("#error \"Byte Count not multiple of 3\"\n");
84 printf("const char dsp_code[dsp_code_bytes] = {");
85

86 for (inti = 0; i < rom_index; i++)

87 {

88 if (1(i & 15)) printf("\n");

89 printf("0x%2.2X,", ROM[i] & OXFF);

90 }

91 printf("\n 1E\n\n™);

92 }

93 else if (Istrcmp(av, "-crlf"))

94

95 crif =1;

96 }

97 else if (Istrcmp(av, "-version™))

98

99 unsigned long Release = (ROM[0x100] << 24)
100 | (ROM[0x101] << 16)

101 | (ROM[0x102] << 8)

102 | (ROM[0x103] );

103 unsigned long Revision = (ROM[0x104] << 24)
104 | (ROM[0x105] << 16)

105 | (ROM[0x106] << 8)

106 | (ROM[0Xx107] );
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107 fprintf(stderr, "%s: FW Revision -> %u.%u\n",
108 prog, Release, Revision);

109 }

110 else if (Istrcmp(av, "-crc"))

111

112 unsigned long crc = compute_crc(ROM, ROMSIZE-4);
113 fprintf(stderr, "%s: CRC -> 0x%8.8X\n", prog,
crc);

114 ROM[ROMSIZE-4] = crc>>24;

115 ROM[ROMSIZE-3] = crc>>16;

116 ROM[ROMSIZE-2] = crc>> 8;

117 ROM[ROMSIZE-1] = crc;

118 rom_index = ROMSIZE;

119 }

120 else if (Istrcmp(av, "-even"))

121

122 store_odd_even(0, ROM, rom_index);

123

124 else if (Istrcmp(av, "-odd"))

125

126 store_odd_even(1, ROM, rom_index);

127

128 else if (strncmp(av, "0x", 2))

129 {

130 if (sscanf(av, "%X", &address) == 1)

131

132 fprintf(stderr, "%s: Storing -> 0x%8.8X\n",
133 prog, address);

134 store_file(address, ROM, rom_index);

135 }

136 else

137 exit_code = -2;

138 if (exit_code) break;

139 }

140 else /I file name

141 {

142 fprintf(stderr, "%s: Loading %s:\n", prog, av);
143 exit_code = load_file(av);

144 if (exit_code) break;

145 }

146 }

147

148 delete ROM; ROM =0;
149 exit(exit_code);

150 }

151

152 int load_file(const char * filename)
153 {

154 SRecord srec;

155 int mini =-1;

156 int maxi =-1;

157 intrecord =0;

158 int exit_code = 0;

159 intinitial_skip = skip;

160

161 infile = fopen(filename, "r");
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162 if (infile == 0) return exit_code = -3;

163

164 for (;})

165 {

166 int res = srec.readRecord();

167 record++;

168

169 switch(res)

170 {

171 case O:

172 fprintf(stderr, "%s: SO %s\n", prog, srec.data);
173 continue;

174

175 case 1:

176 case 2:

177 case 3:

178 {

179 if (mini ==-1) // first data record

180 {

181 mini = srec.address;

182 fprintf(stderr, "%s: S%d 0x%8.8X ->
0x%8.8X\n",

183 prog, res, mini, rom_index);
184 }

185 else if (res = 1 && srec.address = maxi)
186

187 fprintf(stderr,

188 "%s: Record %d: Gap/Overlap at
0x%8.8X\n",

189 prog, record, srec.address);
190 exit_code = -7;

191 break;

192 }

193

194 maxi = srec.address + srec.size;

195

196 for (inti = 0; i < srec.size; i++)

197 {

198 if (skip)

199 skip--;

200 else if (rom_index <= ROMSIZE)
201 ROM[rom_index++] = srec.data[i];
202 else

203 {

204 fprintf(stderr, "%s: S%d above ROM\n",
205 prog, res);

206 exit_code = -5;

207 break;

208 }

209 }

210 }

211 continue;

212

213 case 7:

214 case 8:

215 case 9:
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} Il S2/S8
=7} Il S3/S7

216 fprintf(stderr, "%s: S%d 0x%8.8X -> 0x%8.8X\n",
217 prog, res, maxi, rom_index);
218 break;

219

220 default:

221 fprintf(stderr, "%s: Bad Record S%d\n", prog,
res);

222 exit_code = -5;

223 break;

224 }

225 break;

226 }

227

228 fclose(infile);

229 fprintf(stderr, "%s: Size 0x%38.8X\n",
230 prog, maxi-mini-initial_skip);

231 return exit_code;

232 1}

233 /I

234  void store_file(unsigned int addr, unsigned char * data, unsigned
int size)

235 |

236 SRecord srec;

237 char name[20];

238 inti, sl, dr, er;

239

240 sprintf(hame, "Image_0x%8.8X", addr);

241 sl = strlen(name);

242

243 /I write SO record

244 srec.address = 0;

245 for (i=0;i<sl; i++) srec.data[i] = name]i];

246 srec.size = sl;

247 srec.writeRecord(0);

248

249 if ((addr+size) <= 0x01000000) { dr = 2; er = 8;
250 else {dr =3 r
251

252 I/l write S2/S3 records

253 for (int idx = O; idx < size; idx += 32)

254 {

255 srec.address = addr+idx;

256 srec.size = 0;

257 for (i=0;i<32;i++)

258 {

259 if ((idx+i) >= size) break;

260 srec.data[i] = data[idx+i];

261 srec.size++;

262 }

263 srec.writeRecord(dr);

264 }

265

266 /I write S8/S7 records

267 srec.address = 0;

268 srec.size = 0;

269 srec.writeRecord(er);
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270 }
271 1/
272 void store_odd_even(unsigned int odd, unsigned char * data,
unsigned int size)

273 |

274  unsigned int addr;

275 SRecord srec;

276 char * name;

277 inti, sl;

278

279 if (odd)

280 {

281 name = "EEPROM.ODD";
282 addr = 1;

283 }

284 else

285 {

286 name = "EEPROM.EVE";
287 addr = 0;

288 }

289

290 sl = strlen(name);

291

292 /I write SO record

293 srec.address = 0;

294 for (i=0;i<sl; i++) srec.data[i] = name]i];
295 srec.size = sl;

296 srec.writeRecord(0);

297

298 /I write S2/S3 records

299 for (int idx = 0; idx < size; idx += 32)

300 {

301 srec.address = idx>>1;

302 srec.size = 0;

303 for (i = addr; i < 32; i+=2)
304 {

305 if ((idx+i) >=size) break;
306 srec.data[i>>1] = data[idx+i];
307 srec.size++;

308 }

309 srec.writeRecord(1);

310 }

311

312 /I write S9 records
313 srec.address = 0;
314 srec.size = 0;

315 srec.writeRecord(9);

316 1}

317 1/

318 void SRecord::writeRecord(int rtype)
319 {

320 inti;

321 const char * CRLF ="\n";

322

323 if (crlf) CRLF ="\r\n";
324
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325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

checksum = 0;
switch(type = rtype)

case 0: printf("S0");

putByte(size+3);

putByte(address>>8);

putByte(address);

for (i=0; i < size; i++)
putByte(data[i]);

checksum = ~checksum;

putByte(checksum);

printf(CRLF);

return;

case 1: printf("S1");

putByte(size+3);

putByte(address>>8);

putByte(address);

for (i=0; i < size; i++)
putByte(data]i]);

checksum = ~checksum;

putByte(checksum);

printf(CRLF);

return;

case 2: printf("S2");

putByte(size+4);

putByte(address>>16);

putByte(address>>8);

putByte(address);

for (i = 0; i < size; i++)
putByte(data[i]);

checksum = ~checksum;

putByte(checksum);

printf(CRLF);

return;

case 3: printf("S3");

putByte(size+5);
putByte(address>>24);
putByte(address>>16);
putByte(address>>8);
putByte(address);
for (i=0; i < size; i++)
putByte(data[i]);
checksum = ~checksum;
putByte(checksum);
printf(CRLF);
return;

case 7:

printf("S7");
putByte(size+5);
putByte(address>>24);
putByte(address>>16);
putByte(address>>8);
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381 putByte(address);

382 for (i=0; i < size; i++)
383 putByte(data]i]);

384 checksum = ~checksum;
385 putByte(checksum);

386 printf(CRLF);

387 return;

388 case 8:

389 printf("S8");

390 putByte(size+4);

391 putByte(address>>16);
392 putByte(address>>8);
393 putByte(address);

394 for (i=0; i < size; i++)
395 putByte(data]i]);

396 checksum = ~checksum;
397 putByte(checksum);

398 printf(CRLF);

399 return;

400 case 9:

401 printf("S9");

402 putByte(size+3);

403 putByte(address>>8);
404 putByte(address);

405 for (i = 0; i < size; i++)
406 putByte(data[i]);

407 checksum = ~checksum;
408 putByte(checksum);

409 printf(CRLF);

410 return;

411 }

412 '}

413 1/

414  void SRecord::putByte(unsigned int val)
415 {

416 printf("%2.2X", val & OXFF);
417 checksum += val;

418 }

419 /I

420 int SRecord::readRecord()
421 {

422 int dat, w, total;

423

424 getHeader();
425 checksum = 1;
426 total = getByte(); if (total <0) return total;
427 switch(type)
{

428

429 case 0: address = getWord(); if (address <0) return
address;

430 total -= 2;

431 break;

432

433 case 1:

434 case 9: address = getWord(); if (address <0) return

address;
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435
436
437
438
439
440

total -= 2;
break;

case 2:
case 8. w = getByte(); if w < 0) return w;
address = getWord(); if (address <0) return

address;

441
442
443
444
445
446
447

address += w << 16;
total -= 3;
break;

case 3:
case 7: w = getWord(); if (w < 0) return w;
address = getWord(); if (address < 0) return

address;

448
449
450
451
452
453
454
455
456
457
458
459

address += w << 16;
total -= 4;
break;

default: return ERR_BAD_CHAR; // error
}

size = total-1; // 1 checksum

for (inti=0; i< total; i++)
{ data[i] = dat = getByte(); if (dat < 0) return dat; }
data[size] = 0; // terminator if used as string, e.g. for SO

records

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

if (checksum) return ERR_CHECKSUM,;

return type;

}
i/

int SRecord::getHeader()
{

intc;

for ;)

{
¢ = fgetc(infile);
if (c=="S") break;
if (c == EOF) return type = ERR_EOF;
if (c<="") continue; // whitespace
return type = ERR_BAD_CHAR,;

}

/I here we got an 'S'...
switch(c = fgetc(infile))
{
case '0"
case 'l": case '2" case '3":
case '7": case '8 case '9":
return type = c-'0';
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487 default: fprintf(stderr, "\ngetHeader: not 0, 1-3 or 7-9
[%d]", c);

488 return type = ERR_BAD_CHAR,;

489 }

490 }

491 /I

492  int SRecord::getWord()

493 {

494  intb, w;

495

496 b = getByte(); if (b <0) return b;
497 w = getByte(); if (w<0) returnw;
498 return (b<<8) + w;

499 }

500

501 //

502 int SRecord::getByte()
503 {

504 intn,b;

505

506 n = getNibble(); if (n <0) returnn;
507 b = getNibble(); if (b <0) returnb;
508 b += n<<4;

509 checksum += b;

510 return b;

511 }
512
513 /I
514 int SRecord::getNibble()

515 {

516 intc;

517

518 for (;})

519 {

520 ¢ = fgetc(infile);

521 if (c == EOF) return ERR_EOF,;
522 if (c>"") break;

523 }

524

525 ¢ &= Ox7F; /I strip parity

526 if (c < '0") return ERR_BAD_CHAR,;
527 if (c<='9") returnc-'0}

528 if (c < 'A") return ERR_BAD_CHAR,;
529 if c<="F") returnc+ 10 - 'A’;

530 if (c < 'a") return ERR_BAD_CHAR,;
531 if c<="'f) returnc+ 10 -'a’;

532 return ERR_BAD_CHAR,;

533 }
534
535 [/
536 unsigned long compute_crc(unsigned char * ROM, unsigned int size)
537 {

538 unsigned long D5 = 0x00A00805; // CRC-32 polynomial

539 unsigned long D1 = OXFFFFFFFF; // preset CRC value to all ones
540 unsigned long D2; /I data

541 unsigned long D3; /l temp data
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542 unsigned long D4; /I bit counter

543

544 for (unsigned int DO = 0; DO < size; DO +=4) //long loop
545 {

546 D2 = (ROM[DQ] << 24) & 0xFF000000

547 | (ROM[DO+1] << 16) & 0XxOOFF0000

548 | (ROM[DO+2] << 8) & 0x0000FF00

549 | (ROM[DO+3] ) & OXxO00000FF;

550

551 for (D4 = 0; D4 < 32; D4++) /1 bit loop
552 {

553 D3 =D1"D2;

554 D1 +=D1;

555 D2 +=D2;

556 if (D3 & 0x80000000) D1 = D5;

557 }

558 }

559 return D1;

560 }

561 |/
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